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THE COVERING NUMBER FOR SOME MERCER KERNEL HILBERT
SPACES ON THE UNIT SPHERE

Sheng Baohuai, Wang Jianli and Chen Zhixiang

Abstract. In the present paper, we estimate the covering number for some
reproducing kernel Hilbert spaces on the unit sphere. Both the upper bounds
and the lower bounds are provided.

1. INTRODUCTION

It is known that the covering number which is often used to measure the (proba-
bility) error or the number of the samples required for the given confidence and the
error bounds has been playing an important role in learning theory(see e.g. [1-4]).
Some of the investigations on it can be found from F. Cucker and S. Smale[1], R.
C. Williamson, A. J. Smola and B. Schölkopf(see [5]), Y. Guo, P. L. Bartlett and J.
Shawe-Taylor[6],D. X. Zhou [7]-[8],H.W.Sun and D.X.Zhou[9], etc.

Let (X, d(·, ·)) be a compact metrics space of the n−dimensional Euclidean
space Rn, and ν be a Borel measure onX . Denote the space of real square integrable
functions on X by L2

ν(X),and the space of continuous functions by C(X).
Let K : X ×X → R be continuous, symmetric and positive definite, i.e., for

any finite set {x1, · · · , xm} ⊂ X , the matrix (K(xi, xj))m
i,j=1is positive definite.

We call K a Mercer kernel on X ×X . The reproducing kernel Hilbert space HK

associated with the kernel K is defined to be the closure of the linear span of the
set of functions {K(t, x) : t ∈ X} with the inner product satisfying reproducing
relation

〈K(·, x), f(·)〉HK
= f(x), ∀x ∈ X, f ∈ HK .

Define a Hilbert-Schmidt integral operator by means of this kernel as

LK(f, x) =
∫

X
K(x, t)f(t) dν(t), x ∈ X, f ∈ L2

ν(X).
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Then LK(f, x) is a positive,compact operator and its range lies in C(X).
Let (λj)+∞

j=1 denote the nonincreasing sequence of eigenvalues of LK and {φj}+∞
j=1

be corresponding eigenfunctions. Then,the Mercer kernel theorem(see e.g. [1, 10-
13]) makes

K(x, t) =
+∞∑
j=1

λj φj(x)φj(t), x, t ∈ X,

where the series converges uniformly and absolutely.
HK can be imbedded into C(X), and we denote the inclusion as IK : HK →

C(X). For this facts, see [1] and [13,Chapter 4].
Let R > 0 and BR be the ball of HK with radius R:

BR : = {f ∈ HK : ‖f‖K ≤ R}.
Then IK(BR) ⊂ C(X). Denote its closure in C(X) as IK(BR) which is a compact
subset in C(X).

Let N be the set of natural number. S is a compact set in a metric space and
η > 0, the covering number N (S, η) of S is defined to be the minimal integer m
such that there exist m disks with radius η covering S. In learning theory,one only
need the estimate for the case of S = BR .

Let E be an N−dimensional Banach space.Then,F.Cucker and S.Smale proved
in [1] that

lnN (BR, η) ≤ N ln(
4R
η

).(1)

In [7-8],D.X.Zhou sum up the estimates of N (IK(BR), η) to the estimate of the
l2−norm of the inverse of the Mercer kernel matrix and gave the general lower and
upper bound estimates for N (IK(BR), η). In particular,some estimates concerning
the translation invariant kernels are provided(see also [9] and [14]).

In the present paper,we want to investigate the estimates of N (IK(BR), η) for
Mercer kernels K(x, y) defined on the unit sphere.For these purposes we need to
restate some notions and results with respect to the spherical harmonics.

Let q ≥ 2 be a given integer which will be fixed throughout this paper and
Sq : = {(x1, x2, · · · , xq+1)} be the unit sphere in the Euclidean space R q+1(q ≥ 2)
with dµq being the usual volume element on Sq. The volume of Sq is

ωq =
∫

Sq

dµq =
2π

q+1
2

Γ( q+1
2 )

.

For a given integer l ≥ 0, the restriction to Sq of a homogeneous harmonics
of order-l is called a spherical harmonics of order-l. The class of all spherical
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harmonics of degree l will be denoted by Hq
l , and the class of all spherical harmonics

of degree l ≤ n will be denoted by Πq
n. Of course, Πq

n =
n⊕

l=0

Hq
l .

The dimension of Hq
l is given by (see e.g. [15])

dq
l = dimHq

l =




(2l+q−1)Γ(l+q)
(l+q−1)Γ(l+1)Γ(q) , l ≥ 1,

1, l = 0,

and that of Πq
n is

n∑
l=0

dq
l = dq+1

n ∼ nq. Hence, if we choose an orthonormal basis

{Yl,k : k = 1, 2, · · · , dq
l } for each Hq

l , then the set {Yl,k : l = 0, 1, 2, · · · , n; k =
1, 2, · · · , dq

l } forms an orthonormal basis for Πq
n. One has the well known additional

formula (see e.g. [16, 17])

d
q
l∑

k=1

Yl,k(x) Yl,k(y) =
dq

l

ωq
P q+1

l (x · y), l = 0, 1, · · · ,(2)

where P q+1
l (x) is the degree-l (generalized) Legendre polynomial which are nor-

malized so that P q+1
l (1) = 1, and satisfy the orthogonality relations∫ 1

−1
P q+1

l (x) P q+1
k (x) Wq(x) dx =

ωq

ωq−1 d
q
l

δl,k,

where Wq(x) = (1 − x2)
q
2
−1. By (2) and the fact Πq

n =
n⊕

l=0

H
q
l we know for any

p ∈ Πq
n and x ∈ Sq

p(x) =
n∑

l=0

dq
l

ωq

∫
Sq
p(y) P q+1

l (x · y) dµq(y), x ∈ Sq.(3)

The orthogonal projection Yk(f, x) of a function f ∈ L1(Sq) on Hq
k is defined

by

Yk(f, x) =
dq

k

ωq

∫
Sq

P q+1
k (x · y) f(y) dµq(y), k = 0, 1, 2, · · · .

Correspondingly, we have the following Fourier-Laplace expansion of f(x)(see
e.g. [16])

f(x) ∼
∞∑

k=0

Yk(f, x), x ∈ Sq.
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Let K(x, y) =
+∞∑
l=0

d
q
l λl

ωq
P

q+1
l (x ·y), x, y ∈ Sq, λl > 0. Then, by [18, Theorem

17.8] we know for given pairwise distinct points XN := {ξ1, ξ2, · · · , ξN} ⊂ Sq,the
matrix AN := (K(ξi, ξj))N×N is positive definite. Therefore, K(x, y) are Mercer
kernels on Sq × Sq with λl being their eigenvalues.

Let 0 < γ < 1. Taking K0(x, y) = 1−γ2

(1−2γx·y+γ2)
q+1
2

, then by [19] or [16,Theo-

rem 1.2.6] we know

K0(x, y) =
+∞∑
l=0

dq
l γ

l

ωq
P q+1

l (x · y), x, y ∈ Sq.

K0(x, y) shows the existence of the specific Mercer kernel on Sq.
In the present paper, we want to estimate the upper and lower bounds of

N (IK(BR), η) for the Mercer kernels K(x, y) on Sq × Sq along the line of [7]
and [8].

The paper is organized as follows. The lower bound estimates for N (IK(BR), η)
are investigated in Section 2. We shall choose the knot point set XN according to
that of [20] and give an upper estimate of ‖A−1

N ‖l2(XN ). Some lower estimates
for the covering number are thus obtained; In Section 3, we shall construct a kind
of local spherical harmonics reproducing basis function, and with which give the
upper bound measures for the regularity of the Mercer kernels.The upper bounds for
N (IK(BR), η) are estimated in two cases. One case is that the eigenvalues λl have
the decays λld

q
l ∼ 1

(1+l)α , α > 1, and the another one is that λld
q
l ∼ 1

e(1+l)α , α > 0.
Throughout this paper, we shall denote by N the set of natural numbers. By

RN we denote the N−dimensional Euclidean space, and by Πq
N we denote the set

of all spherical harmonics of order ≤ N . The biggest integer which ≤ a will be
denoted by [a]. δij is the δ function whose value is 1 if i = j and whose value is
0 if i �= j. We say A ∼ B if there are two positive constants C1 > 0, C2 > 0 such
that C1 ≤ A

B ≤ C2.

2. THE LOWER BOUND ESTIMATES

In this section,we shall use the general framework given by [8] for estimating
the lower bounds of the covering numbers. We first give a lower estimate for
N (IK0(BR), η

)
.

Theorem 2.1. Let K0(x, y) be the Mercer kernel given in Section 1. Then,
there are positive constants B0, A0, such that for 0 < η ≤

√
γ

B0
R there holds

lnN (IK0(BR), η
) ≥ {A0

[
1
2
log 1

γ

(
1
B0

( R
2η
)2)− 1

2

]q

− 1
}
ln2.(4)
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If the eigenvalues λl have suitable decays,then,the lower bounds of N (IK(BR), η
)

may be estimated.

Theorem 2.2 Let the spherical Mercer K(x, y) defined on S q × Sq satisfy
λl = 1

(1+l)α , α > 1.Then,there are positive constants A0, B0, such that for 0 <

η ≤ R

B03
α
2

there holds

lnN (IK(BR), η
) ≥ {A0

[
1
2

(
1
B0

( R
2η
)2) 1

α − 1
]q

− 1
}

ln 2.(5)

(4) is similar to the results of example 2 of [8].(5) agrees with the results for
the Sobolev translation-invariant kernels(see [8]).

To show (4) and (5) we give some lemmas.The first one is the general lower
estimate for N (IK(BR), η) given by D. X. Zhou.

Lemma 2.1. (see [8], [13, Theorem 5.21]). Let X ⊂ Rn be a compact set,
K be a Mercer kernel on X × X , l ∈ N , and Xl := {x1, x2, · · · , xl} ∈ X yield
an invertible Gramian matrix AXl

:= (K(xi, xj))l
i,j=1. Then,

N (IK(BR),
η

2
) ≥ 2l − 1,(6)

provided that ‖A−1
Xl

‖l2 ≤ 1
l (

R
η )2.

It is known that the Gauss integral and the Marcinkiewicz-Zygmund inequality
on spherical harmonic are good tools in constructing zonal and translation networks
on the unit sphere (see, e.g., [21-26]) and therefore have been studied by many
mathematicians(see e.g., [27-30]). To make the statement more convenient,we cite
the form given by Dai Feng in [20].

Given ε > 0,we say a finite subset ∧ ⊂ Sq is ε−separable if

min
ω,ω′∈∧,ω �=ω′ d(ω, ω

′) ≥ ε,

while we say it is maximal ε−separable if it is ε−separable and satisfies

max
x∈Sq

min
ω∈∧ d(x, ω)< ε.

Lemma 2.2. (see [20]). Let B(x, r) = {y ∈ Sq : d(x, y) ≤ r} denote
the spherical cap with center x ∈ S q and radius r ∈ (0, π). Then,there exists
a positive constant ε depending only on q such that for any δ ∈ (0, ε) and any
maximal δ

n−separable subset ∧ ⊂ S q there exists a sequence of positive numbers
λω ∼ mes(B(ω, δ

n)) ∼ δq

nq , (ω ∈ ∧) for which the following holds for all f ∈ Π q
n∫

Sq

f(x) dµq(x) =
∑
ω∈∧

λωf(ω),(7)
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where the cardinality of | ∧ | satisfies | ∧ | ∼ n q ∼ dimenΠq+1
n with the constant

of equivalence depending only on q.

By [31,Corollary 3.1] we know there is a constant C := C(δ, q) such that for
every f ∈ C(Sq) there are ∧∗

n(x) ∈ Πq
cn such that

∧∗
n(ω) = f(ω), ω ∈ ∧.

Since δ ∈ (0, ε) are arbitrary,we may find suitable positive number γ and δ′

depending only on q such that (C + 1) ≤ γ and a maximal δ′
γn−separable subset

∧ ⊂ Sq such that∫
Sq
f(x) dµq(x) =

∑
ω∈∧

λωf(ω), f ∈ Πq
γn(8)

We then have the following Lemma 2.3.

Lemma 2.3. There is a constant C > 0 and a ∧∗
n(x) ∈ Πq

cn such that (C +
1) ≤ γ and for any given real numbers {yω}ω∈∧ there holds

∧∗
n(ω) = yω, ω ∈ ∧.(9)

We now give a method to estimate the norm for the inverse of the Mercer kernel
matrices.

Lemma 2.4. Let the spherical Mercer K(x, y) satisfy λ l > 0. ∧ is the knot set
in Lemma 2.2, and An : =

(
K(ω, ω′)

)
ω,ω′∈∧ is the corresponding Mercer kernel

matrix. Then, there is a positive B0 such that

‖A−1
n ‖l2 ≤ B0

| ∧ | min
0≤l≤n

λl
.(10)

Proof. Let v = (vω)ω∈∧ ∈ R|∧|. Then,by (2) and the definition of K(x, y)
one has

v�Anv =
∑

ω,ω′∈∧
vω K(ω, ω′) vω′

=
∑

ω,ω′∈∧
vω

+∞∑
l=0

λld
q
l

ωq
P q+1

l (ω · ω′) vω′

=
+∞∑
l=0

λld
q
l

ωq

∑
ω,ω′∈∧

vωP
q+1
l (ω · ω′) vω′
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=
+∞∑
l=0

λl

∑
ω,ω′∈∧

vω

dq
l∑

i=1

Yl,i(ω)Yl,i(ω′) vω′

=
+∞∑
l=0

λl

dq
l∑

i=1

∣∣∣∑
ω∈∧

vk Yl,i(ω)
∣∣∣2,

where {Yl,k(x), l = 0, 1, 2, · · · , dq
l } is the orthonormal basis given in (2). Then,the

Parseval equality for an orthonormal basis in a Hilbert space and (2) makes

v�Anv ≥ ( min
0≤l≤n

λl)
n∑

l=0

dq
l∑

i=1

∣∣∣∑
ω∈∧

vωYl,i(ω)
∣∣∣2

= ( min
0≤l≤n

λl)
∫

Sq

∣∣∣∑
ω∈∧

vω ×
n∑

l=0

dq
l∑

i=1

Yl,i(ω) Yl,i(x)
∣∣∣2 dµq(x)

= ( min
0≤l≤n

λl)
∫

Sq

∣∣∣∑
ω∈∧

vω ×
n∑

l=0

dq
l

ωq
P q+1

l (ω · x)
∣∣∣2 dµq(x)

= ( min
0≤l≤n

λl)
∫

Sq

∣∣∣∑
ω∈∧

vω

λω
× λω ×

n∑
l=0

dq
l

ωq
P q+1

l (ω · x)
∣∣∣2 dµq(x)

= ( min
0≤l≤n

λl)
∫

Sq

∣∣∣∑
ω∈∧

∧∗
n(ω)λω ×

n∑
l=0

dq
l

ωq
P q+1

l (ω · x)
∣∣∣2 dµq(x)

= ( min
0≤l≤n

λl)
∫

Sq

∣∣∣ n∑
l=0

dq
l

ωq

∑
ω

∧∗
n(ω) × λω × P q+1

l (ω · x)
∣∣∣2 dµq(x)

= ( min
0≤l≤n

λl)
∫

Sq

∣∣∣ n∑
l=0

dq
l

ωq

∫
Sq

∧∗
n(y) P q+1

l (x · y) dµq(y)
∣∣∣2 dµq(x)

= ( min
0≤l≤n

λl)
∫

Sq

∣∣∣ n∑
l=0

Yl(∧∗
n, x)

∣∣∣2 dµq(x)

= ( min
0≤l≤n

λl)
∫

Sq

∣∣∣ ∧∗
n (x)

∣∣∣2 dµq(x)

= ( min
0≤l≤n

λl)
∑
ω∈∧

v2
ω

λω

≥ min
ω∈∧

1
λω

× ( min
0≤l≤n

λl) v�v,

where we have used (8) and (9). On the other hand,since λω ∼ n−q and nq ∼ | ∧ |,
we have a positive B0 such that min

ω∈∧
1

λω
≥ |∧|

B0
. (10) thus holds.(10) gives an upper

bound estimate,itself has independent meaning.

Proof of Theorem 2.1. For the Mercer kernel K0(x, y) we have λl = γ l. Take
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l = | ∧ | in Lemma 2.1,then,it follows that for 0 < η ≤ R (6) holds if n satisfies
B0

γ2n−1 ≤
(

R
η

)2
. Therefore, for 0 < η ≤

√
γ

B0
R we may choose n ∈ N such that

B0
γ2n−1 ≤

(
R
η

)2 ≤ B0
γ2n+1 , then, 2n+ 1 ≥ log 1

γ

(
1

B0

(
R
η

)2) and

N (IK0(BR),
η

2
) ≥ 2|∧| − 1 ≥ 2|∧|−1.

Since | ∧ | ∼ nq , there is a constant A0 > 0 such that | ∧ | ≥ A0n
q . We then have

N (IK0(BR),
η

2
) ≥ 2A0nq−1 ≥ 2

A0

[
1
2
log 1

γ

(
1

B0

(
R
η

)2)
− 1

2

]q

−1

.

(4) thus holds.

Proof of Theorem 2.2. By Lemma 2.4 we know | ∧ |‖A−1
n ‖l2 ≤ B0(2n+ 1)α.

Take l = | ∧ | in Lemma 2.1, then,for 0 < η ≤ R (6) holds if n satisfies B0(2n+

1)α ≤
(

R
η

)2
. Therefore,for 0 < η ≤ R

B03
α
2

we can choose n ∈ N such that

B0(2n+ 1)α ≤
(

R
η

)2 ≤ B0(2n+ 2)α, i.e., 2n+ 2 ≥
(

1
B0

) 1
α
(

R
η

) 2
α . Hence,

N (IK(BR),
η

2
) ≥ 2|∧| − 1 ≥ 2|∧|−1 ≥ 2A0nq−1 ≥ 2

A0

[
1
2

(
1

B0

) 1
α
(

R
η

) 2
α

−1

]q

.

(5) thus holds.

3. THE UPPER BOUND ESTIMATES

In this section we shall show that if the eigenvalues λ l have suitable decays,the
upper bounds of N (IK(BR), η

)
may be estimated.

Theorem 3.1. If the eigenvalues λl of the Mercer kernel K(x, y) defined on
Sq × Sq satisfy λl > 0, λld

q
l ∼ 1

(1+l)α , l → +∞, α ≥ q, then there is a positive

constant B1 such that for 0 < η ≤ min{ R
2 , 2B1

(
6δ′
5γ

)α−3
2

R} there are constants

A > 0, A′ > 0, depending on B1, q and α such that

lnN (IK(BR), η) ≤ A′
(
R

η

)q

ln
[
A

(
R

η

)]
.(11)

(11) has the similar form as the Theorem 2 of [9] which and (5) shows that the
kernels with eigenvalues of power decays share the same covering number as that
of Sobolev space(see [7]).
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Theorem 3.2. If the eigenvalues λl of the Mercer kernel K(x, y) defined on
Sq×Sq satisfy λl > 0, and λld

q
l ∼ 1

e(1+l)α , l→ +∞, α > 0, then, there are positive

numbers B2 > 0, c0 > 0, such that for 0 < η ≤ min{ R
2 , 2B2e

− 5γc0
6δ′ R} there are

positive constants B > 0, B ′ > 0, B′′ > 0, such that

lnN (IK(BR), η
) ≤ B

(R
η

)q ln
[
B′
(
R

η

)]
+ B′′

(
R

η

)q+1

.(12)

(12) has the similar form as the Proposition 3 of [7]. Since the right side of
(11) is smaller than the right side of (12) we know that the Mercer kernel Hilbert
space whose eigenvalues have the decay of powers have a smaller covering number
than that of the exponential decays. This fact may also be seen from (4) and (5).

To show Theorem 3.1 and Theorem 3.2,we needs some lemmas.
Assume that {XN : N ∈ N} is a family of finite subsets of X such that

dN := max
x∈X

min
y∈XN

d(x, y) → 0, N → +∞.

This means that the discrete knot XN become dense in X as N tends to the infinity.
Let the function measuring the regularity of K be defined by

εK(N ) : = sup
x∈X

[
inf
(
K(x, x)− 2

∑
y∈XN

wy K(x, y)

+
∑

y,t∈XN

wy K(y, t) wt : wy ∈ R
)1

2
]
,

the cardinality of the set XN be ΞXN and, AN be the positive definite matrix
AN : = [K(y, t)]y,t∈XN

. Then,D. X. Zhou gave the following estimate.

Lemma 3.1. (see [7]). Let K(x, y) be a Mercer kernel on X × X , IK be
given as in Section 1. Then for 0 < η ≤ R

2 there holds

lnN (IK(BR), η) ≤ (ΞXN) ln
[
8‖K‖

3
2∞ (ΞXN) ‖A−1

N ‖l2(XN )
R

η

]
,(13)

where N are any integers satisfying εK(N ) ≤ η
2R .

Let V be a finite-dimensional vector space with norm ‖ · ‖V and let Z ⊂ V ∗

be a finite set consisting of N functionals. Here,V ∗ denotes the dual space of V
consisting of all linear and continuous functionals defined on V . If a mapping
T : V → T (V ) ⊂ RN defined by T (v) = {z(v)}z∈Z is injective, we call T a
sampling operator and Z a norming set for V .

Lemma 3.2. (see [18, Theorem 3.4]). Suppose V is a finite-dimensional
normed linear space and Z = {z1, z2, · · · , zN} is a norming set for V , T being
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the corresponding sampling operator. For every ψ ∈ V ∗ there exists a vector

u ∈ RN depending only on ψ such that, for every v ∈ V , ψ(v) =
N∑

j=1
uj zj(v),

and

‖u‖(RN)∗ ≤ ‖ψ‖V ∗ ‖T−1‖,(14)

where
‖T−1‖ = sup

v∈V \{0}

‖v‖V

‖T (v)‖RN

.

We now give a refined Marcinkiewicz-Zygmund inequality for the harmonics,
itself has independent meaning.

Lemma 3.3 For the knot set ∧ in Lemma 2.2 we have

1
6
‖p‖∞(Sq) ≤ max

ω∈∧ |p(ω)| ≤ ‖p‖∞(Sq), p ∈ Πq

[ 5γn
6δ′ ]

.(15)

Proof. Let ‖p‖∞(Sq) = |p(x0)|, ω(x0) be the nearest point of ∧ to x0. The
Bernstein inequality for the spherical harmonics (see [32]) makes∣∣∣∣p(x0) − p(ω(x0))

∣∣∣∣ ≤ 5γn
6δ′

× d(x0, ω(x0))‖p‖∞(Sq), p ∈ Πq

[ 5γn
6δ′ ]

.

By the definition of ∧ we know d(x0, ω(x0)) ≤ δ′
γn . Hence,∣∣∣∣p(x0)− p(ω(x0))

∣∣∣∣ ≤ 5γn
6δ′

× δ′

γn
× ‖p‖∞(Sq) ≤

5
6
‖p‖∞(Sq).

(15) then holds.
We now give a way to show the existence of the local reproducing basis functions

for the harmonics.

Lemma 3.4 Let ∧ be the knot points on S q in Lemma 2.2. Then, there exist
for ω ∈ ∧ functions uα(x) : Sq → R such that

(i).
∑
ω∈∧

uω(x)Y (ω) = Y (x) for all Y (x) ∈ Πq

[ 5γn
6δ′ ]

and x ∈ Sq;

(ii).
∑
ω∈∧

|uω(x)| ≤ 6 for all x ∈ S q.

Proof. Let (V, ‖ · ‖) = (Πq
n, ‖ · ‖∞) and (T (V ), ‖ · ‖T (V )) = (RN , ‖ · ‖∞).

Then, the sampling operator is T (p) = {p(ω)}ω∈∧ ∈ R|∧| and in this case (R|∧|, ‖·
‖∞)∗ = (R|∧|, ‖ · ‖l1). For x ∈ Sq the evaluation functional δx, i.e., δx(p) = p(x),
belongs to V ∗ and |δx(p)| = |p(x)| ≤ ‖p‖∞.
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It follows by (15) that ‖T−1‖ ≤ 6. According to Lemma 3.2 there exists func-
tions uω(x), ω ∈ ∧, such that (i) holds and by (14) there holds∑

ω∈∧
|uω(x)| ≤ ‖δx‖‖T−1‖ ≤ 6.

With the help of Lemma 3.4 we now give a kind of estimate for εK(N ).

Lemma 3.5 Let the Mercer kernel K(x, y) defined on S q ×Sq satisfies λl >

0, l = 0, 1, 2, · · · , and
+∞∑
l=0

λl d
q
l < +∞. ∧ is the knot set in Lemma 2.2 and

εK(∧) = sup
x∈Sq

[
inf
(
K(x, x)− 2

∑
ω∈∧

wω K(x, ω)

+
∑

ω,ω′∈∧
wω K(ω, ω′) wω′ : wω, wω′ ∈ R

) 1
2
]
.

Then,

εK(∧) ≤
(
24

+∞∑
l=[ 5γn

5δ′ ]

λl d
q
l

) 1
2
.(16)

In particular, if λ ld
q
l ∼ 1

(1+l)α , l → +∞, α > 1, then there is a positive
constant B1 > 0 such that

εK(∧) ≤ B1n
−α−1

2 .(17)

If λld
q
l ∼ 1

eα(1+l) , l → +∞, α > 0, then there is a positive constant B 2 >

0, c0 > 0, such that

εK(∧) ≤ B2e
−c0n.(18)

Proof. By the definition of ∧ we know dn = max
x∈Sq

min
ω∈∧ d(x, ω) → 0, n →

+∞. Take wω = uω(x), then∣∣∣∣K(x, x)− 2
∑
ω∈∧

wω K(x, ω) +
∑

ω,ω′∈∧
wω K(ω, ω′) wω′

∣∣∣∣
=
∣∣∣∣K(x, x)− 2

∑
ω∈∧

uω(x) K(x, ω) +
∑

ω,ω′∈∧
uω(x) K(ω, ω′) uω′(x)

∣∣∣∣
=
∣∣∣∣

+∞∑
l=[ 5γn

6δ′ ]+1

λld
q
l

∑
ω,ω′∈∧

uω(x)
(
pq+1

l (1)− 2pq+1
l (x · ω′) + pq+1

l (ω · ω′)
)∣∣∣∣

≤ 24
+∞∑

l=[ 5γn
6δ′ ]+1

λld
q
l .
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When λld
q
l ∼ 1

(1+l)α , α > 1, one has a positive constant C1 > 0 such that

+∞∑
l=[ 5γn

6δ′ ]+1

λld
q
l ≤ C1

+∞∑
l=[ 5γn

6δ′ ]+1

1
(1 + l)α

≤ C1

∫ +∞

5γn
6δ′

dl

(1 + l)α
≤ (α− 1)

(
1 +

5γn
6δ′

)1−α

.

(17) then holds.
When λld

q
l ∼ e−α(1+l), α > 0, one has a positive constant C2 > 0 such that

+∞∑
l=[ 5γn

6δ′ ]+1

λld
q
l ≤ C2

+∞∑
l=[ 5γn

6δ′ ]+1

e−α(1+l)

≤ C2

∫ +∞

5γn
6δ′

dl

eα(1+l)
≤ C2

α eα
× e−

5γαn
6δ′ .

Hence, (18) holds.

Proof of Theorem 3.1. For 0 < η ≤ R
2 we have by B1n

−α−1
2 ≤ η

2R that

n ≥
(
2B1

) 1
α−1
(

R
η

) 2
α−1 . Therefore, for 0 < η ≤

(
2B1

)1
2
(

6δ′
5γ

)α−1
2

R we have

n ≥ 5γ
6δ′ , and we can thus choose n ∈ N such that

5γ
6δ′

≤ n ≤ 5γ
6δ′

×
(

2B1

)1
2
(

6δ′

5γ

)α−1
2 R

η
.

By (10) we know | ∧ |‖A−1
n ‖l2 ≤ 1

min
0≤l≤n

λl
∼ nαdq

n. Since dq
n ∼ nq, n → +∞, we

have a constant C3 > 0 such that | ∧ |‖A−1
n ‖l2 ≤ C3n

α+q. Then, (13) makes

lnN (IK(BR), η) ≤ | ∧ | ln
(
8
∥∥∥∥

+∞∑
l=0

λld
q
lP

q+1
l (x · y)

∥∥∥∥
3
2

∞
×C3n

α+q × R

η

)
.

Also, ‖P q+1
l ‖∞ ≤ 1 makes

∥∥∥∥
+∞∑
l=0

λld
q
lP

q+1
l (x · y)

∥∥∥∥
∞

≤ C1

+∞∑
l=0

1
(1 + l)α

=
C1

(α− 1)
.

We then have
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lnN (IK(BR), η)

≤ | ∧ | ln
( 8C

3
2
1

(α− 1)
3
2

× C3n
α+qR

η

)

∼ nq ln
(8
√
C3

1C3n
α+q√

(α− 1)3
R

η

)

≤
(

5γ
6δ′

)q

× (2B1)
q
2

(
6δ′

5γ

) (α−1)q
2
(
R

η

)q

× ln
(8
√
C3

1C3

(
5γ
6δ′

)q+α

×
(

2B1

)α+q
2
(

6δ′
5γ

) (α−1)(α+q)
2

√
(α− 1)3

×
(
R

η

)α+q+1)

(11) thus holds.

Proof of Theorem 3.2. For 0 < η ≤ R
2 we have by B2e

−c0n ≤ η
2R that

n ≥ 1
c0

ln
2B2R

η
.

Thus, for 0 < η ≤ 2B2e
− 5γc0

6δ′ R we have n ≥ 5γ
6δ′ . We can choose n ∈ N such that

5γ
6δ′

≤ n ≤ 5γ
6δ′

× 2B2e
− 5γc0

6δ′
R

η
.

Since |∧|‖A−1
n ‖l2 ≤ 1

min
0≤l≤n

λl
∼ dq

ne
nα ∼ nqenα, n→ +∞, by the fact

+∞∑
l=0

1
eα(1+l) =

1
eα−1 and (13) we have a constant C4 > 0 such that

lnN (IK(BR), η)

≤ | ∧ | ln
(
8
∥∥∥∥

+∞∑
l=0

λld
q
lP

q+1
l (x · y)

∥∥∥∥
3
2

∞
× C4n

qenαR

η

)

≤ | ∧ | ln
([ C2

eα − 1

] 3
2

× C4n
qenαR

η

)

∼ nq ln
([ C2

eα − 1

]3
2 ×C4n

q × exp

{
αn

}
R

η

)

≤
(

10γB2

6δ′
× e−

5γc0
6δ′

R

η

)q

× ln
([ C2

eα − 1

] 3
2

× C4 ×
(

10γB2

6δ′
× e−

5γc0
6δ′

R

η

)q

× exp{α× 10γB2

6δ′
× e−

5γc0
6δ′ × R

η
}R
η

)
.

(12) thus holds.
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Corollary 3.1 Let C5 = 24(q + 1)(q + 2)( γ
1−γ )q+2. Then for 0 < η ≤

{R
2 ,

√
96C5R} there are two constants D > 0, D ′ > 0, such that

lnN (IK0(BR), η
) ≤ D′(R

η

)q ln
[
D

(
R

η

)]
.(19)

Proof. In this case, λl = γ l = 1(
1+( 1

γ
−1)
)l , 0 < γ < 1, l = 0, 1, 2, · · · .

When n > q + 1, l ≥ n+ 1 > q + 2. Therefore,

(
1 + (

1
γ
− 1)

)l+q
>
( l+ q

q + 2

)
(
1
γ
− 1)q+2 = (

1
γ
− 1)q+2 l(l− 1)(l+ q − 1) dq

l

(2l+ q)(q + 2)(q + 1)
,

and, λl <
γq+2 (2l+q)(q+2)(q+1)

(1−γ)q+2l(l−1)(l+q−1)dq
l
. It follows

λld
q
l <

γq+2 (2l+ q)(q + 2)(q + 1)
(1− γ)q+2l(l− 1)(l+ q − 1)

≤
24 (q + 1)(q + 2)

(
γ

1−γ

)q+2

(1 + l)2
=

C5

(1 + l)2
,

whereC5 = 24(q+1)(q+2)
(

γ
1−γ

)q+2
. By (11) we have for 0 < η ≤ {R

2 ,
√

96C5R}
there are two constants D > 0, D′ > 0, such that (19) holds.
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32. K. Jetter, J. Stöckler and J. D. Ward, Error estimates for scattered data interpolation
on spheres, Mathematics of Computation, 68(226) (1999), 733-747.

Sheng Baohuai, Wang Jianli and Chen Zhixiang
Department of Mathematics,
Shaoxing University,
Shaoxing, Zhejiang 312000,
P. R. China
E-mail: shengbaohuai@163.com

bhsheng@usx.edu.cn


