TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 4, pp. 1437-1446, August 2011 This paper is available online at http://www.tjm.nsysu.edu.tw/

ON DERIVATIONS OF CENTRALIZER NEAR-RINGS

Y. Fong and C.-S. Wang

Abstract. It is proved that if a centralizer near-ring N has a nonzero derivation, then N is a near-field.

1. INTRODUCTION

An additively written group N equipped with a binary operation $\cdot : N \times N \to N$, $(x, y) \mapsto xy$, such that (xy)z = x(yz) and (y+z)x = yx + zx for all $x, y, z \in N$ is called a *(right) near-ring*. A near-ring N is said to be *zero-symmetric* if x0 = 0 for all $x \in N$. If $N^* = N \setminus \{0\}$ is a group, then N is said to be a *near-field*.

Let N be a near-ring and M a subnear-ring of N. An additive mapping $d : M \to N$ is said to be a *derivation* of M into N if $(xy)^d = xy^d + x^dy$ for all $x, y \in M$. Here x^d denotes the image of x under d. We refer the reader to the books of Clay [5], Meldrum [13] and Pilz [14] for basic results of near-ring theory and its applications.

In what follows, G is an additively written (not necessarily abelian) group and C is a fixed point free automorphism group of G (i.e. for all $x \in G$ and $\alpha \in C$ with $x \neq 0$ and $\alpha \neq 1$ we have $x\alpha \neq x$. Note that for clarity, we write the image of x under $\alpha \in C$ as $x\alpha$.) Next, set

$$M_C^0(G) = \{ f : G \to G \mid f(0) = 0 \text{ and } f(x\alpha) = f(x)\alpha$$

for all $x \in G$ and $\alpha \in C \}.$

(Now, the image of x under $f \in M_C^0(G)$ is written as f(x).) It is well-known that $M_C^0(G)$ is a zero-symmetric near-ring under the pointwise addition and composition of mappings. The near-ring $M_C^0(G)$ is usually referred to as the *centralizer near-ring* on G determined by C (see [5, 13, 14]). A transformation $f \in M_C^0(G)$ is said to be of *finite rank* if there exist finitely many elements $x_1, x_2, \ldots, x_n \in G$ such that $f(G) \subseteq \bigcup_{i=1}^n x_i C$, where, for each $i, x_i C = \{x_i \alpha \mid \alpha \in C\}$. When $C = \{1\}$, the

Received January 11, 2007, accepted February 3, 2010.

Communicated by Wen-Fong Ke.

²⁰⁰⁰ Mathematics Subject Classification: 16Y30.

Key words and phrases: Derivation, Centralizer near-ring.

near-ring $M^0_C(G)$ is denoted by $M_0(G)$ and is called *the transformation near-ring* on G.

Let F be a skew field and V a right vector space over F. Let $R = \operatorname{End}_F(V)$ be the ring of linear transformations of the vector space V. The concept of the centralizer near-ring $M_C^0(G)$ is a generalization of that of the ring of linear transformations of a vector space. It is well-known that if $d : R \to R$ (respectively, $\alpha : R \to R$) is a derivation (automorphism) of the ring R, then there exists a (bijective) additive transformation $T : V \to V$ such that $r^d = Tr - rT$ (respectively, $r^{\alpha} = TrT^{-1}$) for all $r \in R$ (see [11]). In 1974, Ramakotaiah [16] proved analogous results for automorphisms of transformation near-rings (see also [14, Theorem 7.39]). The study of derivations of near-rings was initiated by Bell and Mason [4] in 1987. Since then a number of research articles on the subject have been published [1, 2, 3, 4, 6, 7, 10, 19]. Researchers mainly studied different generalizations of Posner's [15] and Herstein's [8, 9] results into the context of near-rings. Recently Fong, Ke and Wang [7, Theorem 1.1] obtained the following result which was inspired by classical results on derivations of primitive rings with nonzero socle.

Theorem 1.1. Let G be a nonzero additively written group, N a subnear-ring of $M_0(G)$ containing all the transformations with finite rank. Then there are no nonzero derivations of N into $M_0(G)$.

In the present paper we continue the program of Fong, Ke and Wang in [7], and we shall prove following theorem.

Theorem 1.2. Let G be a nonzero additively written group with a fixed point free automorphism group C, let M be a subnear-ring of $M^0_C(G)$ containing all the transformations of G which are of finite rank, and let $d: M \to M^0_C(G)$ be a nonzero derivation. Then

- (1) G is the additive group of some near-field F, say;
- (2) *C* is isomorphic to the multiplicative group $F^* = F \setminus \{0\} = G \setminus \{0\}$ that acts on *G* via right multiplications; and
- (3) $M = M_C^0(G)$, and is isomorphic to G which acts on G via left multiplications.

We note that Theorem 1.1 is a special case of Theorem 1.2 with $C = \{1\}$.

The question of whether there are nontrivial derivations on near-fields remains open. However, using the SONATA package of GAP [17, 18], we know that there are no nontrivial derivations on the 7 exceptional finite near-fields, and this is also the case for some small Dickson near-fields provided in SONATA. On the other hand, since the set of all distributive elements of a finite near-field is the center [14, Theorem 8.31], there are no nontrivial inner derivations on any finite near-field.

Finally, we remark that the question of when $M^0_C(G)$ is a near-field was considered in [12].

2. PROOF OF THE THEOREM

The following properties of a derivation on a zero-symmetric near-ring will be used throughout the proof.

Lemma 2.1. Let N be a zero-symmetric near-ring, let $d : N \to N$ be a derivation and let $a, b, c \in N$. Then:

(*i*)
$$(ab)^d = a^d b + ab^d$$
 [19, Proposition 1];

 $(ii) \ (ab^d+a^db)c=ab^dc+a^dbc \ and \ (a^db+ab^d)c=a^dbc+ab^dc \ [4, \ {\rm Lemma \ 1}].$

Now, we shall begin to prove Theorem 1.2. The proof will be achieved step by step in the form of lemmas.

In what follows, M is a subnear-ring of $M^0_C(G)$ containing all the transformations which are of finite rank, and $d: M \to M^0_C(G)$ is a nonzero derivation. We set $G^* = G \setminus \{0\}$. Given $x, y \in G^*$, and define the map $\delta_{x,y}: G \to G$ as follows:

$$\delta_{x,y}(z) = \begin{cases} x\alpha, & \text{if } z = y\alpha \text{ for some } \alpha \in C; \\ 0, & \text{if } z \notin yC. \end{cases}$$

Since C is a fixed point free group of automorphisms of G, $\delta_{x,y}$ is well-defined. It is also clear that $\delta_{x,y} \in M^0_C(G)$ and is of finite rank.

Denote by N the set of all finite sums of transformations of G of finite rank. Then N is a subnear-ring of M, and we have

$$M^0_C(G)N \subseteq N$$
 and $NM^0_C(G) \subseteq N$.

Given $x \in G^*$, we set $N(x) = \{f(x) \mid f \in N\}$.

Lemma 2.2. $N^d \subseteq N$, $N^d \neq 0$, and for any $x \in G^*$, G = N(x).

Proof. First of all, we have $\delta_{x,y} \in N$ for all $x, y \in G^*$. Let f be a transformation of G of finite rank, say $f(G) \subseteq \bigcup_{i=1}^n x_i C$. Set $A = \sum_{i=1}^n \delta_{x_i, x_i} \in N$. Then Af = f, and so $f^d = (Af)^d = Af^d + A^d f$. Since $Af^d \in Nf^d \subseteq N$ and $A^d f \in A^d N \subseteq N$, we have $f^d \in N$. Therefore $N^d \subseteq N$.

Next, assume that $N^d = 0$. Pick $h \in M$ with $h^d \neq 0$, and take $x \in G$ with $h^d(x) \neq 0$. Since $\delta_{x,x} \in N$ and $h\delta_{x,x} \in N$, we have $\delta_{x,x}^d = 0$ and $(h\delta_{x,x})^d = 0$; thus

$$0 = (h\delta_{x,x})^d(x) = (h^d\delta_{x,x} + h\delta_{x,x}^d)(x) = h^d(x) \neq 0,$$

which cannot be. Therefore, $N^d \neq 0$.

Finally, for any fixed $x \in G^*$, we have $\delta_{y,x}(x) = y$ and $\delta_{y,x} \in N$ for all $y \in G^*$, it follows at once that $G = N(x) = \{f(x) \mid f \in N\}$.

In view of the above lemma, we may assume, without loss of generality, that M = N.

Throughout the rest of this section, we shall fix an element $x_0 \in G^*$, and set $e = \delta_{x_0,x_0}$. From the fact that $f(x_0) = g(x_0)$ if and only if f(y) = g(y) for all $y \in x_0C$ we conclude that

(1)
$$f(x_0) = g(x_0)$$
 if and only if $fe = ge$.

Define a map $T: G \to G$ by the rule

$$T(f(x_0)) = (fe)^d(x_0) = (f^d e + fe^d)(x_0)$$

= $f^d e(x_0) + fe^d(x_0) = f^d(x_0) + fe^d(x_0)$ for all $f \in N$.

Note that T is well-defined. For if $f, g \in N$ are such that $f(x_0) = g(x_0)$, then fe = ge by (1), and so $T(f(x_0)) = (fe)^d(x_0) = (ge)^d(x_0) = T(g(x_0))$.

Lemma 2.3. T is a nonzero endomorphism of G and $f^d = Tf - fT$ for all $f \in N$.

Proof. Given
$$u, v \in G$$
, pick $f, g \in N$ with $f(x_0) = u$ and $g(x_0) = v$. Then
 $T(u+v) = T(f(x_0) + g(x_0)) = T((f+g)(x_0)) = ((f+g)e)^d(x_0)$
 $= (fe + ge)^d(x_0) = (fe)^d(x_0) + (ge)^d(x_0)$
 $= T(f(x_0)) + T(g(x_0)) = T(u) + T(v),$

and so T is an endomorphism of G. Now, let $f \in N$ and $w \in G$. Pick $h \in N$ with $h(x_0) = w$. Then $he(x_0) = h(x_0) = w$. We have that

$$(Tf)(w) = T(f(w)) = T(fh(x_0)) = (fhe)^d(x_0) = (f^d he + f(he)^d)(x_0)$$
$$= (f^d he)(x_0) + (f(he)^d)(x_0) = f^d(he(x_0)) + f(he)^d(x_0)$$
$$= f^d(w) + f(T(he(x_0))) = f^d(w) + (fT)(w)$$

and so $(Tf - fT)(w) = f^d(w)$ for all $w \in G$. Therefore, $Tf - fT = f^d$ for all $f \in N$ as claimed. If T = 0, then for all $f \in N$, $f^d = Tf - fT = 0$, and so d = 0, a contradiction. Hence, T is a nonzero endomorphism of G.

As an endomorphism of G, T is a distributive element in $M_0(G)$. In particular,

(2)
$$T(f+g) = Tf + Tg$$
 and $(f+g)T = fT + gT$ for all $f, g \in N$.

Lemma 2.4. G is an abelian group.

Proof. Let $f, g \in N$. Then Tf + Tg - gT - fT - T(f + g) - (f + g)T

and so Tg - gT - fT = -fT + Tg - gT. Thus,

$$g^d - fT = -fT + g^d.$$

Set $H = G \setminus \ker(T)$, where $\ker(T)$ is the kernel of T. Then $H \neq \emptyset$. Take any $u \in G$ and $v \in H$. Since $T(v) \neq 0$, there is an $f \in N$ such that -fT(v) = u. Thus

$$g^{d}(v) + u = g^{d}(v) - fT(v) = (g^{d} - fT)(v)$$
$$= (-fT + g^{d})(v) = -fT(v) + g^{d}(v) = u + g^{d}(v).$$

This shows that

(3)
$$g^d(H) \subseteq Z(G)$$
 for all $g \in N$,

where Z(G) denotes the center of G. As Z(G)C = Z(G), we also have

(4)
$$g^d(HC) \subseteq g^d(H)C \subseteq Z(G)C = Z(G)$$
 for all $g \in N$.

We claim that $g^d(H) \neq 0$ for some $g \in N$. Assume on the contrary that $g^d(H) = 0$ for all $g \in N$. Since $d \neq 0$, there exists a $g \in N$ with $g^d \neq 0$. Therefore $g^d(y) \neq 0$ for some $y \in G^*$. Take $z \in H$ and $f \in N$ such f(z) = y. Then $(gf)^d(z) = 0$ and $f^d(z) = 0$, and so

$$g^{d}(y) = g^{d}f(z) = g^{d}f(z) + gf^{d}(z) = (gf)^{d}(z) = 0,$$

a contradiction. This proves our claim.

Take $g \in N$ and $a \in H$ with $g^d(a) \neq 0$. Set

$$x = g(a), \quad y = T(a), \quad \text{and} \quad z = g(y) = gT(a).$$

Note that $y \neq 0$, and we cannot have both x = 0 and z = 0 because this will lead to the contradiction that

$$0 \neq g^{d}(a) = Tg(a) - gT(a) = T(x) - z = T(0) - 0 = 0.$$

Moreover, if x = 0, then $y \notin aC$. For if $y = a\alpha$ for some $\alpha \in C$, then

$$z = g(y) = g(a\alpha) = g(a)\alpha = 0\alpha = 0,$$

which cannot be. On the other hand, if $y = a\alpha \in aC$, then we have $g(y) = g(a\alpha) = g(a)\alpha = x\alpha$.

Now, define

$$h = \begin{cases} \delta_{z,y} & \text{if } x = 0 \text{ (hence } y \notin aC \text{ and } z \neq 0), \\ \delta_{x,a} + \delta_{z,y} & \text{if } x \neq 0, y \notin aC, \text{ and } z \neq 0, \\ \delta_{x,a} & \text{if } x \neq 0, y \notin aC, \text{ and } z = 0, \\ \delta_{x,a} & \text{if } x \neq 0 \text{ and } y \in aC. \end{cases}$$

It is easy to check that h(a) = x = g(a) and h(y) = z = g(y), and so

$$h^{d}(a) = Th(a) - hT(a) = Th(a) - h(y)$$

= $Tg(a) - g(y) = Tg(a) - gT(a) = g^{d}(a).$

Therefore, it follows that $h^d(a) \neq 0$. Thus,

(5) either $\delta^d_{x,a}(a) \neq 0$ (hence $x \neq 0$), or $\delta^d_{z,y}(a) \neq 0$ (hence $z \neq 0$).

Next we are going to show that $\delta_{u,v}^d(H) \neq 0$ for some $u, v \in H$. Assume on the contrary that $\delta_{u,v}^d(H) = 0$ for all $u, v \in H$. Then

$$T(u) - \delta_{u,v}T(v) = T\delta_{u,v}(v) - \delta_{u,v}T(v) = (T\delta_{u,v} - \delta_{u,v}T)(v) = \delta_{u,v}^d(v) = 0$$

and so $T(u) = \delta_{u,v}T(v)$ for all $u, v \in H$. Since $T(u) \neq 0$, we conclude from the definition of $\delta_{u,v}$ that $T(v) \in vC$ for all $v \in H$. For each $u \in H$, let $\alpha_u \in C$ be such that $T(u) = u\alpha_u$. But then for any $u, v \in H$, we have

$$u\alpha_u = T(u) = \delta_{u,v}T(v) = \delta_{u,v}(v\alpha_v) = u\alpha_v,$$

and so $\alpha_u = \alpha_v$ as they are fixed point free. Thus $\alpha_u = \alpha_v$ for all $u, v \in H$. Set $\alpha = \alpha_v$. We have $T(u) = u\alpha$ for all $u \in H$. Take $w \in \ker(T)$. Then $a + w \in H$ and so $a\alpha = T(a) = T(a + w) = (a + w)\alpha = a\alpha + w\alpha$ which forces $w\alpha = 0$. Again, since α is fixed point free, w = 0. Therefore, $\ker(T) = 0$, and $H = G^*$. Now we conclude from (5) that

- (1) either $x, a \in H$ such that $\delta^d_{x,a}(a) \neq 0$, a contradiction to the assumption;
- (2) or $y, z \in H$ such that $\delta^d_{x,a}(a) = 0$, again a contradiction to the assumption.

Therefore, we must have $\delta_{u,v}^d(H) \neq 0$ for some $u, v \in H$.

Pick $u, v, w \in H$ with $s = \delta_{u,v}^d(w) \neq 0$. Let $t \in G^*$. Using (4), we have $\delta_{t,s}^d \delta_{u,v}(H) \subseteq Z(G)$ because $\delta_{u,v}(H) \subseteq \{0\} \cup uC \subseteq \{0\} \cup HC$. Furthermore,

$$(\delta_{t,s}\delta_{u,v})^d(w) = \delta_{t,s}^d \delta_{u,v}(w) + \delta_{t,s}\delta_{u,v}^d(w)$$
$$= \delta_{t,s}^d \delta_{u,v}(w) + \delta_{t,s}(s)$$
$$= \delta_{t,s}^d \delta_{u,v}(w) + t$$

and so (3) and (4) imply that $t = -\delta_{t,s}^d \delta_{u,v}(w) + (\delta_{t,s} \delta_{u,v})^d(w) \in Z(G)$. Therefore G = Z(G) and hence is abelian. This completes that proof.

Proof. [Proof of Theorem 1.2]. For $f, g \in N$, we have

$$Tfg - fgT = (fg)^d = f^dg + fg^d = (Tf - fT)g + f(Tg - gT)$$
$$= Tfg - fTg + f(Tg - gT),$$

and so

(6)
$$fTg - fgT = f(Tg - gT)$$
 for all $f, g \in N$.

Set $\widehat{C} = C \cup \{\mathbf{0}\}$ where $y\mathbf{0} = 0$ for all $y \in G$. We now claim that

(7)
$$T(y) \in y\widehat{C}$$
 for all $y \in G$.

Suppose this is not the case and let $y \in G$ be such that $T(y) \notin y \widehat{C}$. Then

 $y \neq 0$, $T(y) \neq 0$, and $T(y) \neq y$.

Let $g = \delta_{T(y)-y,T(y)} + \delta_{y,y} \in N$. Then g(y) = y and gT(y) = T(y) - y. Therefore Tg(y) - gT(y) = T(y) - (T(y) - y) = y. Taking $f = \delta_{y,y}$ and using (6), we have

$$y = \delta_{y,y}(y) = \delta_{y,y}(Tg(y) - gT(y)) = \delta_{y,y}Tg(y) - \delta_{y,y}gT(y)$$

= $\delta_{y,y}T(y) - \delta_{y,y}(T(y) - y) = -\delta_{y,y}(T(y) - y)$

and so $T(y) - y \in yC$. Say $T(y) - y = y\beta$ where $\beta \in C$. Then

$$y = -\delta_{y,y}(T(y) - y) = -y\beta$$

forcing

$$-y = \delta_{y,y}(T(y) - y) = y\beta = T(y) - y,$$

and hence T(y) = 0, a contradiction. Therefore (7) holds.

Given $\alpha \in \widehat{C}$, we set

$$G_{\alpha} = \{ y \in G \mid T(y) = y\alpha \}.$$

Since T is an endomorphism of G, each G_{α} is a subgroup of G. What we have just shown in (7) was that

(8)
$$G = \bigcup_{\alpha \in \widehat{C}} G_{\alpha}.$$

Assume that $G = G_{\alpha}$ for some $\alpha \in \widehat{C}$. Then for any $f \in N$ and $y \in G_{\alpha}$, we have

$$f^{d}(y) = (Tf - fT)(y) = Tf(y) - fT(y) = f(y)\alpha - f(y\alpha) = 0$$

which means d = 0, a contradiction. Therefore $G \neq G_{\alpha}$ for all $\alpha \in \widehat{C}$. Set $\operatorname{supp}(G) = \{\alpha \in \widehat{C} \mid G_{\alpha} \neq 0\}$. Since a group cannot be the union of two proper subgroups, we conclude that $|\operatorname{supp}(G)| > 2$.

Take $\alpha_1, \alpha_2 \in \text{supp}(G)$ with $\alpha_1 \neq \alpha_2$, and let $y \in G_{\alpha_1} \setminus \{0\}$ and $z \in G_{\alpha_2} \setminus \{0\}$. Then $y\alpha_1 - y\alpha_2 \neq 0$ since α_1 and α_2 are fixed point free automorphisms of G. Using (6), we obtain that

$$y\alpha_1 - y\alpha_2 = \delta_{y,y}T\delta_{y,z}(z) - \delta_{y,y}\delta_{y,z}T(z)$$

= $\delta_{y,y}(T\delta_{y,z}(z) - \delta_{y,z}T(z)) = \delta_{y,y}(y\alpha_1 - y\alpha_2),$

and so

(9)
$$y\alpha_1 - y\alpha_2 = y\beta_{y,z}$$

for some $\beta_{y,z} \in C$. Note that $y - z \in G_{\alpha_3}$ for some $\alpha_3 \in C$. Since $z \in G_{\alpha_2}$, $y \notin G_{\alpha_2}$, and G_{α_2} is a subgroup of G, we see that $\alpha_3 \neq \alpha_2$. We now get from (9) that

$$(y - z)\alpha_3 = T(y - z) = T(y) - T(z) = y\alpha_1 - z\alpha_2$$

= $y\alpha_1 - y\alpha_2 + y\alpha_2 - z\alpha_2 = y\beta_{y,z} + (y - z)\alpha_2$

and so $(y-z)\alpha_3 - (y-z)\alpha_2 = y\beta_{y,z}$. On the other hand, by (9) there is a $\beta_{y-z,z} \in C$ such that $(y-z)\alpha_3 - (y-z)\alpha_2 = (y-z)\beta_{y-z,z}$ and so $(y-z)\beta_{y-z,z} = y\beta_{y,z}$. Therefore

(10)
$$y-z=y\beta_{y,z}\beta_{y-z,z}^{-1}\in yC.$$

Note that $-z \in G_{\alpha_2}$ and so substituting -z for z in (10) we get $y + z \in yC$. Similarly $y + z \in zC$. Thus, yC and zC are orbits of the fixed point free automorphism group C having nontrivial intersection, and so yC = zC. Summarizing, we have that

if $\alpha_1 \neq \alpha_2$ and $y, z \in G^*$ are such that $y \in G_{\alpha_1}$ and $z \in G_{\alpha_2}$, then yC = zC.

Since $G = \bigcup_{\alpha \in \widehat{C}} G_{\alpha}$, we conclude that $G^* = yC$ for each $y \in G^*$. In particular, $G^* = x_0C$ and $G = x_0\widehat{C}$.

Define a multiplication by the rule $yz = y\alpha$ when $z = x_0\alpha$, $\alpha \in \widehat{C}$. This turns G into a near-field because C is a fixed point free group on G. We shall denote this near-field by F. From the definition of the multiplication, one sees that the group C can be identified with the multiplicative group $F^* = F \setminus \{0\}$ that acts on F = G via right multiplications. Finally, the rule $f \mapsto f(x_0), f \in M_C^0(G)$, allows us to identify $M_C^0(G)$ with left multiplications by elements of F. Indeed, given $z = x_0\alpha, \alpha \in \widehat{C}$, we have that $f(x_0)z = f(x_0)\alpha = f(x_0\alpha) = f(z)$. The proof is now complete.

REFERENCES

- N. Argaç and H. E. Bell, Some results on derivations in near-rings, in: *Nearrings and Nearfields*, (Stellenbosch, 1997), Kluwer Acad. Publ., Dordrecht, the Netherlands, 2000, pp. 42-46.
- 2. K. I. Beidar, Y. Fong and X. K. Wang, Posner and Herstein Theorems for Derivations of 3-prime Near-rings, *Comm. Algebra*, **24** (1996), 1581-1589.
- 3. H. E. Bell, On derivations in near-rings, II, in *Near-rings, Near-fields and K-Loops*, (Hamburg 1995), Kluwer Acad. Publisher, Dordrecht, the Netherlands, 1997, pp. 191-197.
- H. E. Bell and G. Mason, On derivations in near-rings, in *Near-rings and Near-fields*, G. Betsch (ed.), North-Holland/American Elsevier, Amsterdam, 1987.
- 5. J. R. Clay, *Near-rings: Geneses and Applications*, Oxford Univ. Press, Oxford, 1992.
- 6. P. Dheena and C. Rajeswari, On near-rings with derivations, J. Indian Math. Soc., 60 (1994), 267-271.
- Y. Fong, W.-F. Ke and C. S. Wang, Nonexistence of Derivations on Transformation Near-rings, *Comm. Algebra*, 28 (2000), 1423-1428.
- 8. I. N. Herstein, A note on derivations, Canad. Math. Bull., 21 (1978), 369-370.
- 9. I. N. Herstein, A note on derivations II, Canad. Math. Bull., 22 (1979), 509-511.
- 10. M. Hongan, On near-rings with derivations, *Math. J. Okayama Univ.*, **32** (1990), 89-92.
- 11. N. Jacobson, *Structure of Rings*, Amer. Math. Soc. Colloquium Publ., Providence, 1964.
- 12. C. J. Maxson and K. C. Smith, The centralizer of a set of group automorphisms, *Comm. Algebra*, **8** (1980), 211-230.
- 13. J. D. P. Meldrum, *Near-rings and Their Links with Groups*, Pitman, Marshfield, MA, 1985.
- 14. G. Pilz, Near-rings, 2nd ed., North Holland/American Elsevier, Amsterdam, 1983.
- 15. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
- 16. D. Ramakotaiah, Isomorphisms of near-rings of transformations, J. London Math. Soc., 9 (1974), 272-278.
- The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.2, Aachen, St. Andrews, 2000, (http://www-gap.dcs.st-and.ac.uk/~gap).
- The SONATA Team, SONATA-Systems of Nearrings and Their Applications, Version 1, 1997, Institut für Algebra, Stochastik und wissensbasierte mathematische systeme, University of Linz, Austria.

19. X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc., 121 (1994), 361-366.

Y. Fong Department of Mathematics National Cheng-Kung University Tainan 701, Taiwan E-mail: fong@mail.ncku.edu.tw

C.-S. Wang Department of Business Administration Kao Yuan University Kaohsiung County 821, Taiwan