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PERIODIC SOLUTIONS FOR AN ORDINARY P -LAPLACIAN SYSTEM

Xingyong Zhang and Xianhua Tang*

Abstract. In this paper, some existence theorems are obtained for multiple
solutions of an ordinary p-Laplacian system by using the minimax principle.
Our results generalize and improve those in the literatures.

1. INTRODUCTION AND MAIN RESULTS

Consider the second order Hamiltonian system

(1.1)

{
ü(t) + ∇F (t, u(t)) = e(t), a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

where T > 0, e ∈ L1(0, T ; RN) and F : [0, T ]× RN → R satisfies the following
assumption:

(A) F (t, x) is measurable in t for every x ∈ RN and continuously differentiable
in x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+) and b ∈ L1([0, T ],R+)
such that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)
for all x ∈ RN and a.e. t ∈ [0, T ].

Moreover, we suppose that F (t, x) is Ti−periodic in xi, 1 ≤ i ≤ r, that is

F

(
t, x+

r∑
i=1

kiTiei

)
= F (t, x)(1.2)

for a.e.t ∈ [0, T ], all integers ki, 1 ≤ i ≤ r, where ei is the canonical basis of RN

for 1 ≤ i ≤ N .
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When e(t) ≡ 0, it has been proved that problem (1.1) has at least one solution
by the least action principle and the minimax methods [1,4-18]. Many solvability
conditions are given, such as the coercive condition [1], the periodicity condition
[14]; the convexity condition [4]; the subadditive condition [9]. Especially, Tang
and Wu [13] obtained the following result.

Theorem A. Suppose that (1.2) holds and

(1.3)
∫ T

0
e(t)dt = 0.

Assume that there exist f, g ∈ L1(0, T ; R+) and α ∈ [0, 1) such that

|∇F (t, x)| ≤ f(t)|x|α + g(t)(1.4)

and

|x|−2α

∫ T

0
F (t, x)dt→ +∞ ( or −∞),(1.5)

as x tends to infinity in 0×RN−r. Then problem (1.1) has at least r+1 geometrically
distinct solutions in W 1,2

T .

Let

(1.6)

F (t, x) = (0.5T−t)

r+1+sin2 x1+· · ·+ sin2 xr+

1
2

N∑
j=r+1

x2
j




7/8

+
T 4

16


r + 1 + sin2 x1 + · · ·+ sin2 xr +

1
2

N∑
j=r+1

x2
j




3/4

,

where x = (x1, x2, · · · , xN)T ∈ RN . We can prove F satisfies (1.2) and (1.4) with
α = 3/4. However, F (t, x) does not satisfy (1.5) neither for the case +∞ nor the
case −∞. In fact,

lim
|x|→∞

|x|−2α

∫ T

0

F (t, x)dt =
T 5

219/4

as x ∈ 0×RN−r . The details can be seen in Example 4.3 in Section 4. Hence, the
above example shows that it is valuable to improve (1.5).

In this paper, by using the minimax principle, we study more general ordinary
p-Laplacian system

(1.7)

{
(|u′(t)|p−2u′(t))′ + ∇F (t, u(t)) = e(t), a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,
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where p > 1, q > 1 with p and q satisfying 1/p+1/q = 1, and T, e(t) and F (t, x)
are the same as problem (1.1). Our main results are the following theorems.

Theorem 1.1. Suppose that (1.2) and (1.3) hold. Assume that there exist
f, g ∈ L1(0, T ; R+) and α ∈ (0, p− 1) such that

|∇F (t, x)| ≤ f(t)|x|α + g(t)(1.8)

for a.e. t ∈ [0, T ] and all x ∈ RN and

lim inf
|x|→∞

|x|−qα

∫ T

0
F (t, x)dt >

(p+ 1)T
p(q + 1)

(∫ T

0
f(t)dt

)q

(1.9)

as x ∈ 0 × RN−r. Then problem (1.7) has at least r + 1 geometrically distinct
solutions in W 1,p

T .

Theorem 1.2. Assume that (1.2), (1.3) and (1.8) hold, and that

lim sup
|x|→∞

|x|−qα

∫ T

0
F (t, x)dt < − T

q(q + 1)

(∫ T

0
f(t)dt

)q

(1.10)

as x ∈ 0 × RN−r. Then problem (1.7) has at least r + 1 geometrically distinct
solutions in W 1,p

T .

By Theorem 1.1 and Theorem 1.2, it is easy to obtain the following Corollaries.

Corollary 1.1. Suppose that (1.2), (1.3) and (1.8) hold. If

|x|−qα

∫ T

0
F (t, x)dt→ +∞(1.11)

as x tends to infinity in 0×RN−r, then problem (1.7) has at least r+1 geometrically
distinct solutions in W 1,p

T .

Corollary 1.2.
Suppose that (1.2), (1.3) and (1.8) hold. If

|x|−qα

∫ T

0
F (t, x)dt→ −∞(1.12)

as x tends to infinity in 0×RN−r, then problem (1.7) has at least r+1 geometrically
distinct solutions in W 1,p

T .



1372 Xingyong Zhang and Xianhua Tang

Corollary 1.3. Assume that (1.2), (1.3) and (1.4) with α ∈ (0, 1) hold, and
that

lim inf
|x|→∞

|x|−2α

∫ T

0
F (t, x)dt >

T

2

(∫ T

0
f(t)dt

)2

(1.13)

as x ∈ 0 × RN−r. Then problem (1.1) has at least r + 1 geometrically distinct
solutions in W 1,2

T .

Corollary 1.4. Assume that (1.2), (1.3) and (1.4) with α ∈ (0, 1) hold, and
that

lim sup
|x|→∞

|x|−2α

∫ T

0
F (t, x)dt < −T

6

(∫ T

0
f(t)dt

)2

(1.14)

as x ∈ 0 × RN−r. Then problem (1.1) has at least r + 1 geometrically distinct
solutions in W 1,2

T .

Remark 1.1. When α = 0, Corollary 1.1 and Corollary 1.2 still hold. The
reasons can be easily found in the process of proofs of Theorem 1.1 and Theorem
1.2. Therefore, Theorem A is the special case of Corollary 1.1 and Corollary 1.2.

For the Sobolev space W̃ 1,2
T , we have the following sharp estimates(see Propo-

sition 1.3 in [5]):
∫ T

0

|u(t)|2dt ≤ T 2

4π2

∫ T

0

|u̇(t)|2dt(1.15)

(Wirtinger’s inequality) and

‖u‖2
∞ ≤ T

12

∫ T

0
|u̇(t)|2dt(1.16)

(Sobolev’s inequality). By the above two inequality, we can prove the following
better results than Corollary 1.3 and Corollary 1.4.

Theorem 1.3. In Corollary 1.3, (1.13) is replaced by

lim inf
|x|→∞

|x|−2α

∫ T

0

F (t, x)dt >
T

8

(∫ T

0

f(t)dt
)2

(1.17)

as x ∈ 0 ×RN−r , the conclusion in Corollary 1.3 still holds.
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Theorem 1.4. In Corollary 1.4, (1.14) is replaced by

lim sup
|x|→∞

|x|−2α

∫ T

0
F (t, x)dt < − T

24

(∫ T

0
f(t)dt

)2

(1.18)

as x ∈ 0 ×RN−r , the conclusion in Corollary 1.4 still holds.

Remark 1.2. Obviously, when α ∈ (0, 1), Theorem 1.3 and Theorem 1.4 im-
prove Theorem A.

2. PRELIMINARIES

Let

W 1,p
T = {u : [0, T ] → RN | u(t) is absolutely continuous on [0, T ], u(0) = u(T )

and u̇ ∈ Lp(0, T ; RN)}.

Then W 1,p
T is a Banach space with the norm defined by

‖u‖ =
[∫ T

0
|u(t)|pdt+

∫ T

0
|u̇(t)|pdt

]1/p

, u ∈W
1,p
T .

It follows from [5] that W 1,p
T is also reflexive and uniformly convex Banach space.

From [2], one can know that a locally uniformly convex Banach space has the
Kadec-Klee property, that is for any sequence {un} satisfying un ⇀ u weakly in
Banach space X and ‖un‖ → ‖u‖, one has un → u strongly in X . This property
will be used later.

Lemma 2.1. Let a > 0, b, c ≥ 0, ε > 0.

(i) If α ∈ (0, 1], then

(2.1) (a+ b+ c)α ≤ aα + bα + cα;

(ii) If α ∈ (1,+∞), then there exists B(ε) > 1 such that

(2.2) (a+ b+ c)α ≤ (1 + ε)aα +B(ε)bα +B(ε)cα.

Proof. It is easy to verify (i). In the sequel, we only prove (ii). Since

lim
x→+∞

xα/(α−1) − 1[
x1/(α−1) − 1

]α = 1,
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it follows that there exists a constant M = M(ε) > 1 such that

Mα/(α−1) − 1[
M1/(α−1) − 1

]α < 1 + ε.

Set
f(t) = (1 + t)α −Mtα, t ∈ [0, 1].

Then

f(t) ≤ Mα/(α−1) − 1[
M1/(α−1) − 1

]α < 1 + ε, t ∈ [0, 1].

It follows that

(2.3) (1 + t)α ≤ 1 + ε+Mtα, t ∈ [0, 1].

If a ≤ b+ c, then

(a+ b+ c)α ≤ 2α(b+ c)α ≤ 22α−1bα + 22α−1cα.

This shows that (2.2) holds. If a > b+ c, then by (2.3), we have

(a+ b+ c)α ≤ aα

(
1 +

b+ c

a

)α

≤ aα

(
1 + ε+M

(b+ c)α

aα

)

≤ (1 + ε)aα + 2α−1Mbα + 2α−1Mcα.

This shows that (2.2) also holds. The proof is complete.

Lemma 2.2. Let u ∈W 1,p
T and

∫ T
0 u(t)dt = 0. Then

(2.4) ‖u‖∞ ≤
(

T

q + 1

)1/q (∫ T

0
|u̇(s)|pds

)1/p

,

and

(2.5)
∫ T

0
|u(s)|pds ≤ T pΘ(p, q)

(q + 1)p/q

∫ T

0
|u̇(s)|pds,

where

Θ(p, q) =
∫ 1

0

[
sq+1 + (1− s)q+1

]p/q
ds.

Proof. Fix t ∈ [0, T ]. For every τ ∈ [0, T ], we have

(2.6) u(t) = u(τ) +
∫ t

τ
u̇(s)ds.
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Set

φ(s) =

{
s, 0 ≤ s ≤ t,

T − s, t ≤ s ≤ T.

Integrating (2.6) over [0, T ] and using the Hölder inequality, we obtain

(2.7)

T |u(t)| =
∣∣∣∣
∫ T

0
u(τ)dτ +

∫ T

0

∫ t

τ
u̇(s)dsdτ

∣∣∣∣
≤
∫ t

0

∫ t

τ
|u̇(s)|dsdτ +

∫ T

t

∫ τ

t
|u̇(s)|dsdτ

=
∫ t

0
s|u̇(s)|ds+

∫ T

t
(T − s)|u̇(s)|ds

=
∫ T

0
φ(s)|u̇(s)|ds

≤
(∫ T

0
[φ(s)]qds

)1/q (∫ T

0
|u̇(s)|pds

)1/p

=
1

(q + 1)1/q

[
tq+1 + (T − t)q+1

]1/q
(∫ T

0
|u̇(s)|pds

)1/p

.

Since tq+1 + (T − t)q+1 ≤ T q+1 for t ∈ [0, T ], it follows from (2.7) that (2.4)
holds. On the other hand, from (2.7), we have

T p
∫ T
0 |u(t)|pdt ≤ 1

(q + 1)p/q

(∫ T

0
|u̇(s)|pds

)∫ T

0

[
tq+1 + (T − t)q+1

]p/q
dt

≤ T 1+p(q+1)/q

(q + 1)p/q

(∫ T

0
|u̇(s)|pds

)∫ 1

0

[
sq+1 + (1 − s)q+1

]p/q
ds

=
T 2pΘ(p, q)
(q + 1)p/q

∫ T

0
|u̇(s)|pds.

It follows that (2.5) holds. The proof is complete.

Let

W̃ 1,p
T =

{
u ∈W 1,p

T

∣∣∣∣
∫ T

0
u(t)dt = 0

}
.

It is easy to know that W̃ 1,p
T is a subset of W 1,p

T and W 1,p
T = RN ⊕ W̃ 1,p

T . For
u ∈W 1,p

T , let ū = 1
T

∫ T
0 u(t)dt and ũ(t) = u(t) − ū. By Lemma 2.2, we have

(2.8)
∫ T

0
|ũ(t)|pdt ≤ T pΘ(p, q)

(q + 1)p/q

∫ T

0
|u̇(t)|pdt for every u ∈W1,p

T ,
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and

(2.9) ‖ũ‖p
∞ ≤

(
T

q + 1

)p/q ∫ T

0
|u̇(t)|pdt for every u ∈W1,p

T .

Hence,

(2.10) ‖ũ‖p ≤
[
T pΘ(p, q)
(q + 1)p/q

+ 1
]∫ T

0
|u̇(t)|pdt for every u ∈W

1,p
T .

We will use the following two lemmas to obtain the critical points of ϕ:

Lemma 2.3. ([3]). Let X be a Banach space and have a decomposition:
X = Y +Z where Y and Z are two subspaces of X with dimY < +∞. Let V be
a finite-dimensional, compact C2−manifold without boundary. Let f : X×V → R
be a C1−function and satisfy the (PS)-condition. Suppose that f satisfies

inf
u∈Z×V

f(u) ≥ a, sup
u∈S×V

f(u) ≤ b < a,

where S = ∂D, D = {u ∈ Y | ‖u‖ ≤ R}, R, a and b are constants. Then the
function f has at least cuplength(V)+1 critical points.

Lemma 2.4. (see Theorem 4.12 in [5]). Let ϕ ∈ C1(X,R) be a G−invariant
functional satisfying the (PS)G-condition. If ϕ is bounded from below and if the
dimension r of the space generated by G is finite, then ϕ has at least r+ 1 critical
orbits.

Let ϕ : W 1,p
T → R be defined by

(2.11) ϕ(u) =
1
p

∫ T

0

|u̇(t)|pdt−
∫ T

0

F (t, u(t))dt+
∫ T

0

(e(t), u(t))dt.

Then ϕ is continuously differentiable and weakly lower semicontinuous in W 1,p
T

(see [5]). Moreover,

(2.12)
〈ϕ′(u), v〉 =

∫ T

0

(|u̇(t)|p−2u̇(t), v̇(t)
)
dt

−
∫ T

0
(∇F (t, u(t)), v(t))dt+

∫ T

0
(e(t), v(t))dt

for u, v ∈W1,p
T . It is well known that the solutions of problem (1.7) correspond to

the critical points of ϕ (see [5]).
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Let
û(t) = Pū +Qū + ũ(t),

where

Pū =
N∑

i=r+1

(ū, ei)ei, Qū =
r∑

i=1

[(ū, ei) − kiTi]ei,

and ki(1 ≤ i ≤ r) is the unique integer such that

(2.13) 0 ≤ (ū, ei) − kiTi < Ti.

Let

(2.14) G =

{
r∑

i=1

kiTiei

∣∣∣∣∣ ki is an interger, 1 ≤ i ≤ r

}
,

Y = span {er+1, · · · , eN}, Z = W̃ 1,p
T , X = Y +Z and V = span {e1, · · · , er}/G

be isomorphic to the torus T r, which is nothing but the torus T r. Now define
Ψ : X × T r → R by

(2.15) Ψ((y + z(t), v)) = ϕ(y + v + z(t)), ∀ (y, z, v) ∈ Y × Z × T r.

It is easy to verify that Ψ is continuously differentiable and that

(2.16)

〈Ψ′((y1 + z1(t), v1)), (y2 + z2(t), v2)〉
= 〈ϕ′(y1 + v1 + z1(t)), y2 + v2 + z2(t)〉,

∀ (yi, zi, vi) ∈ Y × Z × T r, i = 1, 2.

By (1.2) and (1.3), we have

F (t, u(t)) = F

(
t, û(t) +

r∑
i=1

kiTiei

)
= F (t, û(t)),

∇F (t, u(t)) = ∇F
(
t, û(t) +

r∑
i=1

kiTiei

)
= ∇F (t, û(t))

and
∫ T

0
(e(t), u(t))dt =

∫ T

0

(
e(t), û(t) +

r∑
i=1

kiTiei

)
dt =

∫ T

0
(e(t), û(t))dt.

Hence ϕ(u) = ϕ(û) and ϕ′(u) = ϕ′(û).
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3. PROOFS OF THEOREMS

For the sake of convenience, we denote that

M1 =
∫ T

0
f(t)dt, M2 =

∫ T

0
g(t)dt, M3 =

(
r∑

i=1

T 2
i

)1/2

, M4 =
∫ T

0
|e(t)|dt.

Proof of Theorem 1.1. We divide our proof into two steps.

Step 1. we prove Ψ defined by (2.15) satisfies (PS)- condition.
First we assume that {(yn + zn, vn)} ⊂ X × T r is a (PS)- sequence for Ψ, that

is {Ψ((yn + zn, vn))} is bounded and Ψ′((yn + zn, vn)) → 0, where yn ∈ Y, zn =
zn(t) ∈ Z, vn ∈ T r for n = 1, 2, . . .. Set

un = yn + vn + zn(t), n = 1, 2, . . . .

Then it is easy to see that

yn = Pūn, vn = Qūn, zn(t) = ũn(t), n = 1, 2, . . . .

It follows from (2.15) and (2.16) that {ϕ(un)} is bounded and ϕ′(un) → 0.

By (1.9), we can choose constants ε > 0 and a1 > [T/(q + 1)]1/q such that

(3.1) lim inf
|x|→∞

|x|−qα

∫ T

0
F (t, x)dt >

[
1
p

+
1
a1

(
T

q + 1

)1/q
]

[(1 + ε)a1M1]q

as x ∈ 0 × RN−r. It follows from (1.8), (2.9), (2.11) and Young’s inequality that
for all u ∈W 1,p

T

(3.2)

∣∣∣∣
∫ T

0
(∇F (t, u(t)), ũ(t))dt

∣∣∣∣
=
∣∣∣∣
∫ T

0

(∇F (t, P ū+Qū+ ũ(t)), ũ(t))dt
∣∣∣∣

≤
∫ T

0
f(t)|Pū+Qū+ ũ(t)|α|ũ(t)|dt+

∫ T

0
g(t)|ũ(t)|dt

≤ (|Pū| + |Qū| + ‖ũ‖∞)α ‖ũ‖∞
∫ T

0
f(t)dt+ ‖ũ‖∞

∫ T

0
g(t)dt

≤ M1 [(1 + ε)|Pū|α +B(ε)|Qū|α +B(ε)‖ũ‖α
∞] ‖ũ‖∞ +M2‖ũ‖∞

≤ 1
pap

1

‖ũ‖p
∞ +

[(1 + ε)a1M1]q

q
|Pū|qα +B(ε)M1

(
r∑

i=1

T 2
i

)α/2

‖ũ‖∞

+B(ε)M1‖ũ‖α+1
∞ +M2‖ũ‖∞
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≤ 1
pap

1

(
T

q+1

)p/q

‖u̇‖p
Lp +

[(1+ε)a1M1]q

q
|Pū|qα

+B(ε)
(

T

q + 1

)1/q

M1M
α
3 ‖u̇‖Lp

+B(ε)
(

T

q + 1

)(α+1)/q

M1‖u̇‖α+1
Lp +

(
T

q + 1

)1/q

M2‖u̇‖Lp .

Hence we have

(3.3)

‖ũn‖ ≥ |〈ϕ′(un), ũn〉|

=
∣∣∣∣
∫ T

0
|u̇n(t)|pdt−

∫ T

0
(∇F (t, un(t)), ũn(t))dt+

∫ T

0
(e(t), ũn(t))dt

∣∣∣∣
≥
[
1− 1

pap
1

(
T

q + 1

)p/q
]
‖u̇n‖p

Lp − [(1 + ε)a1M1]q

q
|Pūn|qα

−B(ε)
(

T

q+1

)1/q

M1M
α
3 ‖u̇n‖Lp−B(ε)

(
T

q+1

)(α+1)/q

M1‖u̇n‖α+1
Lp

−
(

T

q + 1

)1/q

M2‖u̇n‖Lp −
(

T

q + 1

)1/q

M4‖u̇n‖Lp

for large n by the fact that ϕ′(un) → 0. It follows from (2.10) and (3.3) that
[
T pΘ(p, q)
(q + 1)p/q

+ 1
]1/p

‖u̇n‖Lp ≥ ‖ũn‖

≥
[
1 − 1

pap
1

(
T

q + 1

)p/q
]
‖u̇n‖p

Lp − [(1 + ε)a1M1]q

q
|Pūn|qα

−B(ε)
(

T

q + 1

)1/q

M1M
α
3 ‖u̇n‖Lp −B(ε)

(
T

q + 1

)(α+1)/q

M1‖u̇n‖α+1
Lp

−
(

T

q + 1

)1/q

M2‖u̇n‖Lp −
(

T

q + 1

)1/q

M4‖u̇n‖Lp

for large n, which implies that

(3.4)
[(1 + ε)a1M1]q

q
|Pūn|qα ≥ 1

q
‖u̇n‖p

Lp + C1,

where
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C1 = min
s∈[0,+∞)

{(
1
p
− 1
pap

1

(
T

q + 1

)p/q
)
sp −B(ε)

(
T

q + 1

)(α+1)/q

M1s
α+1

−
[
B(ε)

(
T

q + 1

)1/q

M1M
α
3 +

(
T

q + 1

)1/q

(M2 +M4)

+
(
T pΘ(p, q)
(q + 1)p/q

+ 1
)1/p

]
s

}
.

The fact a1 > (T/(q + 1))1/q implies that −∞ < C1 < 0. By (3.4), we get

(3.5) ‖u̇n‖p
Lp ≤ [(1 + ε)a1M1]q|Pūn|qα + C2

and so

(3.6) ‖u̇n‖Lp ≤ [(1 + ε)a1M1]q/p|Pūn|qα/p + C3,

where C2, C3 > 0. It follows from (1.8), (2.9), Lemma 2.1 and Young’s inequality
that

(3.7)

∣∣∣∣∣
∫ T

0

[F (t, P ū+Qū+ ũ(t)) − F (t, P ū)]dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫ 1

0

(∇F (t, P ū+ s(Qū + ũ(t))), Qū+ ũ(t))dsdt

∣∣∣∣∣
≤
∫ T

0

∫ 1

0

f(t)|P ū+ s(Qū + ũ(t))|α|Qū+ ũ(t)|dsdt

+
∫ T

0

g(t)|Qū+ ũ(t)|dt

≤ M1 (|P ū| + |Qū| + ‖ũ‖∞)α (|Qū| + ‖ũ‖∞) +M2 (|Qū|+ ‖ũ‖∞)

≤ (1 + ε)M1|P ū|α (|Qū| + ‖ũ‖∞) + B(ε)M1 (|Qū| + ‖ũ‖∞)α+1

+M2 (|Qū|+ ‖ũ‖∞)

≤ (1 + ε)M1|P ū|α (M3 + ‖ũ‖∞) +B(ε)M1 (M3 + ‖ũ‖∞)α+1

+M2 (M3 + ‖ũ‖∞)

≤ (1 + ε)M1|P ū|α‖ũ‖∞ + (1 + ε)M1M3|P ū|α + 2αB(ε)M1‖ũ‖α+1
∞

+M2‖ũ‖∞ + 2αB(ε)M1M
α+1
3 +M2M3

≤ 1
pa1

(
q + 1
T

)p/q2

‖ũ‖p
∞ +

[(1 + ε)M1]qa
q/p
1

q

(
T

q + 1

)1/q

|P ū|qα
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+(1 + ε)M1M3|P ū|α + 2αB(ε)M1‖ũ‖α+1
∞

+M2‖ũ‖∞ + 2αB(ε)M1M
α+1
3 +M2M3

≤ 1
pa1

(
T

q + 1

)1/q

‖u̇‖p
Lp +

[(1 + ε)M1 ]qa
q/p
1

q

(
T

q + 1

)1/q

|P ū|qα

+(1 + ε)M1M3|P ū|α

+2αB(ε)M1

(
T

q + 1

)(α+1)/q

‖u̇‖α+1
Lp

+
(

T

q + 1

)1/q

M2‖u̇‖Lp + 2αB(ε)M1M
α+1
3 +M2M3

for all u ∈ W 1,p
T . It follows from the boundedness of {ϕ(un)}, (1.3), (3.5), (3.6)

and (3.7) that
C4 ≤ ϕ(un)

=
1
p

∫ T

0

|u̇n(t)|pdt−
∫ T

0

[F (t, un(t)) − F (t, P ūn)]dt

−
∫ T

0

F (t, P ūn)dt+
∫ T

0

(e(t), ũn(t))dt

≤
[

1
p

+
1
pa1

(
T

q + 1

)1/q
]
‖u̇n‖p

Lp +
[(1 + ε)M1 ]qa

q/p
1

q

(
T

q + 1

)1/q

|P ūn|qα + (1 + ε)M1M3|P ū|α

+2αB(ε)M1

(
T

q + 1

)(α+1)/q

‖u̇n‖α+1
Lp +

(
T

q + 1

)1/q

M2‖u̇n‖Lp

+2αB(ε)M1M
α+1
3 +M2M3

−
∫ T

0

F (t, P ūn)dt+
(

T

q + 1

)1/q

M4‖u̇n‖Lp

≤
[

1
p

+
1
pa1

(
T

q + 1

)1/q
]
{[(1 + ε)a1M1]q|P ūn|qα +C2}

+
[(1 + ε)M1]qa

q/p
1

q

(
T

q + 1

)1/q

|P ūn|qα

+(1 + ε)M1M3|P ūn|α + 2αB(ε)M1

(
T

q + 1

)(α+1)/q
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{
[(1 + ε)a1M1]q/p|P ūn|qα/p +C3

}α+1

+
(

T

q + 1

)1/q

(M2 +M4)
{

[(1 + ε)a1M1]q/p|P ūn|qα/p + C3

}

+2αB(ε)M1M
α+1
3 +M2M3 −

∫ T

0

F (t, P ūn)dt

≤
[

1
p

+
1
a1

(
T

q + 1

)1/q
]

[(1 + ε)a1M1]q|P ūn|qα

+C5|P ūn|qα(α+1)/p + C6|P ūn|qα/p

+(1 + ε)M1M3|P ūn|α +C7 −
∫ T

0

F (t, P ūn)dt

= −|P ūn|qα

{
|P ūn|−qα

∫ T

0

F (t, P ūn)dt−
[

1
p

+
1
a1

(
T

q+1

)1/q
]

[(1+ε)a1M1]q
}

+C5|P ūn|qα(α+1)/p + C6|P ūn|qα/p + (1 + ε)M1M3|P ūn|α + C7,

where C5, C6 and C7 are positive constants. Then it follows from (3.1), qα(α+1)/p < qα,
and qα/p < qα that {|P ūn|} is bounded. Furthermore, {ũn} is bounded by (2.10) and
(3.6), which implies that {un} is bounded in W 1,p

T . Since W 1,p
T is a reflexive Banach

space, both boundedness and weak compactness are equivalent, going if necessary to a
subsequence, we can assume that

un ⇀ u weakly in W 1,p
T .(3.8)

Furthermore, by Proposition 1.2 in [5], we have

un → u strongly in C([0, T ],RN).(3.9)

By (2.12), we have

(3.10)

〈ϕ′(un), un − u〉

=
∫ T

0

(|u̇n(t)|p−2u̇n(t), u̇n(t) − u̇(t))dt

−
∫ T

0

(∇F (t, un(t)), un(t) − u(t))dt+
∫ T

0

(e(t), un(t) − u(t))dt.

Since {‖un‖} is bounded and ϕ′(un) → 0, we have

(3.11) |〈ϕ′(un), un − u〉| ≤ ‖ϕ′(un)‖ ‖un − u‖ → 0 as n → ∞.

By assumption (A) and (3.9), one has

(3.12)
∫ T

0

(∇F (t, un(t)), un(t) − u(t)
)
dt→ 0 as n→ ∞,
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and

(3.13)
∫ T

0

(e(t), un(t) − u(t))dt→ 0 as n → ∞.

Hence, it follows from (3.10), (3.11), (3.12) and (3.13) that

(3.14)
∫ T

0

(|u̇n(t)|p−2u̇n(t), u̇n(t) − u̇(t))dt → 0 as n→ ∞.

On the other hand, it is easy to derive from (3.9) and the boundedness of {un} that

(3.15)
∫ T

0

(|un(t)|p−2un(t), un(t) − u(t))dt→ 0 as n→ ∞.

Set

ψ(u) =
1
p

(∫ T

0

|u(t)|pdt+
∫ T

0

|u̇(t)|pdt
)
.

Then we have

(3.16)
〈ψ′(un), un − u〉 =

∫ T

0

(|un(t)|p−2un(t), un(t) − u(t))dt

+
∫ T

0

(|u̇n(t)|p−2u̇n(t), u̇n(t) − u̇(t))dt,

and

(3.17)
〈ψ′(u), un − u〉 =

∫ T

0

(|u(t)|p−2u(t), un(t) − u(t))dt

+
∫ T

0

(|u̇(t)|p−2u̇(t), u̇n(t) − u̇(t))dt.

From (3.14), (3.15) and (3.16), we obtain

(3.18) 〈ψ′(un), un − u〉 → 0 as n→ ∞.

On the other hand, it follows from (3.8) that

(3.19) 〈ψ′(u), un − u〉 → 0 as n→ ∞.

By (3.16), (3.17) and by using the Hölder’s inequality, we get By (3.16), (3.17) and by
using the Hölder’s inequality, we get
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(3.20)

〈ψ′(un) − ψ′(u), un − u〉

=
∫ T

0

(|un(t)|p−2un(t), un(t)−u(t))dt+
∫ T

0

(|u̇n(t)|p−2u̇n(t), u̇n(t)−u̇(t))dt

−
∫ T

0

(|u(t)|p−2u(t), un(t)−u(t))dt−
∫ T

0

(|u̇(t)|p−2u̇(t), u̇n(t)−u̇(t))dt

= ‖un‖p+‖u‖p−
∫ T

0

(|un(t)|p−2un(t), u(t))dt−
∫ T

0

(|u̇n(t)|p−2u̇n(t), u̇(t))dt

−
∫ T

0

(|u(t)|p−2u(t), un(t))dt−
∫ T

0

(|u̇(t)|p−2u̇(t), u̇n(t))dt

≥ ‖un‖p + ‖u‖p −
(
‖un‖p−1

Lp ‖u‖Lp + ‖u̇n‖p−1
Lp ‖u̇‖Lp

)
−
(
‖u‖p−1

Lp ‖un‖Lp + ‖u̇‖p−1
Lp ‖u̇n‖Lp

)
≥ ‖un‖p + ‖u‖p − (‖u‖p

Lp + ‖u̇‖p
Lp)1/p (‖un‖p

Lp + ‖u̇n‖p
Lp)1/q

− (‖un‖p
Lp + ‖u̇n‖p

Lp)1/p (‖u‖p
Lp + ‖u̇‖p

Lp)1/q

= ‖un‖p + ‖u‖p − ‖u‖ ‖un‖p−1 − ‖un‖ ‖u‖p−1

=
(‖un‖p−1 − ‖u‖p−1

)
(‖un‖ − ‖u‖) .

It follows that

(3.21) 0 ≤ (‖un‖p−1 − ‖u‖p−1
)
(‖un‖ − ‖u‖) ≤ 〈ψ′(un) − ψ′(u), un − u〉,

which, together with (3.18) and (3.19) yields ‖un‖ → ‖u‖ (see [19]). By the uniform
convexity of W1,p

T and (3.8), it follows from the Kadec-Klee property that un → u strongly
in W 1,p

T . Thus we have verified that Ψ satisfies (PS) condition.
Step 2. In order to use Lemma 2.3, we only need to verify the following conditions:

(i) inf{Ψ((z, v)) | (z, v) ∈ Z × T r} > −∞;

(ii) Ψ((y, v)) → −∞ uniformly for (y, v) ∈ Y × T r as |y| → ∞.
For (z, v) ∈ Z × T r, set u = u(t) = v + z(t). Then v = Qū, z(t) = ũ(t). It follows

from (1.8) and (2.9) that

(3.22)

∣∣∣∣∣
∫ T

0

[F (t, u(t))− F (t, 0)]dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫ 1

0

(∇F (t, s(Qū+ ũ(t))), Qū+ ũ(t))dsdt

∣∣∣∣∣
≤
∫ T

0

∫ 1

0

f(t)|s(Qū + ũ(t))|α|Qū+ ũ(t)|dsdt+
∫ T

0

g(t)|Qū+ ũ(t)|dt
≤ M1 (|Qū| + ‖ũ‖∞)α (|Qū| + ‖ũ‖∞) +M2 (|Qū| + ‖ũ‖∞)

≤ 2αM1

(|Qū|α+1 + ‖ũ‖α+1
∞
)

+M2 (|Qū| + ‖ũ‖∞)

≤ 2αM1

[
Mα+1

3 +
(

T

q+1

)(α+1)/q

‖u̇‖α+1
Lp

]
+M2

[
M3+

(
T

q+1

)1/q

‖u̇‖Lp

]
.
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Hence, by (1.3), (2.11) and (3.22), we have

Ψ((z, v)) = ϕ(u)

=
1
p

∫ T

0

|u̇(t)|pdt−
∫ T

0

F (t, 0)dt−
∫ T

0

[F (t, ũ(t) +Qū) − F (t, 0)]dt

+
∫ T

0

(e(t), ũ(t) +Qū)dt

≥ 1
p
‖u̇‖p

Lp − 2αM1

[
Mα+1

3 +
(

T

q + 1

)(α+1)/q

‖u̇‖α+1
Lp

]

−M2

[
M3 +

(
T

q + 1

)1/q

‖u̇‖Lp

]

−
∫ T

0

F (t, 0)dt−M4

(
T

q + 1

)1/q

‖u̇‖Lp .

This shows that condition (i) holds.
For any (y, v) ∈ Y × Tr, it follows from (1.3), (1.8) and (2.11) that

Ψ((y, v)) = ϕ(y + v)

= −
∫ T

0

F (t, y+ v)dt

= −
∫ T

0

F (t, y)dt−
∫ T

0

∫ 1

0

(∇F (t, y+ sv), v)dsdt

≤ −
∫ T

0

F (t, y)dt+ |v|
∫ T

0

∫ 1

0

f(t)|y + sv|αdsdt+ |v|
∫ T

0

g(t)dt

≤ −
∫ T

0

F (t, y)dt+ C8|y|α + C9

= −|y|qα

(
|y|−qα

∫ T

0

F (t, y)dt

)
+C8|y|α + C9

for some positive constants C8 and C9. Hence, the inequality above, α < qα and (1.9)
imply condition (ii) holds. It follows from Lemma 2.3 that Ψ has at least r + 1 critical
points. Hence ϕ has at least r+1 geometrically distinct critical points. Therefore, problem
(1.7) has at least r + 1 geometrically distinct solutions in W 1,p

T .

Proof of Theorem 1.2 By (1.10), we can choose constants ε > 0 and a2 > (T/(q + 1))1/q

such that

(3.23) lim sup
|x|→∞

|x|−qα

∫ T

0

F (t, x)dt < − [(1 + ε)M1 ]qa
q/p
2

q

(
T

q + 1

)1/q

as x ∈ 0 ×RN−r . It follows from (3.7), (1.3) and (2.9) that
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(3.24)

ϕ(u) = ϕ(û)

=
1
p

∫ T

0

|u̇(t)|pdt−
∫ T

0

F (t, û(t))dt+
∫ T

0

(e(t), û(t))dt

=
1
p

∫ T

0

|u̇(t)|pdt−
∫ T

0

F (t, P ū)dt+
∫ T

0

(e(t), ũ(t))dt

−
∫ T

0

∫ 1

0

(∇F (t, P ū+ s(Qū+ ũ(t))), Qū+ ũ(t))dsdt

≥
[

1
p
− 1
pa2

(
T

q + 1

)1/q
]
‖u̇‖p

Lp − 2αB(ε)M1

(
T

q + 1

)(α+1)/q

‖u̇‖α+1
Lp

−
(

T

q + 1

)1/q

(M2 +M4)‖u̇‖Lp −M2M3

−2αB(ε)M1M
α+1
3 − (1 + ε)M1M3|P ū|α

−|P ū|qα

[
|P ū|−qα

∫ T

0

F (t, P ū)dt+
[(1 + ε)M1 ]qa

q/p
2

q

(
T

q + 1

)1/q
]

for all u ∈ W 1,p
T . It follows from (3.23), (3.24) and a2 > (T/(q + 1))1/q that ϕ is

bounded from below. Let G be a discrete subgroup of W1,p
T defined by (2.14) and let

π : W 1,p
T → W 1,p

T /G be the canonical surjection. By (1.2) and (1.3), it is easy to verify
that ϕ is G-invariant. In what follows, we show that the functional ϕ satisfies the (PS)G-
condition, that is, for every sequence {un} in W 1,p

T such that {ϕ(un)} is bounded and
ϕ′(un) → 0, the sequence {π(un)} has a convergent subsequence. In fact, the boundedness
of ϕ(un), (3.23), (3.24) and the fact that a2 > (T/(q + 1))1/q imply that (P ūn) and ‖u̇n‖Lp

are bounded. Furthermore, by (2.10), we know that (ũn) is also bounded. Hence {ûn} is
bounded. Similar to the proof of Theorem 1.1, we can know that {ûn} has a convergent
subsequence. So {π(un)} also has a convergent subsequence since π(un) = π(ûn). Thus,
by Lemma 2.4, we know that ϕ has r + 1 critical orbits. Hence, as in [5, Theorem 4.13],
problem (1.7) has at least r + 1 geometrically distinct solutions in W 1,p

T . The proof is
complete.

Proof of Theorem 1.3. Similar to the proof of Theorem 1.1, we divide our proof into
two steps.

Step 3. We prove Ψ defined by (2.15) satisfies (PS)- condition.
First we assume that {(yn + zn, vn)} ⊂ X × T r is a (PS)- sequence for Ψ, that is

{Ψ((yn + zn, vn))} is bounded and Ψ′((yn + zn, vn)) → 0, where yn ∈ Y, zn = zn(t) ∈
Z, vn ∈ T r for n = 1, 2, . . .. Set

un = yn + vn + zn(t), n = 1, 2, . . . .

Then it is easy to see that

yn = P ūn, vn = Qūn, zn(t) = ũn(t), n = 1, 2, . . . .
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It follows from (2.15) and (2.16) that {ϕ(un)} is bounded and ϕ′(un) → 0.
By (1.17), we can choose an a3 > T/12 such that

(3.25) lim inf
|x|→∞

|x|−2α

∫ T

0

F (t, x)dt > a3M
2
1 +

TM2
1

24

as x ∈ 0 ×RN−r . It follows from (1.4), (1.16), α ∈ (0, 1) and Young’s inequality that for
all u ∈W 1,2

T

(3.26)

∣∣∣∣∣
∫ T

0

(∇F (t, P ū+Qū+ ũ(t)), ũ(t))dt

∣∣∣∣∣
≤
∫ T

0

f(t)|P ū+Qū+ ũ(t)|α|ũ(t)|dt+
∫ T

0

g(t)|ũ(t)|dt

≤
∫ T

0

f(t)(|P ū|α + |Qū|α + |ũ(t)|α)|ũ(t)|dt+
∫ T

0

g(t)|ũ(t)|dt

≤ |P ū|α‖ũ‖∞
∫ T

0

f(t)dt + |Qū|α‖ũ‖∞
∫ T

0

f(t)dt

+‖ũ‖α+1
∞

∫ T

0

f(t)dt + ‖ũ‖∞
∫ T

0

g(t)dt

= M1|P ū|α‖ũ‖∞ +M1|Qū|α‖ũ‖∞ +M1‖ũ‖α+1
∞ +M2‖ũ‖∞

≤ 1
2a3

‖ũ‖2
∞+

a3M
2
1

2
|P ū|2α+M1M

α
3 ‖ũ‖∞+M1‖ũ‖α+1

∞ +M2‖ũ‖∞

≤ T

24a3
‖u̇‖2

L2 +
a3M

2
1

2
|P ū|2α +

√
T

12
(M2 +M1M

α
3 )‖u̇‖L2

+
(
T

12

)(α+1)/2

M1‖u̇‖α+1
L2 .

Hence we have

(3.27)

‖ũn‖ ≥ |〈ϕ′(un), ũn〉|

=

∣∣∣∣∣
∫ T

0

|u̇n(t)|2dt−
∫ T

0

(∇F (t, ûn(t)), ũn(t))dt+
∫ T

0

(e(t), ũn(t))dt

∣∣∣∣∣
≥
(

1 − T

24a3

)
‖u̇n‖2

L2 − a3M
2
1

2
|P ūn|2α

−
√
T

12
(M2+M4+M1M

α
3 )‖u̇n‖L2 −

(
T

12

)(α+1)/2

M1‖u̇n‖α+1
L2

for large n by the fact that ϕ′(un) → 0. It follows from (1.15) and (3.27) that(
T 2

4π2
+ 1
)1/2

‖u̇n‖L2 ≥ ‖ũn‖

≥
(

1 − T

24a3

)
‖u̇n‖2

L2 − a3M
2
1

2
|P ūn|2α

−
√
T

12
(M2 +M4 +M1M

α
3 )‖u̇n‖L2 −

(
T

12

)(α+1)/2

M1‖u̇n‖α+1
L2
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for large n, which implies that

(3.28)
a3M

2
1

2
|P ūn|2α ≥ 1

2
‖u̇n‖2

L2 +D1,

where

D1 = min
s∈[0,+∞)

{
12a3 − T

24a3
s2 −

[√
T

12
(M2 +M4 +M1M

α
3 )

+
(
T 2

4π2
+ 1
)1/2

]
s−

(
T

12

)α+1
2

M1s
α+1

}
.

The fact a3 > T/12 implies that −∞ < D1 < 0. By (3.28), we have

(3.29) ‖u̇n‖2
L2 ≤ a3M

2
1 |P ūn|2α +D2

and

(3.30) ‖u̇n‖L2 ≤ √
a3M1|P ūn|α +D3

for all integers n ≥ 1, where D2, D3 > 0. It follows from (1.4) and (1.16) that for all
u ∈W 1,2

T

(3.31)

∣∣∣∣∣
∫ T

0

[F (t, P ū+Qū+ ũ(t)) − F (t, P ū)]dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫ 1

0

(∇F (t, P ū+ s(Qū+ ũ(t))), Qū+ ũ(t))dsdt

∣∣∣∣∣
≤ |P ū|α

∫ T

0

f(t)|Qū+ ũ(t)|dt+
∫ T

0

f(t)|Qū + ũ(t)|α+1dt

+
∫ T

0

g(t)|Qū+ ũ(t)|dt

≤ M1(|Qū|+‖ũ‖∞)|P ū|α+2αM1

(|Qū|α+1 +‖ũ‖α+1
∞
)
+M2(|Qū| + ‖ũ‖∞)

≤ M1M3|P ū|α +
1

2a3
‖ũ‖2

∞ +
a3M

2
1

2
|P ū|2α

+2αM1M
α+1
3 + 2αM1‖ũ‖α+1

∞ +M2M3 +M2‖ũ‖∞

≤ T

24a3
‖u̇‖2

L2 +
a3M

2
1

2
|P ū|2α +M1M3|P ū|α + 2αM1M

α+1
3 +M2M3

+2αM1

(
T

12

)(α+1)/2

‖u̇‖α+1
L2 +

√
T

12
M2‖u̇‖L2 .

It follows from the boundedness of {ϕ(un)}, (3.31), (3.29) and (3.30) that
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D4 ≤ ϕ(un)

=
1
2

∫ T

0

|u̇n(t)|2dt−
∫ T

0

[F (t, un(t)) − F (t, P ūn)]dt

−
∫ T

0

F (t, P ūn)dt+
∫ T

0

(e(t), un(t))dt

≤
(

1
2

+
T

24a3

)
‖u̇n‖2

L2+2αM1

(
T

12

)(α+1)/2

‖u̇n‖α+1
L2 +

√
T

12
M2‖u̇n‖L2+2αM1M

α+1
3

+M2M3 +
a3M

2
1

2
|P ūn|2α +M1M3|P ūn|α −

∫ T

0

F (t, P ūn)dt+

√
T

12
M4‖u̇n‖L2

≤
(

1
2

+
T

24a3

) (
a3M

2
1 |P ūn|2α+D2

)
+2αM1

(
T

12

)(α+1)/2

(
√
a3M1|P ūn|α+D3)

α+1

+

√
T

12
(M2 +M4) (

√
a3M1|P ūn|α+D3)+2αM1M

α+1
3 +M2M3+

a3M
2
1

2
|P ūn|2α

+M1M3|P ūn|α −
∫ T

0

F (t, P ūn)dt

=
(
a3M

2
1 +

TM2
1

24

)
|P ūn|2α+D5|P ūn|α(α+1)+D6|P ūn|α+D7−

∫ T

0

F (t, P ūn)dt

= −|P ūn|2α

{
|P ūn|−2α

∫ T

0

F (t, P ūn)dt−
(
a3M

2
1 +

TM2
1

24

)}

+D5|P ūn|α(α+1) +D6|P ūn|α +D7,

whereD5, D6 and D7 are positive constants. Then it follows from (3.25) and α(α+1) < 2α
that {|P ūn|} is bounded. Furthermore, {ũn} is bounded by (1.16) and (3.30), which implies
that {un} is bounded in W 1,2

T . Arguing then as in Proposition 4.1 in [5], we conclude that
the (PS) condition is satisfied. The other proofs are similar to those in Theorem 1.1 with
p = 2. The proof is complete.

Proof of Theorem 1.4. By (1.18), there exists an a4 > T/12 such that

(3.32) lim sup
|x|→∞

|x|−2α

∫ T

0

F (t, x)dt < −a4M
2
1

2

as x ∈ 0 ×RN−r . It follows from (1.3) and (3.31) that for all u ∈ W 1,2
T

ϕ(u) = ϕ(û)

=
1
2

∫ T

0

|u̇(t)|2dt−
∫ T

0

F (t, P ū)dt+
∫ T

0

(e(t), ũ(t))dt

−
∫ T

0

∫ 1

0

(∇F (t, P ū+ s(Qū + ũ(t))), Qū+ ũ(t))dsdt
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≥
(

1
2
− T

24a4

)
‖u̇‖2

L2 −
√
T

12
M4‖u̇‖L2 − 2αM1

(
T

12

)(α+1)/2

‖u̇‖α+1
L2

−
√
T

12
M2‖u̇‖L2 −M2M3 − 2αM1M

α+1
3 −M1M3|P ū|α

−|P ū|2α

(
|P ū|−2α

∫ T

0

F (t, P ū)dt+
a4M

2
1

2

)
.

It follows from a4 > T/12 and (3.32) that ϕ is bounded from below. Arguing then as in
Theorem 1.2 with p = 2. The proof is complete.

4. EXAMPLES

In this section, some examples will be given to illustrate our results.

Example 4.1. Consider the following system:

(4.1)

{
(|u′(t)|2u′(t))′ + ∇F (t, u(t)) = e(t), a.e. t ∈ [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

where T > 0, p = 4 and q = 4/3, e ∈ L1(0, T ; RN) satisfies (1.3). Let

F (t, x) = (0.5T − t)


sin2 x1 + · · ·+ sin2 xr +

1
2

N∑
j=r+1

x2
j




7/4

+(8T 3 − t)


sin2 x1 + · · ·+ sin2 xr +

1
2

N∑
j=r+1

x2
j




5/3

,

where x = (x1, x2, · · · , xN)T ∈ RN . Obviously, F satisfies (1.2) with Ti = π, i =
1, 2, · · · , r. Let

y = sin2 x1 + · · ·+ sin2 xr +
1
2

N∑
j=r+1

x2
j

and let z = (sin 2x1, · · · , sin 2xr, xr+1, · · · , xN)T . Then

∇F (t, x) =
7
4
(0.5T − t)y3/4z +

5
3
(8T 3 − t)y2/3z.

By Young’s inequality, we have

|∇F (t, x)| ≤ 7
4
|0.5T − t|y3/4|z| + 5

3
|8T 3 − t|y2/3|z|

≤ 7
4
|0.5T − t||x|3/2

(
r + |x|2)1/2

+
5
3
|8T 3 − t||x|4/3

(
r + |x|2)1/2

≤ 7
4
|0.5T − t||x|5/2 +

5
3
|8T 3 − t||x|7/3
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+
7
4
√
r|0.5T − t||x|3/2 +

5
3
√
r|8T 3 − t||x|4/3

≤ 7
4
|0.5T − t||x|5/2 +

40
3
T 3|x|7/3 +

7
8
√
rT |x|3/2 +

40
3
√
rT 3|x|4/3

≤ 7
4

(|0.5T − t|+ ε) |x|5/2 + A1(ε),

where 0 < ε < 1, A1(ε) > 1 is a function of ε. Thus F satisfies (1.8) with α = 5/2 and

f(t) =
7
4
(|0.5T − t|+ ε), g(t) = A1(ε).

Then ∫ T

0

f(t)dt =
7T 2

16
+

7Tε
4
,

and so
(p + 1)T
p(q + 1)

(∫ T

0

f(t)dt

)q

=
15T
28

(
7T 2

16
+

7Tε
4

)4/3

.

On the other hand, as x ∈ 0 × RN−r, we have |x| =
(∑N

j=r+1 x
2
j

)1/2

, and

F (t, x) = (0.5T − t)


1

2

N∑
j=r+1

x2
j




7/4

+ (8T 3 − t)


1

2

N∑
j=r+1

x2
j




5/3

=
0.5T − t

27/4
|x|7/2 +

8T 3 − t

25/3
|x|10/3.

Then

lim inf
|x|→∞

|x|−qα

∫ T

0

F (t, x)dt = lim inf
|x|→∞

|x|−10/3

∫ T

0

F (t, x)dt =
16T 4 − T 2

28/3
.

Thus, if T > 0.265, we can choose ε > 0 sufficient small such that

lim inf
|x|→∞

|x|−10/3

∫ T

0

F (t, x)dt =
16T 4 − T 2

28/3

>
15T
28

(
7T 2

16
+

7Tε
4

)4/3

=
(p+ 1)T
p(q + 1)

(∫ T

0

f(t)dt

)q

.

Hence, when T > 0.265, F satisfies all conditions of Theorem 1.1. Therefore, system (4.1)
has at least r + 1 geometrically distinct solutions in W 1,4

T .

Example 4.2. Consider the following system:
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(4.2)

{
(|u′(t)|2u′(t))′ + ∇F (t, u(t)) = e(t), a.e. t ∈ [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

where T > 0, p = 4, q = 4/3 and e ∈ L1(0, T ; RN) satisfies (1.3). Let

F (t, x) = (0.5T − t)


sin2 x1 + · · ·+ sin2 xr +

1
2

N∑
j=r+1

x2
j




7/4

−2T 3


sin2 x1 + · · ·+ sin2 xr +

1
2

N∑
j=r+1

x2
j




5/3

.

where x = (x1, x2, · · · , xN)T ∈ RN . Similar to the argument in Example 4.1, it is easy to
show that F satisfies (1.8) with α = 5/2 and

f(t) =
7
4
(|0.5T − t|+ ε), g(t) = A2(ε),

where 0 < ε < 1, A2(ε) > 1 is a function of ε. Then∫ T

0

f(t)dt =
7T 2

16
+

7Tε
4
,

and so

− T

q(q + 1)

(∫ T

0

f(t)dt

)q

= −9T
28

(
7T 2

16
+

7Tε
4

)4/3

.

On the other hand, as x ∈ 0 × RN−r, we have |x| =
(∑N

j=r+1 x
2
j

)1/2

, and

F (t, x) = (0.5T − t)


1

2

N∑
j=r+1

x2
j




7/4

− 2T 3


1

2

N∑
j=r+1

x2
j




5/3

=
0.5T − t

27/4
|x|7/2 − T 3

22/3
|x|10/3.

Then

lim sup
|x|→∞

|x|−qα

∫ T

0

F (t, x)dt = lim sup
|x|→∞

|x|−10/3

∫ T

0

F (t, x)dt = − T 4

22/3
.

Then, if T > 5103/1048576 ≈ 0.00487, we can choose ε > 0 sufficient small such that

lim sup
|x|→∞

|x|−10/3

∫ T

0

F (t, x)dt = − T 4

22/3

< − 9
28
T

(
7T 2

16
+

7Tε
4

)4/3

= − T

q(q + 1)

(∫ T

0

f(t)dt

)q

.
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Hence, if T > 5103/1048576 ≈ 0.00487, F satisfies all conditions of Theorem 1.2.
Therefore, system (4.2) has at least r + 1 geometrically distinct solutions in W1,4

T .

Example 4.3. Consider second-order Hamiltonian system:

(4.3)

{
ü(t) + ∇F (t, u(t)) = e(t), a.e. t ∈ [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

where T > 0, e ∈ L1(0, T ; RN) satisfies (1.3), and F is defined by (1.6). Obviously, F
satisfies (1.2) with Ti = π, i = 1, · · · , r. Let

y = r + 1 + sin2 x1 + · · ·+ sin2 xr +
1
2

N∑
j=r+1

x2
j

and let z = (sin 2x1, · · · , sin 2xr, xr+1, · · · , xN)T . Then

∇F (t, x) =
7
8
(0.5T − t)y−1/8z +

3
64
T 4y−1/4z.

Thus

|∇F (t, x)| ≤ 7
8
|0.5T − t|y−1/8|z| + 3T 4

64
y−1/4|z|

≤ 7
8
|0.5T − t| y−1/8(2y)1/2 +

3
64
T 4 y−1/4(2y)1/2

≤ 7
√

2
8

|0.5T − t| (r + 1 + |x|2)3/8
+

3
√

2
64

T 4
(
r + 1 + |x|2)1/4

≤ 7
√

2
8

|0.5T − t||x|3/4 +
7
√

2
8

|0.5T − t| (r + 1)3/8

+
3
√

2
64

T 4|x|1/2 +
3
√

2
64

T 4 (r + 1)1/4

≤ 7
√

2
8

(|0.5T − t| + ε)|x|3/4 + A3(ε),

where 0 < ε < 1, A3(ε) > 1 is a function of ε. Thus F satisfies (1.4) with α = 3/4 and

f(t) =
7
√

2
8

(|0.5T − t| + ε), g(t) = A3(ε).

Then ∫ T

0

f(t)dt =
7
√

2T 2

32
+

7
√

2 εT
8

.

As x ∈ 0 × RN−r, then |x| =
(∑N

j=r+1 x
2
j

)1/2

and

F (t, x) = (0.5T − t)


r + 1 +

1
2

N∑
j=r+1

x2
j




7/8

+
T 4

16


r + 1 +

1
2

N∑
j=r+1

x2
j




3/4

= (0.5T − t)
(
r + 1 +

1
2
|x|2

)7/8

+
T 4

16

(
r + 1 +

1
2
|x|2

)3/4

.
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Thus if T > 0, we can choose ε > 0 sufficient small such that

lim inf
|x|→∞

|x|−3/2

∫ T

0

F (t, x)dt = 2−19/4T 5

>
T

8

(
7
√

2T 2

32
+

7
√

2 εT
8

)2

=
T

8

(∫ T

0

f(t)dt

)2

.

Hence, F satisfies all conditions of Theorem 1.3. Therefore, system (4.3) has at least r+ 1
geometrically distinct solutions in W 1,2

T .

Example 4.4. Consider second-order Hamiltonian system:

(4.4)

{
ü(t) + ∇F (t, u(t)) = e(t), a.e. t ∈ [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

where T > 0, e ∈ L1(0, T ; RN) satisfies (1.3), and

F (t, x) = (0.5T − t)


r + 1 + sin2 x1 + · · ·+ sin2 xr +

1
2

N∑
j=r+1

x2
j




7/8

−T
4

24


r + 1 + sin2 x1 + · · ·+ sin2 xr +

1
2

N∑
j=r+1

x2
j




3/4

,

where x = (x1, x2, · · · , xN)T ∈ RN . Obviously, F satisfies (1.2) with Ti = π, i =
1, · · · , r. Similar to the argument in Example 4.3, it is easy to show that F satisfies (1.4)
with α = 3/4 and

f(t) =
7
√

2
8

(|0.5T − t| + ε), g(t) = A4(ε),

where 0 < ε < 1, A4(ε) > 1 is a function of ε. Then∫ T

0

f(t)dt =
7
√

2
32

T 2 +
7
√

2
8
εT.

As x ∈ 0 × RN−r, then |x| =
(∑N

j=r+1 x
2
j

)1/2

and

F (t, x) = (0.5T − t)


r + 1 +

1
2

N∑
j=r+1

x2
j




7/8

− T 4

24


r + 1 +

1
2

N∑
j=r+1

x2
j




3/4

= (0.5T − t)
(
r + 1 +

1
2
|x|2

)7/8

− T 4

24

(
r + 1 +

1
2
|x|2

)3/4

.



Periodic Solutions for an Ordinary p-Laplacian System 1395

Thus if T > 0, we can choose ε > 0 sufficient small such that

lim sup
|x|→∞

|x|−3/2

∫ T

0

F (t, x)dt = − 1
23/4 · 24

T 5

< − T

24

(
7
√

2
32

T 2 +
7
√

2
8
εT

)2

= − T

24

(∫ T

0

f(t)dt

)2

.

Hence, F satisfies all conditions of Theorem 1.4. Therefore, system (4.4) has at least r+ 1
geometrically distinct solutions in W 1,2

T .
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