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ON NORMAL SOLVABILITY OF BOUNDARY VALUE PROBLEMS FOR
OPERATOR-DIFFERENTIAL EQUATIONS

ON SEMI-AXIS IN WEIGHT SPACE

Sabir S. Mirzoev and Rovshan Z. Humbataliev

Abstract. In the paper, the conditions of normal solvability of some boundary
value problems are obtained for a class of operator-differential equations of
elliptic type on a semi-axis in weight spaces. The principal part of this equation
contains a multiple characteristics operator. All conditions are expressed only
by the properties of the operators of the given equation.

1. INTRODUCTION

Many problems of mechanics, mathematical physics, theory of partial differen-
tial equations and others reduce to investigation of solvability of boundary value
problems for operator- differential equations in different spaces. Note that some
problems of theory of elasticity in a half-strip [1,2,3], the problems of theory of
vibrations of mechanical systems, vibrations of an elastic cylinder [4] reduce to
investigation of solvability of appropriate boundary value problems for operator-
differential equations. For example, stress-strain state of a plate reduces to the
solution of problems of theory of elasticity in a half-strip. This, in its turn is in-
vestigated with solvability of some boundary value problems for second or fourth
order operator- differential equation. In the paper of Popkovich P.F. [2,3], Ustinov
Yu.A. and Yudovich Yu.I. [1], Orazov [5], the boundary value problem of elas-
ticity theory in a strip t > 0, |x| ≤ 1 is reduced to the solvability of different
boundary value problems for such equations, and solutions are obtained in the form
of limits of decreasing elementary solutions of a homogeneous equation. Investi-
gation of solvability of operator- differential equations are closely connected with
some spectral problems of different type operator bundles [1-3,6-9,11]. In the paper
[12], the relation of solvability of boundary value problems with exact values of
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the norm of intermediate derivatives operators is shown. This enables to choose
a wider class of operator- differential equations for which the stated problem was
well-posed. Finding of exact values of the norm of intermediate derivatives op-
erators is of independent mathematical interest and has numerical applications in
various fields of mathematical analysis [13,20,21,25], for example, in approximation
theory [22,23]. In many problems, it is necessary to investigate not correctness of
solvability of boundary value problems for operator-differential equations, but their
Fredholm property, or Noether property ( F- solvability) in some Sobolev spaces.
Note that when the principal part has simple characteristics in an infinite domain,
such problems were investigated in the papers [15,16,16,17,18] . It is difficult to
investigate such problems in infinite domains by the reason that though the principal
part is boundedly invertible in these spaces, and disturbed part is not relatively com-
pletely continuous in these spaces. Therefore, the studied problem is not Fredholm.
By this reason, here another method for investigation of normal solvability of such
problems is suggested. Therewith, the fact that the principal part of the inverse
operator is a sum of integral operator whose kernel depends on difference and com-
pletely continuous operator, is very important. This representation enables to prove
normal solvability of the suggested boundary value problem in some weight spaces.
Investigation of such problems in weight spaces also have numerical applications
[16,17,18]. In these problems, it is necessary to find dependence of weight exponent
with lower boundary of the main operator of differential equation. When the prin-
cipal part of the equation has simple characteristics, such problems are investigated
by different methods in the papers [16,17].

2. PROBLEM STATEMENT

In a separable Hilbert space H , consider the boundary value problem

(1) P

(
d

dt

)
u(t) ≡

(
− d2

dt2
+ A2

)n

u(t) +
2n−1∑
j=0

A2n−ju
(j)(t) = f(t), t ∈ R+,

(2) u(j)(0) = 0, (j = 0, n − 1).

HereA = A∗ > c E(c > 0), Aj(j = 0, 2n− 1) are linear operators in H , f(t) and
u(t) are vector-valued functions determined in R+ = (0, +∞) with values in H ,
the derivatives are understood in the sense of distributions [13].

Let Hα(α ≥ 0) be a Hilbert scale of the space H generated by the operator A,
i.e. Hα = D(Aα), (x, y)α = (Aαx, Aαy), x, y ∈ D(Aα).

By L2,γ(R+; H) for γ ∈ R = (−∞,∞) we denote a Hilbert space of the
vector-function f (t)

‖f‖2
L2,γ (R+;H) =

∫ ∞

0
‖f(t)‖H · e−2γtdt < ∞.
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Further, we define the following spaces

W 2n
2,γ(R+; H) =

{
u(t)/u(2n) ∈ L2,γ(R+; H), A2nu ∈ L2,γ(R+; H)

}
and

◦
W

2n

2,γ(R+; H) =
{

u(t)/u ∈ W 2n
2,γ(R+; H), u(j)(0) = 0, j = 0, n− 1

}
with the norm

‖u‖W 2n
2,γ (R+;H)=

(∥∥A2nu
∥∥2

L2,γ (R+;H)
+
∥∥∥u(2n)

∥∥∥2

L2,γ (R+;H)

)1/2

.

For γ =0, we assume that L2,0(R+; H)=L2(R+; H), W 2n
2,0(R+; H)=W 2n

2 (R+; H)

and
◦

W
2n

2 (R+; H) =
◦

W (R+; H).
In sequel, by L(X ; Y ) we’ll denote a space of bounded operators acting from the

space X to the space Y , and by σ∞ (H) we denote a set of completely continuous
operators acting in H .

3. AUXILIARY FACTS

Definition 1. If for f(t) ∈ L2,γ(R+; H) there exists a vector-function u(t) ∈
◦

W
2n

2,γ(R+; H) that satisfies equation (1) almost everywhere in R+, it will be said
to be a regular solution of equation (1).

Definition 2. Let there exist the spaces L̃2,γ(R+; H) ⊂ L2,γ(R+; H) and
W̃ 2n

2,γ(R+; H) ⊂ W 2n
2,γ(R+; H) that have finitedimensional orthogonal completions

in the spaces L2,γ(R+; H) and W 2n
2,γ(R+; H), respectively and for any f(t) ∈

L̃2,γ(R+; H) there exist a regular solution u(t) ∈ W̃ 2n
2,γ(R+; H) of equation (1)

that satisfies boundary condition (2) in the sense of convergence

lim
t→0

∥∥∥u(j)(t)
∥∥∥

2n−j−1/2
= 0

and it hold the estimation

‖u‖W 2n
2,γ(R+;H) ≤ const ‖f‖L2,γ(R+;H) .

Then problem (1), (2) is said to be normally solvable.
Denote

P0u(t) ≡
(
− d2

dt2
+ A2

)n

u(t)
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and

P1u(t) ≡
2n−1∑
j=0

A2n−ju
(j)(t), u(t) ∈

◦
W

2n

2,γ(R+; H).

After substitution u(t)e−γt = v(t) we reduce problem (1), (2) to a boundary value
problem in the space W 2n

2 (R+; H)

(3) Pγ

(
d

dt

)
v(t) ≡ P0,γ

(
d

dt
+ γ

)
v(t) + P1,γ

(
d

dt
+ γ

)
v(t) = g(t), t ∈ R+,

(4) v(j)(0) = 0,

where

P0,γ

(
d

dt
+ γ

)
v(t) =

(
−
(

d

dt
+ γ

)2

+ A2

)n

v(t), v(t) ∈
◦

W
2n

2,γ(R+; H),

P1,γ

(
d

dt
+ γ

)
v(t) =

2n−1∑
j=0

A2n−jv
(j)(t), v(t) ∈

◦
W

2n

2,γ(R+; H),

g(t) = f(t)e−γt ∈ L2(R+; H).

It holds the following

Theorem 1. Let A ≥ µ0E (µ0 > 0) and |γ| < µ0. Then the operator P0,γ

isomorphically maps the space
◦

W
2n

2 (R+; H) onto L2(R+; H), and the solution of
the equation P0,γ v0(t) = g(t) has the following form

(5) v0(t) =
∫ ∞

0
K(t−s)g(s)ds+

n−1∑
j=0

(t(A+γE))je−(A+γE)t

∫ ∞

0
Kj(s)g(s)ds,

where

(6) K(t − s) =




n∑
k=0

qn(t − s)kAk+1e−(A+γE)(t−s) ·A−2n+1, t − s > 0

n∑
k=0

pn(t − s)kAk+1e−(A−γE)(t−s) · A−2n+1, t − s < 0,

and pn, qn are some constant numbers, the operators K jg(t) =
∫∞
0 Kj(s)g(s)ds,

j = 0, n− 1 are continuous operators from L 2(R+; H) from H2n−1/2, i.e. Kj :
L
(
L2(R+; H) → H2n−1/2

)
.

Proof. Let ĝ(ξ) be a Fourier transformation of the vector-function g(t) contin-
ued on a negative semi-axis as a zero vector-function
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ĝ(ξ) =
1√
2π

∫ +∞

0

g(ξ)e−iξtdξ.

Then

v1(t) =
1√
2π

∫ +∞

−∞

(−(iξ + γ)2 + A2
)n

ĝ(ξ)eiξtdξ, t ∈ R = (−∞,∞)

satisfies the equation P0,γ(d/dt+γ)v(t) = g(t) almost everywhere on L2(R+; H).
Show that for |γ| < µ0

v1(t) ∈ W 2n
2 (R; H) (R = (−∞, +∞)).

By the Plancherel theorem, it suffices to prove that A2nv̂1(ξ) ∈ L2 (R+; H) and
ξ2nv̂1(ξ) ∈ L2 (R+; H), since

‖v1‖2
W 2n

2 (R+;H) =
∥∥A2nv1

∥∥2

L2(R+;H)
+
∥∥∥v(2n)

1

∥∥∥2

L2(R+;H)

=
∥∥A2nv̂1(ξ)

∥∥2

L2(R+;H)
+
∥∥∥ξ2nv

(2n)
2 (ξ)

∥∥∥2

L2(R+;H)
.

It is obvious that∥∥A2nv̂1

∥∥
L2(R;H)

=
∥∥∥A2n

(−(iξ + γ)2 + A2
)−n

ĝ(ξ)
∥∥∥

L2(R;H)

≤ sup
ξ∈R

∥∥∥A2n
(−(iξ + γ)2 + A2

)−n
∥∥∥

H→H
· ‖ĝ(ξ)‖L2(R;H) .

On the other hand, for any ξ ∈ R, it follows from the spectral expansion of A

that∥∥∥A2n
(−(iξ + γ)2 + A2

)−n
∥∥∥ = sup

σ∈σ(A)

∥∥∥σ2n
(
(ξ2 + σ2 − γ2)2 − 2iξσ

)−n
∥∥∥

≤ sup
σ≥µ0

∣∣σ2n(ξ2 + σ2 − γ2)
∣∣

≤ sup
σ≥µ0

σ2n

(σ2 − γ2)n
≤ µ2n

0

(µ2
0 − γ2)n

< ∞.

Thus,

∥∥A2nv̂1(ξ)
∥∥2

L2(R;H)
≤ µ2n

0

(µ2
0 − γ2)n

· ‖ĝ(ξ)‖L2(R;H) = const ‖g(t)‖L2(R+;H) ,

i.e. A2nv1(t) ∈ L2(R+; H). It is similarly proved that v
(2n)
1 (t) ∈ L2(R; H).

Moreover, ∥∥v2n
1 (t)

∥∥
W 2n

2 (R;H)
≤ const ‖g(t)‖L2(R+;H) .
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Thus,
v1(t) ∈ Wn

2 (R; H)

and
‖v(t)‖W 2n

2 (R;H) ≤ const ‖g(t)‖L2(R+;H) .

Now, let’s find representation for v1(t). Since

v1(t) =
∫ ∞

0

(
1
2π

∫ ∞

0

(
− (iξ + γ)2 E + A2

)−n
eiξ(t−s)dξ

)
g(s)ds

≡
∫ ∞

0

K (t − s) g (s) ds,

we’ll find the form of the operator

K(t − s) =
1
2π

∫ ∞

0

(
− (iξ + γ)2 E + A2

)−n
eiξ(t−s)dξ.

It is obvious that

K(t − s) = − 1
2πi

∫ i∞

−i∞

(
− (η + γ)2 E + A2

)−n
eη(t−s)dη.

For σ ∈ σ(A), we have

K(σ; t− s) = − 1
2π

∫ i∞

−i∞

(
− (η + γ)2 + σ2

)−n
eη(t−s)dη

= − 1
2πi

∫ +i∞

−i∞

eη(t−s)

(η − (σ − γ)n(η − ((σ + γ))n
dη.

Let t − s > 0, then

− 1
2πi

∫ +i∞

−i∞

eη(t−s)

(η − (σ − γ)n)(η + (σ + γ))n
dη

= − Res
η=−(σ+γ)

eη(t−s)

(η − (σ − γ))n(η + (σ + γ))n

= − lim
t→(σ+γ)

1
(η − 1)!

· dn−1

dηn−1

(
eη(t−s)

(η − (σ − γ))n

)
.

On the other hand,

dn−1

dηn−1
· eη(t−s) · (η − (σ − γ))−n

=
n−1∑
k=0

Ck
n−1(t − s)keη(t−s)

(
η − (σ − γ)−n

)n−1+k
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=
n−1∑
k=0

Ck
n−1(t − s)k (η − (σ − γ))k · (−1)n−kn(n + 1)

· . . . · (n + k − 1) (η − (σ − γ))−2n+1 .

Then

− lim
t→(σ+γ)

1
(η − 1)!

· dn−1

dηn−1
· eη(t−s)

(η − (σ − γ))n
=

n−1∑
k=0

qn(t−s)kσke−(σ+γ)t ·σ−2n+1,

where qn are constant numbers. We similarly have that for t − s < 0

− 1
2πi

∫ +i∞

−i∞

eη(t−s)

(η − (σ − γ)n(η − (σ + γ))n
dη

= Res
η=σ−γ

eη(t−s)

(η − (σ − γ))n(η − (σ + γ))n

=
1

(η − 1)!
· dn−1

dηn−1
·
(
− lim

t→σ−γ

eη(t−s)

(η − (σ + γ))n

)

=
n−1∑
k=0

Pn(t − s)kσke(σ−γ)(t−s)σ−2n+1.

Using spectral expansion of the operator A, we get (6). Then, the general
solution of the equation P0,γ(d/dt+γ)v(t) = g(t) from the space Wn

2 (R+; H)will
be of the form

v(t) =
∫ ∞

0
K(t − s)g(s)ds +

n−1∑
j=0

tj(A + γE)je−(A+γE)tϕj,

where ϕj ∈ H2n−1/2, j = 0, n − 1 [15,20]. For determination of the unknown
vectors ϕj we’ll use the condition (4). It is obvious that for a vector-function
v1(t) ∈ W 2n

2 (R+; H), then v
(j)
1 (0) ∈ H2n−j−1/2. Therefore, 0 = v(0) = ϕ0 ∈

H2n−1/2. On the other hand,

ϕ0 = v(0) = −
∫ ∞

0
K(−s)g(s)ds = K0g.

Here, the operator K0 ∈ L(L2(R+; H); H2n−1/2). We can similarly define the
remaining

ϕj =
∫ ∞

0
Kj(s)g(s)ds ≡ Kjg,

where Kj ∈ L(L2(R+; H); H2n−1/2). Thus,

v(t) =
∫ ∞

0
K(t − s)g(s)ds +

n−1∑
j=0

(t(A + γE))j e−(A+γ)t

∫ ∞

0
Kj(s)g(s)ds.

The theorem is proved.



1644 Sabir S. Mirzoev and Rovshan Z. Humbataliev

4. BASIC RESULT

Now, engage in solvability of problem (1), (2) and prove the main theorem.

Theorem 2. Let A ≥ µ0E (µ 0 > 0), A−1 ∈ σ∞ (H), |γ| < µ 0 and on the axis
Reλ = γ the resolvent P−1(λ) exists, moreover, on the axis Reλ = γ are finite∥∥P0(λ)P−1(λ)

∥∥ ≤ const.

If the operators Bj = Aj · A−j(j = 1, 2n) are completely continuous in H , the
problem (1), (2) is normally solvable.

Proof. It is obvious that normal solvability of problem (1),(2) is equivalent with
normal solvability with problem (3),(4). Therefore, we prove normal solvability of
problem (3),(4). By theorem 1, the operator P0,γ realizes isomorphism between

the spaces
◦
W

2n

2 (R+; H) and L2 (R+; H). Then assuming ω = P0,γv1, v1 ∈
◦

W
2n

2 (R+; H), ω ∈ L2 (R+; H), from the equation (3) in the space L2 (R+; H) for
determining ω(t), we get the following equivalent integro-differential equation

(7)

ω(t) +
2n−1∑
j=0

B2n−jA
2n−j

(
d

dt
+ γ

)j (∫ ∞

0
K(t − s)ω(s)ds

)

+
2n−1∑
j=0

B2n−jA
2n−j

(
d

dt
+γ

)jn−1∑
p=0

tp(A+γE)pe−(A+γ)t

∫ ∞

0
Kp(s)ω (s)ds.

All first we prove complete continuity of the second term in L2 (R+; H). Let

Qj,γ = A2n−j

(
d

dt
+ γ

)j n−1∑
p=0

tp(A + γE)pe−(A+γ)t

∫ ∞

0
Kp(s)ω(s)ds.

We must prove complete continuity of the operator B2n−jQj,γ . For simplicity, we
consider the case j = 0, the remaining cases are similarly considered. Then

Q0,γ = A2n
n−1∑
p=0

tp(A + γE)pe−(A+γE)t

∫ ∞

0
Kp(s)ω(s)ds.

Show that Q0,γ is a bounded operator in L2 (R+; H). Since ϕp =
∫∞
0 Kp(s)g(s)ds ∈

H2n−1/2 and

‖ϕp‖2n− 1
2
≤ const ‖ω (t)‖L2(R+;H) ,

S (t) ϕp ≡ tp(A + γE)pe−(A+γ)tϕp ∈ W 2n
2 (R+; H),
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i.e. S (t) ∈ L
(
H2n− 1

2
, W 2n

2 (R+; H)
)

, then using the above-mentioned inequali-
ties, we get

‖Q0,γ‖L2(R+;H) =
∥∥A2nS (t) ϕp

∥∥
L2(R+;H)

≤ ‖S (t) ϕp‖Wn
2 (R+;H)

≤ const ‖ϕp‖2n− 1
2
≤ const ‖ω (t)‖L2(R+;H) ,

i.e. Q0,γ is a bounded operator in L2 (R+; H). Denote

Q0,γ,n = B2nPmQ0,γ ,

where Pm is an ortprojector onto the first m eigen vector of the operators A (Aϕl =
λlϕl, l = 1, m

)
. Then, it is obvious that

Qj,γ,ng

=
m∑

l=1

λ
1
2
s

n−1∑
p=0

tp(λl + γ)pe−(λl+γ)t

(
A2n− 1

2

∫ ∞

0
Kp(s)ω(s)ds, ϕl

)
B2nϕl

=
m∑

l=1

λ
1
2
l

n−1∑
p=0

(
A2n− 1

2

∫ ∞

0
Kp(s)ω(s)ds, ϕl

)(
tp(λl + γ)pe−(λl+γ)tB2nϕl

)

=
m∑

l=1

λ
1
2
l

n−1∑
p=0

(
ω(s), T ∗

p ϕl

)
tp(λl + γ)pe−(λl+γ)tB2nϕl,

where
T ∗

p =
(
A2n− 1

2 Kp

)∗ ∈ L(H ; L2(R+; H)).

i.e. Q0,γ,n is a finite-dimensional operator. On the other hand, it follows from
complete continuity of the operator B2n that ‖B2n − B2nPm‖ → 0 as m → ∞
therefore

‖Q0,γ − PmQ0,γ,n‖L2(R+;H)→L2(R+;H)

≤ ‖B2n − B2nPm‖ · ‖Q0,γ‖L2(R+;H)→L2(R+;H) → 0,

as m → ∞, therefore, Q0,γ is a completely continuous operator. Thus, it follows
from equality (7) that for proving normal solvability of the given problem, it suffices
to prove normal solvability of the problem

(8) ω(t) + P1,γ (d/dt)
∫ ∞

−∞
Kγ(t − s)ω(s)ds = g(t)

in the space L2(R; H). To this end, we introduce the denotation

W (t) =

{
ω(t), t > 0

ω 1(t) = ω(−t), t < 0
, G(t) =

{
g(t), t > 0

g1(t) = g(−t), t < 0.
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Since L2 (R; H) = L2 (R+; H)⊕ L2 (R+; H), we consider the following equation
in the space L2 (R+; H)

W (t) + P1,γ (d/dt)
∫ ∞

0

Kγ(t − s)W (s)ds = G(t), t ∈ R

that is equivalent to the following system


ω(t)+P1,γ(d/dt)
∫ ∞

0
Kγ(t−s)ω(s)ds+P1,γ(d/dt)

∫ ∞

0
Kγ(t+s)ω1(s)ds=g(t)

ω1(t)+P1,γ(d/dt)
∫ ∞

0
Kγ(t+s)ω(s)ds+P1,γ(d/dt)

∫ ∞

0
Kγ(t−s)ω1(s)ds=g1(t).

We write this system in the form(
E − K11 K12

K21 E − K22

)
W =

[(
E − K11 0
0 E − K22

)
+
(

0 K12

K21 0

)]
W = G,

where
K11ω =

∫ ∞

0
P1,γ(d/dt)Kγ(t − s)ω(s)ds; K12ω1

=
∫ ∞

0

P1,γ(d/dt)Kγ(t + s)ω1(s)ds,

K22ω1 =
∫ ∞

0
P1,γ(d/dt)Kγ(t − s)ω1(s)ds; K21ω

=
∫ ∞

0
P1,γ(d/dt)Kγ(t + s)ω(s)ds.

It follows from the condition of the theorem that(
E − K11 K12

K21 E − K22

)
W = G

is correctly and uniquely solvable in L2(R; H). Really, after the Fourier transfor-
mation we get (

E + P1(iξ + γ)P−1
0 (iξ + γ)

)
Ŵ (ξ) = Ĝ(ξ)

or
(P0(iξ + γ) + P1(iξ + γ))P−1

0 (iξ + γ)Ŵ(ξ) = Ĝ(ξ).

Consequently, (
P (iξ + γ)P−1

0 (iξ + γ)
)
Ŵ (ξ) = Ĝ(ξ)

or
Ŵ (ξ) = P0(iξ + γ)P−1(iξ + γ)Ĝ(ξ).
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Since
∥∥P (λ)P−1(λ)

∥∥−1 ≤ const for λ = iξ + γ, then∥∥∥Ŵ (ξ)
∥∥∥

L2(R;H)
≤ const

∥∥∥Ĝ(ξ)
∥∥∥

L2(R;H)
= const ‖G(t)‖L2(R;H) .

Consequently, W (t) ∈ L2(R; H). Now, prove that the operators K12 and K21 are
completely continuous in L2(R+; H). If it is so, then the operator

(9)

(
E − K11 0
0 E − K22

)
=

(
E − K11 K12

K21 E − K22

)
−
(

0 K12

K21 0

)
,

will be Fredholm in the space L2(R+; H)⊕L2(R+; H). This means that equation
(8) will be normally solvable in L2(R+; H).

It is obvious that the kernel K21 is of the form

P1,γ(d/dt)Kγ(t + s) =
2n−1∑
j=0

A2n−j(d/dt + γ)Kγ(t + s)

=
2n−1∑
j=0

B2n−jA
2n−j(d/dt + γ)jKγ(t + s).

Considering the form of the kernel Kγ(t + s), we easily see that

∥∥A2n−j(d/dt + γ)jKγ(t + s)
∥∥

H→H
≤ cj(γ)

t + s
.

Thus, an integral operator Tj with kernel A2n−j(d/dt + γ)jKγ(t + s) is a
bounded operator from L2(R+; H) to L2(R+; H) [24]. Prove that an integral
operator TjPm with kernel B2n−jA

2n−j(d/dt + γ)jKγ(t + s) will be a completely
continuous operator in L2(R+; H). It is obvious that the kernel

B2n−jPmA2n−j (d/dt + γ)Kγ (t + s)

= B2n−j

m∑
l=1

2n−1∑
j=0

(d/dt + γ)j
n∑

k=0

qn(t + s)kλk
l e

−(λl+γ)(t+s)(·, ϕl)λ−2n+1
l

=
m∑

l=1

2n−1∑
j=0

(d/dt + γ)j
n∑

k=0

qn(t + s)kλ−2n+k−1
l e−(λl+γ)(t+s)(·, ϕl)B2n−jϕl

generates a finite-dimensional operator in L2(R+; H). Since, B2n−j , as m → ∞

‖Tj−TjPm‖L2(R+;H)→L2(R+;H)=‖(B2n−j−B2n−jPm) Tj‖L2(R+;H)→L2(R+;H)

≤ ‖Tj‖L2(R+;H)→L2(R+;H) , ‖B2n−j − B2n−jPm‖ → 0.
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Consequently,K21 is a completely continuous operator in L2(R+; H).Thus, normal
solvability of problem (3),(4) and consequently, normal solvability of problem (1),(2)
follows from (9). The theorem is proved.

Apply the obtained result to the most interesting case n = 2.

Example. Let n = 2. Then, we obtain boundary value problem (1),(2) in the
form

(10)
(
− d2

dt2
+ A2

)2

u(t) +
3∑

j=0

An−ju
(j)(t) = f(t), t ∈ R+ = (0, +∞) ,

(11) u (0) = u
′
(0) = 0.

Applying theorem 2, we get the following theorem.

Theorem 3. Let A ≥ µ0E (µ0 > 0), A−1 ∈ σ∞ (H), |γ| < µ0 and on the axis
Reλ = γ the resolvent P−1(λ) exists, moreover,∥∥P0(λ)P−1(λ)

∥∥ ≤ const.

If the operators Bj = Aj · A−j(j = 1, 4) are completely continuous in H , the
problem (10), (11) is normally solvable.
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