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ON DERIVATIONS OF CENTRALIZER NEAR-RINGS
Y. Fong and C.-S. Wang

Abstract. Itis proved that if a centralizer near-ring N has a nonzero derivation,
then NV is a near-field.

1. INTRODUCTION

An additively written group NV equipped with a binary operation - : NxN — N,
(z, y) — xy, such that (zy)z = z(yz) and (y+ z)x = yx + zz for all z,y,z € N
is called a (right) near-ring. A near-ring NNV is said to be zero-symmetric if z0 =0
forall z € N. If N* = N\ {0} is a group, then N is said to be a near-field.

Let V be a near-ring and M a subnear-ring of N. An additive mapping d :
M — N is said to be a derivation of M into N if (zy)¢ = xzy? + 29y for all
x,y € M. Here 2% denotes the image of x under d. We refer the reader to the
books of Clay [5], Meldrum [13] and Pilz [14] for basic results of near-ring theory
and its applications.

In what follows, G is an additively written (not necessarily abelian) group and
C is a fixed point free automorphism group of GG (i.e. for all x € G and o € C
with « # 0 and o # 1 we have xa # x. Note that for clarity, we write the image
of x under o € C' as za.) Next, set

Mg(G)={f:G— G| f(0)=0and f(za)= f(z)a
forall z € G and a € C}.

(Now, the image of z under f € MZ(G) is written as f(z).) It is well-known that
M2(G) is a zero-symmetric near-ring under the pointwise addition and composition
of mappings. The near-ring M2(G) is usually referred to as the centralizer near-
ring on G determined by C (see [5, 13, 14]). A transformation f € MZ(G) is said
to be of finite rank if there exist finitely many elements z1, xo, . . ., z,, € G such that
f(G) C U ,z;C, where, for each i, 2;,C = {z;a | « € C}. When C' = {1}, the
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near-ring M2(G) is denoted by My(G) and is called the transformation near-ring
on G.

Let F' be a skew field and V' a right vector space over F'. Let R = Endp(V)
be the ring of linear transformations of the vector space V. The concept of the
centralizer near-ring M2 (G) is a generalization of that of the ring of linear trans-
formations of a vector space. It is well-known that if d : R — R (respectively,
a : R — R) is a derivation (automorphism) of the ring R, then there exists a (bi-
jective) additive transformation 7 : V' — V such that % = T — T (respectively,
r® = TrT~1) for all » € R (see [11]). In 1974, Ramakotaiah [16] proved analo-
gous results for automorphisms of transformation near-rings (see also [14, Theorem
7.39]). The study of derivations of near-rings was initiated by Bell and Mason [4] in
1987. Since then a number of research articles on the subject have been published
[1, 2, 3, 4, 6, 7, 10, 19]. Researchers mainly studied different generalizations of
Posner’s [15] and Herstein’s [8, 9] results into the context of near-rings. Recently
Fong, Ke and Wang [7, Theorem 1.1] obtained the following result which was
inspired by classical results on derivations of primitive rings with nonzero socle.

Theorem 1.1. Let G be a nonzero additively written group, N a subnear-ring
of My(G) containing all the transformations with finite rank. Then there are no
nonzero derivations of N into M(G).

In the present paper we continue the program of Fong, Ke and Wang in [7], and
we shall prove following theorem.

Theorem 1.2. Let G be a nonzero additively written group with a fixed point
free automorphism group C, let M be a subnear-ring of M 2(G) containing all
the transformations of G' which are of finite rank, and let d : M — M 2(G) be a
nonzero derivation. Then

(1) G is the additive group of some near-field F', say;
(2) C is isomorphic to the multiplicative group F'* = F'\ {0} = G \ {0} that
acts on G via right multiplications; and

(3) M = M2(G), and is isomorphic to G which acts on G via left multiplica-
tions.

We note that Theorem 1.1 is a special case of Theorem 1.2 with C' = {1}.

The question of whether there are nontrivial derivations on near-fields remains
open. However, using the SONATA package of GAP [17, 18], we know that there
are no nontrivial derivations on the 7 exceptional finite near-fields, and this is also
the case for some small Dickson near-fields provided in SONATA. On the other
hand, since the set of all distributive elements of a finite near-field is the center [14,
Theorem 8.31], there are no nontrivial inner derivations on any finite near-field.
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Finally, we remark that the question of when M2(G) is a near-field was con-
sidered in [12].

2. PROOF OF THE THEOREM

The following properties of a derivation on a zero-symmetric near-ring will be
used throughout the proof.

Lemma 2.1. Let N be a zero-symmetric near-ring, let d : N — N be a
derivation and let a,b,c € N. Then:

(i) (ab)? = ab + ab? [19, Proposition 1];
(i) (ab?+ a%b)c = ablc + albe and (a?b + ab?)c = abe + able [4, Lemma 1].

Now, we shall begin to prove Theorem 1.2. The proof will be achieved step by
step in the form of lemmas.

In what follows, M is a subnear-ring of M2 (G) containing all the transforma-
tions which are of finite rank, and d : M — M2(G) is a nonzero derivation. We
set G* = G'\ {0}. Given z,y € G*, and define the map ¢, : G — G as follows:

50 (2) = za, if 2 =y« for some a € C;
T o, ifz g yC.

Since C is a fixed point free group of automorphisms of G, 4, ,, is well-defined. It
is also clear that &, € MZ(G) and is of finite rank.

Denote by N the set of all finite sums of transformations of G of finite rank.
Then N is a subnear-ring of M, and we have

M2(G)NC N and NMZ(G)C N.
Given z € G*, we set N(z) = {f(z) | f € N}.
Lemma 2.2. N¢ C N, N?# 0, and for any = € G*, G = N(x).

Proof. First of all, we have 6,, € N for all z,y € G*. Let f be a
transformation of G of finite rank, say f(G) C U, 2;C. Set A =3"" | d;, ., € N.
Then Af = f, and so f? = (Af)¢ = Afe + Adf. Since Af¢ ¢ Nf¢ C N and
Alf € AN C N, we have f? € N. Therefore N4 C N.

Next, assume that N¢ = 0. Pick h € M with k% # 0, and take = € G with
hd(z) # 0. Since 6, , € N and hd,, € N, we have 67 , = 0 and (hd,.)? = 0;
thus

0= (h(sm,m)d(x) = (hdém,a: + h5gm)(x) = hd(x) # 0,

which cannot be. Therefore, N¢ + 0.
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Finally, for any fixed « € G*, we have ¢, ,(z) = y and ¢, , € N forall y € G*,
it follows at once that G = N (z) = {f(z) | f € N}. ]

In view of the above lemma, we may assume, without loss of generality, that
M = N.

Throughout the rest of this section, we shall fix an element ¢ € G*, and
set € = 0z0,20- From the fact that f(zo) = g(zo) if and only if f(y) = g(y) for
all y € xoC we conclude that

(1) f(zo) = g(zo) ifand only if fe = ge.
Defineamap 7' : G — G by the rule
T(f(x0)) = (fe)(wo) = (fe+ fe?)(wo)
= fle(zo) + fe(x0) = fU(x0) + fe'(xo) forall f e N.

Note that 7" is well-defined. For if f,g € N are such that f(zo) = g(z0), then
fe = ge by (1), and so T(f(x0)) = (fe)*(z0) = (9¢)%(x0) = T(9(0))-

Lemma 2.3. T is a nonzero endomorphism of G and f¢ = T'f — fT for all
feN.

Proof. Given u,v € G, pick f,g € N with f(zg

)=

T(u+v) = T(f(x0) + g(x0)) = T((f + 9)(w0)) = ((f + g)e)(x0)
= (fe+ ge)¥(x0) = (fe)(zo) + (9e)(z0)
=T(f(x0)) +T(g(x0)) = T(u) + T(v),

and so 7' is an endomorphism of G. Now, let f € N and w € G. Pick h € N with
h(zg) = w. Then he(xzg) = h(zg) = w. We have that

(Tf)(w) = T(f(w)) = T(fh(z0)) = (fhe)*(x0) = (fhe + f(he)?)(xo)
= (f*he)(wo) + (f(he)?)(zo) = f*(he(x0)) + f(he)*(zo)
= fU(w) + f(T(he(0))) = f4(w) + (FT)(w)

and so (T'f — fT)(w) = f%(w) for all w € G. Therefore, Tf — fT = f¢ for all
f € N asclaimed. If T =0, thenforall f e N, f¢ =Tf— fT =0, and so
d = 0, a contradiction. Hence, 7" is a nonzero endomorphism of G. |

u and g(xg) = v. Then

As an endomorphism of G, T is a distributive element in M (G). In particular,

@ T(f+g9)=Tf+Tgand (f+g)T=fT+gT forall f,ge N.
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Lemma 2.4. GG is an abelian group.
Proof. Let f,g € N. Then
Tf+Tg—gT - fT=T(f+9)—(f+9T
=(f+9)'=f"+g"=Tf— fT+Tg-gT,
andso g — gT — fT = —fT +Tg— gT. Thus,
g'— T =—fT +g".

Set H = G \ ker(T"), where ker(T) is the kernel of T. Then H # @. Take any
u € G and v € H. Since T'(v) # 0, there is an f € N such that — fT'(v) = u.
Thus

o'(v) +u=g'(0) = JT(w) = (¢* = [T)(0)
= (~fT + g)(v) = —fT(v) + g'(v) = u + g(0v).
This shows that
(3) gY(H)C Z(G) forall g e N,
where Z(G) denotes the center of G. As Z(G)C = Z(G), we also have
(4) gY(HC) C gY(H)C C Z(G)C = Z(G) forall g e N.

We claim that g%(H) # 0 for some g € N. Assume on the contrary that
g%(H) = 0 for all ¢ € N. Since d # 0, there exists a ¢ € N with g% # 0.
Therefore g%(y) # 0 for some y € G*. Take z € H and f € N such f(z) = v.
Then (gf)%(z) =0 and f¢(z) = 0, and so

9% (y) = g"f(2) = g"f(2) + gf%(2) = (9)*(z) =0,

a contradiction. This proves our claim.
Take g € N and a € H with g%(a) # 0. Set

z=g(a), y=T(a), and z=g(y)=gT(a)

Note that y # 0, and we cannot have both x = 0 and z = 0 because this will lead
to the contradiction that

0 # g%(a) = Tg(a) — gT(a) = T(z) — 2 = T(0) — 0 = 0.
Moreover, if z =0, then y & aC. For if y = a« for some « € C, then

z=g(y) = g(aa) = g(a)a = 0a = 0,
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which cannot be. On the other hand, if y = aa € aC, then we have g(y) =
g(aa) = g(a)a = za.

Now, define
Oy if £ =0 (hence y € aC and z # 0),
b dpat+0sy ifx#0,y&aC, and z # 0,
dz.a ifx#£0,y¢aC, and z =0,
dz.a if t 20and y € aC.

It is easy to check that h(a) = =z = g(a) and h(y) = z = g(y), and so
h%(a) = Th(a) — hT(a) = Th(a) — h(y)
=Tg(a) = g(y) = Tg(a) = gT(a) = g%(a).
Therefore, it follows that h%(a) # 0. Thus,
(5) either &7 ,(a) # 0 (hence = # 0), or &7 (a) # 0 (hence z # 0).
Next we are going to show that 53,U(H) # 0 for some u,v € H. Assume on
the contrary that ¢ ,(H) = 0 for all u,v € H. Then
T() = 64T (v) = Tbup(v) = 6T (V) = (T4 — SunT)(v) = 81, (v) = 0

and so T'(u) = 6,1 (v) for all u,v € H. Since T'(u) # 0, we conclude from the
definition of ¢,,, that 7'(v) € vC for all v € H. For each v € H, let o, € C be
such that T'(u) = uc,. But then for any u,v € H, we have

uay, = T(u) = 0y T (V) = dyp(vay) = uay,

and so «, = «, as they are fixed point free. Thus a,, = «a, for all u,v € H. Set
a = ay. We have T'(u) = ua for all w € H. Take w € ker(T). Thena +w € H
and so aa = T'(a) = T(a + w) = (a + w)a = aa + wa which forces wa = 0.
Again, since « is fixed point free, w = 0. Therefore, ker(T)) = 0, and H = G*.
Now we conclude from (5) that

(1) either 2, a € H such that 6¢ ,(a) # 0, a contradiction to the assumption;

(2) or y,z € H such that ¢ ,(a) = 0, again a contradiction to the assumption.

Therefore, we must have 67 (H) # 0 for some u,v € H.
Pick u,v,w € H with s = 0% ,(w) # 0. Lett € G*. Using (4), we have
8¢ 6uw(H) C Z(G) because 6,,(H) C {0} UuC C {0} U HC. Furthermore,

(5t785u,v)d(w) = 5?,35%11('“)) + 5,57855’1)(11))
= 6 (W) + 61.5(s)
= 6 up(w) + ¢
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and so (3) and (4) imply that t = —6¢ 6y (w) 4 (6¢,50u,)%(w) € Z(G). Therefore
G = Z(G) and hence is abelian. This completes that proof. ]

Proof. [Proof of Theorem 1.2]. For f,g € N, we have
Tfg— fgT = (f9)" = f'9+ fg' = (Tf = [T)g+ f(Tg — gT)
=Tfg— fTg+ f(Tg—gT),

and so
(6) fTg— fgT = f(Tg—gT) forall f,ge N.

Set C = C'U {0} where y0 = 0 for all y € G. We now claim that
©) T(y) e yC forally e G.
Suppose this is not the case and let y € G be such that T'(y) ¢ yC. Then

y#0, T(y)#0, and T(y) #y.
Let g = d7(y)—y,1(y) T 0yy € N. Then g(y) =y and gT'(y) = T'(y) —y. Therefore
Tg(y)—9T(y) =T(y)— (T'(y) —y) = y. Taking f = J,, and using (6), we have
Yy =0yy(y) = byy(T9(y) — 9T (y)) = yyT9(y) — byy9T (y)
= 0yyT(y) = byy(T(y) —y) = —0yy(T'(y) — )
and so T'(y) —y € yC. Say T'(y) —y = yB where g € C. Then

y=—0yy(T(y) —y) = —yp

forcing
—y =0yy(T(y) —y) =yB=T(y) — v,
and hence T'(y) = 0, a contradiction. Therefore (7) holds.
Given « € C, we set

Ga={y e G| T(y) = yaj.
Since T is an endomorphism of G, each G, is a subgroup of G. What we have
just shown in (7) was that

8) G=U -G,

aeC

Assume that G = G, for some o € C. Then for any f € N and y € G,, we
have

)= (Tf = 1)) =Tf(y) — fT(y) = f(y)e — f(ya) =0
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which means d = 0, a contradiction. Therefore G # G, for all a € C. Set
supp(G) = {a € C | G, # 0}. Since a group cannot be the union of two proper
subgroups, we conclude that [supp(G)| > 2.

Take a1, g € supp(G) with a; # g, and lety € G, \{0} and z € G,, \{0}.
Then yay — yas # 0 since oy and «o are fixed point free automorphisms of G.
Using (6), we obtain that

Yo — yag = 0y Ty - (2) — 0y 0y T (2)
= 5y7y(T5y,Z(Z) - 5y,zT(Z)) = 5y,y(y0¢1 — yaz),
and so

) yar —yoo = yfy,.

for some 3,. € C. Note that y — z € G, for some a3 € C. Since z € Gy,
y & Ga,, and G, is a subgroup of G, we see that az # . We now get from (9)
that

(y—2)az=T(y—2) =T(y) — T(2) = ya1 — zaz
= yoq — Yo + yas — zan = YPy . + (Y — 2) e

and so (y—z)az—(y—z)ae = yfBy,.. Onthe other hand, by (9) thereisa 8,_. . € C

such that (y - Z)Ozg - (y - Z)ch = (y - z)ﬁy—z,z and so (y - Z)ﬁy—z,z = yﬁy,z-
Therefore

(10) y—z=yBy:B,".. €yC.

Note that —z € G, and so substituting —z for z in (10) we get y + z € yC. Simi-
larly y + z € zC. Thus, yC and zC are orbits of the fixed point free automorphism
group C having nontrivial intersection, and so yC' = zC. Summarizing, we have
that

if a; # ag and y, z € G* are such that y € G, and z € G,,, then yC = zC.

Since G = U, .5 G, We conclude that G* = yC for each y € G*. In particular,
G* = zoC and G = z(C.

Define a multiplication by the rule yz = ya when z = zoa, o € C. This turns
G into a near-field because C is a fixed point free group on G. We shall denote
this near-field by F. From the definition of the multiplication, one sees that the
group C' can be identified with the multiplicative group F* = F'\ {0} that acts on
F = G via right multiplications. Finally, the rule f — f(z¢), f € M2(G), allows
us to identify M2 (G) with left multiplications by elements of F. Indeed, given
2 = moa, o € C, we have that f(z0)z = f(zo)a = f(xoar) = f(2). The proof is
now complete. ]
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