ON DERIVATIONS OF CENTRALIZER NEAR-RINGS

Y. Fong and C.-S. Wang

Abstract

It is proved that if a centralizer near-ring N has a nonzero derivation, then N is a near-field.

1. Introduction

An additively written group N equipped with a binary operation $\cdot: N \times N \rightarrow N$, $(x, y) \mapsto x y$, such that $(x y) z=x(y z)$ and $(y+z) x=y x+z x$ for all $x, y, z \in N$ is called a (right) near-ring. A near-ring N is said to be zero-symmetric if $x 0=0$ for all $x \in N$. If $N^{*}=N \backslash\{0\}$ is a group, then N is said to be a near-field.

Let N be a near-ring and M a subnear-ring of N. An additive mapping d : $M \rightarrow N$ is said to be a derivation of M into N if $(x y)^{d}=x y^{d}+x^{d} y$ for all $x, y \in M$. Here x^{d} denotes the image of x under d. We refer the reader to the books of Clay [5], Meldrum [13] and Pilz [14] for basic results of near-ring theory and its applications.

In what follows, G is an additively written (not necessarily abelian) group and C is a fixed point free automorphism group of G (i.e. for all $x \in G$ and $\alpha \in C$ with $x \neq 0$ and $\alpha \neq 1$ we have $x \alpha \neq x$. Note that for clarity, we write the image of x under $\alpha \in C$ as $x \alpha$.) Next, set

$$
\begin{aligned}
M_{C}^{0}(G)=\{f: G \rightarrow G \mid f(0)=0 \text { and } & f(x \alpha)=f(x) \alpha \\
& \text { for all } x \in G \text { and } \alpha \in C\} .
\end{aligned}
$$

(Now, the image of x under $f \in M_{C}^{0}(G)$ is written as $f(x)$.) It is well-known that $M_{C}^{0}(G)$ is a zero-symmetric near-ring under the pointwise addition and composition of mappings. The near-ring $M_{C}^{0}(G)$ is usually referred to as the centralizer nearring on G determined by C (see [5, 13, 14]). A transformation $f \in M_{C}^{0}(G)$ is said to be of finite rank if there exist finitely many elements $x_{1}, x_{2}, \ldots, x_{n} \in G$ such that $f(G) \subseteq \cup_{i=1}^{n} x_{i} C$, where, for each $i, x_{i} C=\left\{x_{i} \alpha \mid \alpha \in C\right\}$. When $C=\{1\}$, the

Received January 11, 2007, accepted February 3, 2010.
Communicated by Wen-Fong Ke.
2000 Mathematics Subject Classification: 16Y30.
Key words and phrases: Derivation, Centralizer near-ring.
near-ring $M_{C}^{0}(G)$ is denoted by $M_{0}(G)$ and is called the transformation near-ring on G.

Let F be a skew field and V a right vector space over F. Let $R=\operatorname{End}_{F}(V)$ be the ring of linear transformations of the vector space V. The concept of the centralizer near-ring $M_{C}^{0}(G)$ is a generalization of that of the ring of linear transformations of a vector space. It is well-known that if $d: R \rightarrow R$ (respectively, $\alpha: R \rightarrow R$) is a derivation (automorphism) of the ring R, then there exists a (bijective) additive transformation $T: V \rightarrow V$ such that $r^{d}=T r-r T$ (respectively, $r^{\alpha}=\operatorname{Tr} T^{-1}$) for all $r \in R$ (see [11]). In 1974, Ramakotaiah [16] proved analogous results for automorphisms of transformation near-rings (see also [14, Theorem 7.39]). The study of derivations of near-rings was initiated by Bell and Mason [4] in 1987. Since then a number of research articles on the subject have been published [1, 2, 3, 4, 6, 7, 10, 19]. Researchers mainly studied different generalizations of Posner's [15] and Herstein's [8, 9] results into the context of near-rings. Recently Fong, Ke and Wang [7, Theorem 1.1] obtained the following result which was inspired by classical results on derivations of primitive rings with nonzero socle.

Theorem 1.1. Let G be a nonzero additively written group, N a subnear-ring of $M_{0}(G)$ containing all the transformations with finite rank. Then there are no nonzero derivations of N into $M_{0}(G)$.

In the present paper we continue the program of Fong, Ke and Wang in [7], and we shall prove following theorem.

Theorem 1.2. Let G be a nonzero additively written group with a fixed point free automorphism group C, let M be a subnear-ring of $M_{C}^{0}(G)$ containing all the transformations of G which are of finite rank, and let $d: M \rightarrow M_{C}^{0}(G)$ be a nonzero derivation. Then
(1) G is the additive group of some near-field F, say;
(2) C is isomorphic to the multiplicative group $F^{*}=F \backslash\{0\}=G \backslash\{0\}$ that acts on G via right multiplications; and
(3) $M=M_{C}^{0}(G)$, and is isomorphic to G which acts on G via left multiplications.

We note that Theorem 1.1 is a special case of Theorem 1.2 with $C=\{1\}$.
The question of whether there are nontrivial derivations on near-fields remains open. However, using the SONATA package of GAP [17, 18], we know that there are no nontrivial derivations on the 7 exceptional finite near-fields, and this is also the case for some small Dickson near-fields provided in SONATA. On the other hand, since the set of all distributive elements of a finite near-field is the center [14, Theorem 8.31], there are no nontrivial inner derivations on any finite near-field.

Finally, we remark that the question of when $M_{C}^{0}(G)$ is a near-field was considered in [12].

2. Proof of the Theorem

The following properties of a derivation on a zero-symmetric near-ring will be used throughout the proof.

Lemma 2.1. Let N be a zero-symmetric near-ring, let $d: N \rightarrow N$ be a derivation and let $a, b, c \in N$. Then:
(i) $(a b)^{d}=a^{d} b+a b^{d}[19$, Proposition 1];
(ii) $\left(a b^{d}+a^{d} b\right) c=a b^{d} c+a^{d} b c$ and $\left(a^{d} b+a b^{d}\right) c=a^{d} b c+a b^{d} c$ [4, Lemma 1].

Now, we shall begin to prove Theorem 1.2. The proof will be achieved step by step in the form of lemmas.

In what follows, M is a subnear-ring of $M_{C}^{0}(G)$ containing all the transformations which are of finite rank, and $d: M \rightarrow M_{C}^{0}(G)$ is a nonzero derivation. We set $G^{*}=G \backslash\{0\}$. Given $x, y \in G^{*}$, and define the map $\delta_{x, y}: G \rightarrow G$ as follows:

$$
\delta_{x, y}(z)= \begin{cases}x \alpha, & \text { if } z=y \alpha \text { for some } \alpha \in C ; \\ 0, & \text { if } z \notin y C\end{cases}
$$

Since C is a fixed point free group of automorphisms of $G, \delta_{x, y}$ is well-defined. It is also clear that $\delta_{x, y} \in M_{C}^{0}(G)$ and is of finite rank.

Denote by N the set of all finite sums of transformations of G of finite rank. Then N is a subnear-ring of M, and we have

$$
M_{C}^{0}(G) N \subseteq N \quad \text { and } \quad N M_{C}^{0}(G) \subseteq N
$$

Given $x \in G^{*}$, we set $N(x)=\{f(x) \mid f \in N\}$.
Lemma 2.2. $N^{d} \subseteq N, N^{d} \neq 0$, and for any $x \in G^{*}, G=N(x)$.
Proof. First of all, we have $\delta_{x, y} \in N$ for all $x, y \in G^{*}$. Let f be a transformation of G of finite rank, say $f(G) \subseteq \cup_{i=1}^{n} x_{i} C$. Set $A=\sum_{i=1}^{n} \delta_{x_{i}, x_{i}} \in N$. Then $A f=f$, and so $f^{d}=(A f)^{d}=A f^{d}+A^{d} f$. Since $A f^{d} \in N f^{d} \subseteq N$ and $A^{d} f \in A^{d} N \subseteq N$, we have $f^{d} \in N$. Therefore $N^{d} \subseteq N$.

Next, assume that $N^{d}=0$. Pick $h \in M$ with $h^{d} \neq 0$, and take $x \in G$ with $h^{d}(x) \neq 0$. Since $\delta_{x, x} \in N$ and $h \delta_{x, x} \in N$, we have $\delta_{x, x}^{d}=0$ and $\left(h \delta_{x, x}\right)^{d}=0 ;$ thus

$$
0=\left(h \delta_{x, x}\right)^{d}(x)=\left(h^{d} \delta_{x, x}+h \delta_{x, x}^{d}\right)(x)=h^{d}(x) \neq 0,
$$

which cannot be. Therefore, $N^{d} \neq 0$.

Finally, for any fixed $x \in G^{*}$, we have $\delta_{y, x}(x)=y$ and $\delta_{y, x} \in N$ for all $y \in G^{*}$, it follows at once that $G=N(x)=\{f(x) \mid f \in N\}$.

In view of the above lemma, we may assume, without loss of generality, that $M=N$.

Throughout the rest of this section, we shall fix an element $x_{0} \in G^{*}$, and set $\boldsymbol{e}=\boldsymbol{\delta}_{x_{0}, x_{0}}$. From the fact that $f\left(x_{0}\right)=g\left(x_{0}\right)$ if and only if $f(y)=g(y)$ for all $y \in x_{0} C$ we conclude that

$$
\begin{equation*}
f\left(x_{0}\right)=g\left(x_{0}\right) \text { if and only if } f e=g e \tag{1}
\end{equation*}
$$

Define a map $T: G \rightarrow G$ by the rule

$$
\begin{aligned}
T\left(f\left(x_{0}\right)\right) & =(f e)^{d}\left(x_{0}\right)=\left(f^{d} e+f e^{d}\right)\left(x_{0}\right) \\
& =f^{d} e\left(x_{0}\right)+f e^{d}\left(x_{0}\right)=f^{d}\left(x_{0}\right)+f e^{d}\left(x_{0}\right) \quad \text { for all } f \in N
\end{aligned}
$$

Note that T is well-defined. For if $f, g \in N$ are such that $f\left(x_{0}\right)=g\left(x_{0}\right)$, then $f e=g e$ by (1), and so $T\left(f\left(x_{0}\right)\right)=(f e)^{d}\left(x_{0}\right)=(g e)^{d}\left(x_{0}\right)=T\left(g\left(x_{0}\right)\right)$.

Lemma 2.3. T is a nonzero endomorphism of G and $f^{d}=T f-f T$ for all $f \in N$.

Proof. Given $u, v \in G$, pick $f, g \in N$ with $f\left(x_{0}\right)=u$ and $g\left(x_{0}\right)=v$. Then

$$
\begin{aligned}
T(u+v) & =T\left(f\left(x_{0}\right)+g\left(x_{0}\right)\right)=T\left((f+g)\left(x_{0}\right)\right)=((f+g) e)^{d}\left(x_{0}\right) \\
& =(f e+g e)^{d}\left(x_{0}\right)=(f e)^{d}\left(x_{0}\right)+(g e)^{d}\left(x_{0}\right) \\
& =T\left(f\left(x_{0}\right)\right)+T\left(g\left(x_{0}\right)\right)=T(u)+T(v)
\end{aligned}
$$

and so T is an endomorphism of G. Now, let $f \in N$ and $w \in G$. Pick $h \in N$ with $h\left(x_{0}\right)=w$. Then $h e\left(x_{0}\right)=h\left(x_{0}\right)=w$. We have that

$$
\begin{aligned}
(T f)(w) & =T(f(w))=T\left(f h\left(x_{0}\right)\right)=(f h e)^{d}\left(x_{0}\right)=\left(f^{d} h e+f(h e)^{d}\right)\left(x_{0}\right) \\
& =\left(f^{d} h e\right)\left(x_{0}\right)+\left(f(h e)^{d}\right)\left(x_{0}\right)=f^{d}\left(h e\left(x_{0}\right)\right)+f(h e)^{d}\left(x_{0}\right) \\
& =f^{d}(w)+f\left(T\left(h e\left(x_{0}\right)\right)\right)=f^{d}(w)+(f T)(w)
\end{aligned}
$$

and so $(T f-f T)(w)=f^{d}(w)$ for all $w \in G$. Therefore, $T f-f T=f^{d}$ for all $f \in N$ as claimed. If $T=0$, then for all $f \in N, f^{d}=T f-f T=0$, and so $d=0$, a contradiction. Hence, T is a nonzero endomorphism of G.

As an endomorphism of G, T is a distributive element in $M_{0}(G)$. In particular,

$$
\begin{equation*}
T(f+g)=T f+T g \text { and }(f+g) T=f T+g T \quad \text { for all } f, g \in N \tag{2}
\end{equation*}
$$

Lemma 2.4. G is an abelian group.
Proof. Let $f, g \in N$. Then

$$
\begin{aligned}
T f+T g-g T-f T & =T(f+g)-(f+g) T \\
& =(f+g)^{d}=f^{d}+g^{d}=T f-f T+T g-g T,
\end{aligned}
$$

and so $T g-g T-f T=-f T+T g-g T$. Thus,

$$
g^{d}-f T=-f T+g^{d} .
$$

Set $H=G \backslash \operatorname{ker}(T)$, where $\operatorname{ker}(T)$ is the kernel of T. Then $H \neq \varnothing$. Take any $u \in G$ and $v \in H$. Since $T(v) \neq 0$, there is an $f \in N$ such that $-f T(v)=u$. Thus

$$
\begin{aligned}
g^{d}(v)+u & =g^{d}(v)-f T(v)=\left(g^{d}-f T\right)(v) \\
& =\left(-f T+g^{d}\right)(v)=-f T(v)+g^{d}(v)=u+g^{d}(v) .
\end{aligned}
$$

This shows that

$$
\begin{equation*}
g^{d}(H) \subseteq Z(G) \quad \text { for all } g \in N, \tag{3}
\end{equation*}
$$

where $Z(G)$ denotes the center of G. As $Z(G) C=Z(G)$, we also have

$$
\begin{equation*}
g^{d}(H C) \subseteq g^{d}(H) C \subseteq Z(G) C=Z(G) \quad \text { for all } g \in N . \tag{4}
\end{equation*}
$$

We claim that $g^{d}(H) \neq 0$ for some $g \in N$. Assume on the contrary that $g^{d}(H)=0$ for all $g \in N$. Since $d \neq 0$, there exists a $g \in N$ with $g^{d} \neq 0$. Therefore $g^{d}(y) \neq 0$ for some $y \in G^{*}$. Take $z \in H$ and $f \in N$ such $f(z)=y$. Then $(g f)^{d}(z)=0$ and $f^{d}(z)=0$, and so

$$
g^{d}(y)=g^{d} f(z)=g^{d} f(z)+g f^{d}(z)=(g f)^{d}(z)=0,
$$

a contradiction. This proves our claim.
Take $g \in N$ and $a \in H$ with $g^{d}(a) \neq 0$. Set

$$
x=g(a), \quad y=T(a), \quad \text { and } \quad z=g(y)=g T(a) .
$$

Note that $y \neq 0$, and we cannot have both $x=0$ and $z=0$ because this will lead to the contradiction that

$$
0 \neq g^{d}(a)=T g(a)-g T(a)=T(x)-z=T(0)-0=0 .
$$

Moreover, if $x=0$, then $y \notin a C$. For if $y=a \alpha$ for some $\alpha \in C$, then

$$
z=g(y)=g(a \alpha)=g(a) \alpha=0 \alpha=0,
$$

which cannot be. On the other hand, if $y=a \alpha \in a C$, then we have $g(y)=$ $g(a \alpha)=g(a) \alpha=x \alpha$.

Now, define

$$
h= \begin{cases}\delta_{z, y} & \text { if } x=0 \text { (hence } y \notin a C \text { and } z \neq 0), \\ \delta_{x, a}+\delta_{z, y} & \text { if } x \neq 0, y \notin a C, \text { and } z \neq 0, \\ \delta_{x, a} & \text { if } x \neq 0, y \notin a C, \text { and } z=0, \\ \delta_{x, a} & \text { if } x \neq 0 \text { and } y \in a C .\end{cases}
$$

It is easy to check that $h(a)=x=g(a)$ and $h(y)=z=g(y)$, and so

$$
\begin{aligned}
h^{d}(a) & =T h(a)-h T(a)=T h(a)-h(y) \\
& =T g(a)-g(y)=T g(a)-g T(a)=g^{d}(a) .
\end{aligned}
$$

Therefore, it follows that $h^{d}(a) \neq 0$. Thus,
(5) either $\delta_{x, a}^{d}(a) \neq 0$ (hence $x \neq 0$), or $\delta_{z, y}^{d}(a) \neq 0$ (hence $z \neq 0$).

Next we are going to show that $\delta_{u, v}^{d}(H) \neq 0$ for some $u, v \in H$. Assume on the contrary that $\delta_{u, v}^{d}(H)=0$ for all $u, v \in H$. Then

$$
T(u)-\delta_{u, v} T(v)=T \delta_{u, v}(v)-\delta_{u, v} T(v)=\left(T \delta_{u, v}-\delta_{u, v} T\right)(v)=\delta_{u, v}^{d}(v)=0
$$

and so $T(u)=\delta_{u, v} T(v)$ for all $u, v \in H$. Since $T(u) \neq 0$, we conclude from the definition of $\delta_{u, v}$ that $T(v) \in v C$ for all $v \in H$. For each $u \in H$, let $\alpha_{u} \in C$ be such that $T(u)=u \alpha_{u}$. But then for any $u, v \in H$, we have

$$
u \alpha_{u}=T(u)=\delta_{u, v} T(v)=\delta_{u, v}\left(v \alpha_{v}\right)=u \alpha_{v},
$$

and so $\alpha_{u}=\alpha_{v}$ as they are fixed point free. Thus $\alpha_{u}=\alpha_{v}$ for all $u, v \in H$. Set $\alpha=\alpha_{v}$. We have $T(u)=u \alpha$ for all $u \in H$. Take $w \in \operatorname{ker}(T)$. Then $a+w \in H$ and so $a \alpha=T(a)=T(a+w)=(a+w) \alpha=a \alpha+w \alpha$ which forces $w \alpha=0$. Again, since α is fixed point free, $w=0$. Therefore, $\operatorname{ker}(T)=0$, and $H=G^{*}$. Now we conclude from (5) that
(1) either $x, a \in H$ such that $\delta_{x, a}^{d}(a) \neq 0$, a contradiction to the assumption;
(2) or $y, z \in H$ such that $\delta_{x, a}^{d}(a)=0$, again a contradiction to the assumption. Therefore, we must have $\delta_{u, v}^{d}(H) \neq 0$ for some $u, v \in H$.

Pick $u, v, w \in H$ with $s=\delta_{u, v}^{d}(w) \neq 0$. Let $t \in G^{*}$. Using (4), we have $\delta_{t, s}^{d} \delta_{u, v}(H) \subseteq Z(G)$ because $\delta_{u, v}(H) \subseteq\{0\} \cup u C \subseteq\{0\} \cup H C$. Furthermore,

$$
\begin{aligned}
\left(\delta_{t, s} \delta_{u, v}\right)^{d}(w) & =\delta_{t, s}^{d} \delta_{u, v}(w)+\delta_{t, s} \delta_{u, v}^{d}(w) \\
& =\delta_{t, s}^{d} \delta_{u, v}(w)+\delta_{t, s}(s) \\
& =\delta_{t, s}^{d} \delta_{u, v}(w)+t
\end{aligned}
$$

and so (3) and (4) imply that $t=-\delta_{t, s}^{d} \delta_{u, v}(w)+\left(\delta_{t, s} \delta_{u, v}\right)^{d}(w) \in Z(G)$. Therefore $G=Z(G)$ and hence is abelian. This completes that proof.

Proof. [Proof of Theorem 1.2]. For $f, g \in N$, we have

$$
\begin{aligned}
T f g-f g T & =(f g)^{d}=f^{d} g+f g^{d}=(T f-f T) g+f(T g-g T) \\
& =T f g-f T g+f(T g-g T)
\end{aligned}
$$

and so

$$
\begin{equation*}
f T g-f g T=f(T g-g T) \quad \text { for all } f, g \in N \tag{6}
\end{equation*}
$$

Set $\widehat{C}=C \cup\{\mathbf{0}\}$ where $y \mathbf{0}=0$ for all $y \in G$. We now claim that

$$
\begin{equation*}
T(y) \in y \widehat{C} \quad \text { for all } y \in G \tag{7}
\end{equation*}
$$

Suppose this is not the case and let $y \in G$ be such that $T(y) \notin y \widehat{C}$. Then

$$
y \neq 0, \quad T(y) \neq 0, \quad \text { and } T(y) \neq y
$$

Let $g=\delta_{T(y)-y, T(y)}+\delta_{y, y} \in N$. Then $g(y)=y$ and $g T(y)=T(y)-y$. Therefore $T g(y)-g T(y)=T(y)-(T(y)-y)=y$. Taking $f=\delta_{y, y}$ and using (6), we have

$$
\begin{aligned}
y=\delta_{y, y}(y)=\delta_{y, y}(T g(y)- & g T(y))=\delta_{y, y} T g(y)-\delta_{y, y} g T(y) \\
& =\delta_{y, y} T(y)-\delta_{y, y}(T(y)-y)=-\delta_{y, y}(T(y)-y)
\end{aligned}
$$

and so $T(y)-y \in y C$. Say $T(y)-y=y \beta$ where $\beta \in C$. Then

$$
y=-\delta_{y, y}(T(y)-y)=-y \beta
$$

forcing

$$
-y=\delta_{y, y}(T(y)-y)=y \beta=T(y)-y
$$

and hence $T(y)=0$, a contradiction. Therefore (7) holds.
Given $\alpha \in \widehat{C}$, we set

$$
G_{\alpha}=\{y \in G \mid T(y)=y \alpha\}
$$

Since T is an endomorphism of G, each G_{α} is a subgroup of G. What we have just shown in (7) was that

$$
\begin{equation*}
G=\cup_{\alpha \in \widehat{C}} G_{\alpha} \tag{8}
\end{equation*}
$$

Assume that $G=G_{\alpha}$ for some $\alpha \in \widehat{C}$. Then for any $f \in N$ and $y \in G_{\alpha}$, we have

$$
f^{d}(y)=(T f-f T)(y)=T f(y)-f T(y)=f(y) \alpha-f(y \alpha)=0
$$

which means $d=0$, a contradiction. Therefore $G \neq G_{\alpha}$ for all $\alpha \in \widehat{C}$. Set $\operatorname{supp}(G)=\left\{\alpha \in \widehat{C} \mid G_{\alpha} \neq 0\right\}$. Since a group cannot be the union of two proper subgroups, we conclude that $|\operatorname{supp}(G)|>2$.

Take $\alpha_{1}, \alpha_{2} \in \operatorname{supp}(G)$ with $\alpha_{1} \neq \alpha_{2}$, and let $y \in G_{\alpha_{1}} \backslash\{0\}$ and $z \in G_{\alpha_{2}} \backslash\{0\}$. Then $y \alpha_{1}-y \alpha_{2} \neq 0$ since α_{1} and α_{2} are fixed point free automorphisms of G. Using (6), we obtain that

$$
\begin{aligned}
y \alpha_{1}-y \alpha_{2} & =\delta_{y, y} T \delta_{y, z}(z)-\delta_{y, y} \delta_{y, z} T(z) \\
& =\delta_{y, y}\left(T \delta_{y, z}(z)-\delta_{y, z} T(z)\right)=\delta_{y, y}\left(y \alpha_{1}-y \alpha_{2}\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
y \alpha_{1}-y \alpha_{2}=y \beta_{y, z} \tag{9}
\end{equation*}
$$

for some $\beta_{y, z} \in C$. Note that $y-z \in G_{\alpha_{3}}$ for some $\alpha_{3} \in C$. Since $z \in G_{\alpha_{2}}$, $y \notin G_{\alpha_{2}}$, and $G_{\alpha_{2}}$ is a subgroup of G, we see that $\alpha_{3} \neq \alpha_{2}$. We now get from (9) that

$$
\begin{aligned}
(y-z) \alpha_{3} & =T(y-z)=T(y)-T(z)=y \alpha_{1}-z \alpha_{2} \\
& =y \alpha_{1}-y \alpha_{2}+y \alpha_{2}-z \alpha_{2}=y \beta_{y, z}+(y-z) \alpha_{2}
\end{aligned}
$$

and so $(y-z) \alpha_{3}-(y-z) \alpha_{2}=y \beta_{y, z}$. On the other hand, by (9) there is a $\beta_{y-z, z} \in C$ such that $(y-z) \alpha_{3}-(y-z) \alpha_{2}=(y-z) \beta_{y-z, z}$ and so $(y-z) \beta_{y-z, z}=y \beta_{y, z}$. Therefore

$$
\begin{equation*}
y-z=y \beta_{y, z} \beta_{y-z, z}^{-1} \in y C \tag{10}
\end{equation*}
$$

Note that $-z \in G_{\alpha_{2}}$ and so substituting $-z$ for z in (10) we get $y+z \in y C$. Similarly $y+z \in z C$. Thus, $y C$ and $z C$ are orbits of the fixed point free automorphism group C having nontrivial intersection, and so $y C=z C$. Summarizing, we have that
if $\alpha_{1} \neq \alpha_{2}$ and $y, z \in G^{*}$ are such that $y \in G_{\alpha_{1}}$ and $z \in G_{\alpha_{2}}$, then $y C=z C$.
Since $G=\cup_{\alpha \in \widehat{C}} G_{\alpha}$, we conclude that $G^{*}=y C$ for each $y \in G^{*}$. In particular, $G^{*}=x_{0} C$ and $G=x_{0} \widehat{C}$.

Define a multiplication by the rule $y z=y \alpha$ when $z=x_{0} \alpha, \alpha \in \widehat{C}$. This turns G into a near-field because C is a fixed point free group on G. We shall denote this near-field by F. From the definition of the multiplication, one sees that the group C can be identified with the multiplicative group $F^{*}=F \backslash\{0\}$ that acts on $F=G$ via right multiplications. Finally, the rule $f \mapsto f\left(x_{0}\right), f \in M_{C}^{0}(G)$, allows us to identify $M_{C}^{0}(G)$ with left multiplications by elements of F. Indeed, given $z=x_{0} \alpha, \alpha \in \widehat{C}$, we have that $f\left(x_{0}\right) z=f\left(x_{0}\right) \alpha=f\left(x_{0} \alpha\right)=f(z)$. The proof is now complete.

References

1. N. Argaç and H. E. Bell, Some results on derivations in near-rings, in: Nearrings and Nearfields, (Stellenbosch, 1997), Kluwer Acad. Publ., Dordrecht, the Netherlands, 2000, pp. 42-46.
2. K. I. Beidar, Y. Fong and X. K. Wang, Posner and Herstein Theorems for Derivations of 3-prime Near-rings, Comm. Algebra, 24 (1996), 1581-1589.
3. H. E. Bell, On derivations in near-rings, II, in Near-rings, Near-fields and K-Loops, (Hamburg 1995), Kluwer Acad. Publisher, Dordrecht, the Netherlands, 1997, pp. 191-197.
4. H. E. Bell and G. Mason, On derivations in near-rings, in Near-rings and Near-fields, G. Betsch (ed.), North-Holland/American Elsevier, Amsterdam, 1987.
5. J. R. Clay, Near-rings: Geneses and Applications, Oxford Univ. Press, Oxford, 1992.
6. P. Dheena and C. Rajeswari, On near-rings with derivations, J. Indian Math. Soc., 60 (1994), 267-271.
7. Y. Fong, W.-F. Ke and C. S. Wang, Nonexistence of Derivations on Transformation Near-rings, Comm. Algebra, 28 (2000), 1423-1428.
8. I. N. Herstein, A note on derivations, Canad. Math. Bull., 21 (1978), 369-370.
9. I. N. Herstein, A note on derivations II, Canad. Math. Bull., 22 (1979), 509-511.
10. M. Hongan, On near-rings with derivations, Math. J. Okayama Univ., 32 (1990), 89-92.
11. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publ., Providence, 1964.
12. C. J. Maxson and K. C. Smith, The centralizer of a set of group automorphisms, Comm. Algebra, 8 (1980), 211-230.
13. J. D. P. Meldrum, Near-rings and Their Links with Groups, Pitman, Marshfield, MA, 1985.
14. G. Pilz, Near-rings, 2nd ed., North Holland/American Elsevier, Amsterdam, 1983.
15. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
16. D. Ramakotaiah, Isomorphisms of near-rings of transformations, J. London Math. Soc., 9 (1974), 272-278.
17. The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.2, Aachen, St. Andrews, 2000, (http://www-gap.dcs.st-and.ac.uk/~gap).
18. The SONATA Team, SONATA-Systems of Nearrings and Their Applications, Version 1, 1997, Institut für Algebra, Stochastik und wissensbasierte mathematische systeme, University of Linz, Austria.
19. X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc., 121 (1994), 361-366.
Y. Fong

Department of Mathematics
National Cheng-Kung University
Tainan 701, Taiwan
E-mail: fong@mail.ncku.edu.tw
C.-S. Wang

Department of Business Administration
Kao Yuan University
Kaohsiung County 821, Taiwan

