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WELL-POSEDNESS OF HEMIVARIATIONAL INEQUALITIES AND
INCLUSION PROBLEMS

Yi-bin Xiao, Nan-jing Huang and Mu-Ming Wong*

Abstract. In the present paper, we generalize the concept of well-posedness
to a hemivariational inequality, give some metric characterizations of the well-
posed hemivariational inequality, and derive some conditions under which
the hemivariational inequality is strongly well-posed in the generalized sense.
Also, we show that the well-posedness of the hemivariational inequality is
equivalent to the well-posedness of the corresponding inclusion problem.

1. INTRODUCTION

Well-posedness for a minimization problem is a classical notion which first was
introduced by Tykhonov [41] in 1966 and plays a crucial role in the theory of
optimization problems. A minimization problem is said to be well-posed if there
exists a unique minimizer and every minimizing sequence converges to the unique
minimizer. Clearly, the concept of the well-posedness is inspired by numerical
methods producing optimizing sequences for optimization problems. Because of its
importance in optimization problems, various concept of the well-posedness have
been introduced and studied for optimization problems. For details, we refer to
[11, 12, 16, 19, 29, 31] and the reference therein.

It is well known that a differentiable minimization problem is closely related
to a variational inequality of differential type (see [21, 46]). This fact motivates
researchers to study well-posedness of variational inequalities. By means of Eke-
land’s variational principle, Lucchetti and Patrone [29] introduced a notion of well-
posedness for a variational inequality and proved some related results. In [11],
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Crespi, Guerraggio and Rocca gave notions of well posedness for a vector optimiza-
tion problem and a vector variational inequality of the differential type, explored
their basic properties and investigated their links. For other more results on the
well-posedness of variational inequalities, we can refer to [5-7, 13-15, 17, 24, 29,
30, 40] and the references therein. In recent years, the concept of well-posedness has
been generalized to other related problems. Such as the saddle point problems [4],
equilibrium problems [1, 20, 26, 28, 30, 34], inclusion problems [14, 24] and fixed
point problems [14, 24, 39]. It is interesting and important to establish their met-
ric characterization, to find conditions under which these problems are well-posed,
and to discuss their links. In [34], Margiocco, Patrone and Pusillo considered the
Tikhonov well-posedness for concave games and Cournot oligopoly games. Lemaire
[24] discussed the relations among the well-posedness of minimization problems,
inclusion problems and fixed point problems. Recently, Lemaire et al. [27] fur-
ther extended the results in [24] by considering perturbations. Very recently, Fang,
Huang and Yao [14] generalized the concept of well-posedness to a generalized
mixed variational inequality which includes as a special case the classical varia-
tional inequality, discussed its links with well-posedness of corresponding inclusion
problem and the well-posedness of corresponding fixed point problem, and derived
some conditions under which a mixed variation inequality is well-posed.

As an important and useful generalization of variational inequality, hemivari-
ational inequality was first introduced in order to formulate variational principles
connected to energy functions which are neither convex nor smooth, and investigated
by Panagiotopoulos [37] using the mathematical notion of the generalized gradient
of Clarke for nonconvex and nondifferentiable functions [10]. The hemivariational
inequalities have been proved very efficient to describe a variety of mechanical prob-
lems such as unilateral contact problems in nonlinear elasticity, problems describing
the adhesive and frictional effects, and nonconvex semipermeability problems (see,
for example, [33, 35-37]). Recently, the hemivariational inequality theory with ap-
plications have been intensively studied by many authors (see, for example, [3, 8,
9, 25, 32, 33, 35-37, 39, 42-45]).

However, compared with variational inequalities, the study of well-posedness
for hemivariational inequalities is very limited. In 1995, Goeleven and Mentagui
[18] considered the following hemivariational inequality in Banach space V : Find
u ∈ K ⊂ V such that

(GM) : 〈Au + Tu, v − u〉+
∫

Ω
j◦(x, u(x); v(x)− u(x))dΩ ≥ 〈f, v − u〉, ∀v∈K.

They introduced the well-posedness for the hemivariational inequality (GM) as fol-
lows:

Definition 1.1. ([18]). The hemivariational inequality (GM) is well-posed if
(i) for any ε > 0, G(ε) �= ∅,
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(ii) diam(G(ε)) → 0 as ε → 0,

where
G(ε) = {u ∈ K : 〈Au + Tu − f, v − u〉

+
∫

Ω
j◦(x, u(x); v(x)− u(x))dΩ ≥ −ε‖v − u‖, ∀v ∈ K}.

By using the notion of well-posedness, they gave some sufficient conditions of
well-posedness for the hemivariational inequality (GM). They also showed some
relations between the well-posedness and the solution for the hemivariational in-
equality (GM).

Inspired by the works mentioned above, in this paper, we generalize the concept
of well-posedness for variational inequalities to a class of hemivariational inequal-
ity which include as special cases the mixed variational inequality and the classical
variational equation. By using the methods presented in the paper due to Fang,
Huang and Yao [14], we give some metric characterizations of the well-posed hemi-
variational inequality and derive some conditions under which the hemivariational
inequality is strongly well-posed in the generalized sense. We also show that the
well-posedness of the hemivariational inequality is equivalent to the well-posedness
of the corresponding inclusion problem.

2. PRELIMINARIES

Let V be a real reflexive Banach space with its dual V ∗. We denote the duality
between V and V ∗ by 〈·, ·〉, and the norms of Banach space V and V ∗ by ‖ ·‖V and
‖·‖V ∗ , respectively. We suppose in what follows that A : V → V ∗ is a mapping and
f ∈ V ∗ is some given element. Consider the following hemivariational inequality
associated with (A, f, J):

(2.1)
HVI(A, f, J) : findu ∈ V such that

〈Au− f, v − u〉 + J◦(u, v − u) ≥ 0, ∀v ∈ V,

where J◦(u, v) denotes the generalized directional derivative in the sense of Clarke
for a locally Lipschitz functional J :V →R at u in the direction v (see [10]) given
by

J◦(u, v) = lim sup
w→u λ↓0

J(w + λv)− J(w)
λ

.

It is worth mentioning that HVI(A, f, J) is different from the hemivariational
inequality considered by Goeleven and Mentagui [18].

Let ∂J(u) : V → 2V ∗\{∅} denotes Clarke’s generalized gradient of locally
Lipschitz functional J (see [10]), which defined by
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∂J(u) = {ω ∈ V ∗ : J◦(u, v) ≥ 〈ω, v〉, ∀v ∈ V }.
An equivalent multivalued formulation of HVI(A, f, J) is given by the following
lemma.

Lemma 2.1. ([3]). u ∈ V is a solution of Hemivariational inequality HVI(A, f, J)
if and only if u is a solution of the following inclusion problem

Find u ∈ V such that Au − f + ∂J(u) � 0.(2.2)

For Clarke’s generalized directional derivative and Clarke’s generalized gradient,
we have the following basic properties (see [10]).

Lemma 2.2. Let u, v ∈ V and J be a locally Lipschitz functional defined on
V . Then

(1) The function v → J ◦(u, v) is finite, positively homogeneous, subadditive and
then convex on V .

(2) J◦(u, v) is upper semicontinuous as a function of (u, v), as a function of v
alone, is Lipschitz continuous on V .

(3) J◦(u,−v) = (−J)◦(u, v).
(4) ∂J(u) is a nonempty, convex, bounded, weak∗-compact subset of V ∗.
(5) For every v ∈ V , one has

J◦(u, v) = max{〈ξ, v〉 : ξ ∈ ∂J(u)}.

Definition 2.1. ([47]). Let V be a real Banach space with its dual V ∗ and T
be an operator from V to its dual space V ∗. T is said to be monotone if and only if

〈Tu− Tv, u− v〉 ≥ 0, ∀u, v ∈ V.

Definition 2.2. ([47]). A mapping T : V → V ∗ is said to be hemicontinuous
if for any u, v ∈ V , the function t �→ 〈T (u + t(v − u)), v − u〉 from [0, 1] into
(−∞, +∞) is continuous at 0+.

Remark 2.1. Clearly, the continuity implies the hemicontinuity, but the converse
is not true in general.

Definition 2.3. ([23]). Let S be a nonempty subset of V . The measure of
noncompactness µ of the set S is defined by

µ(S) = inf{ε > 0 : S ⊂ ∪n
i=1Si, diam(Si) < ε, i = 1, 2, · · · , n},

where diam(Si) means the diameter of set Si.
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Definition 2.4. ([23]). Let A, B be nonempty subset of V . The Hausdorff
metric H(·, ·) between A and B is defined by

H(A, B) = max{e(A, B), e(B, A)},
where e(A, B) = supa∈A d(a, B) with d(a, B) = infb∈B ‖a − b‖V .

Let {An} be a sequence of nonempty subset of V . We say that An converges
to A in the sense of Hausdorff metric if H(An, A) → 0. It is easy to see that
e(An, A) → 0 if and only if d(an, A) → 0 for all selection an ∈ An. For more
details on this topic, we refer the reader to [23, 22]. In order to obtain our results,
the following lemma is crucial to us.

Lemma 2.3. ([17]). Let C ⊂ V be nonempty, closed and convex, C ∗ ⊂ V ∗ be
nonempty, closed, convex and bounded, ϕ : V → R be proper, convex and lower
semi-continuous and y ∈ C be arbitrary. Assume that, for each x∈C, there exists
x∗(x) ∈ C∗ such that

〈x∗(x), x− y〉 ≥ ϕ(y)− ϕ(x).

Then, there exists y∗ ∈ C∗ such that

〈y∗, x − y〉 ≥ ϕ(y)− ϕ(x), ∀x ∈ C.

3. MAIN RESULTS

3.1. Well-posedness of HVI with metric characterizations

In this subsection we introduce some concepts of well-posedness for the hemi-
variational inequality HVI(A, f, J), establish its metric characterizations and give
some conditions under which the hemivariational inequality is strongly well-posed
in the generalized sense.

Definition 3.1. A sequence {un} ⊂ V is said to be an approximating sequence
for HVI(A, f, J) if there exists a nonnegative sequence {εn} with εn → 0 as n → ∞
such that

〈Aun − f, v − un〉 + J◦(un, v − un) ≥ −εn‖v − un‖V , ∀v ∈ V.(3.1)

Definition 3.2. HVI(A, f, J) is said to be strongly (resp. weakly) well-posed
if HVI(A, f, J) has a unique solution in V and every approximating sequence con-
verges strongly (resp. weakly) to the unique solution.

Remark 3.1. Strong well-posedness implies weak well-posedness, but the con-
verse is not true in general.
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Definition 3.3. HVI(A, f, J) is said to be strongly (resp. weakly) well-posed
in the generalized sense if HVI(A, f, J) has a nonempty solution set S in V and
every approximating sequence has a subsequence which converges strongly (resp.
weakly) to some point of solution set S.

Remark 3.2. Strong well-posedness in generalized sense implies weak well-
posedness in generalized sense, but the converse is not true in general.

Remark 3.3. The concepts of strong and weak well-posedness for the hemi-
variational inequalities introduced in this paper are quite different from Definition
1.1 introduced by Goeleven and Mentagui [18].

For any ε > 0, we define the following two sets:

Ω(ε) = {u ∈ V : 〈Au − f, v − u〉 + J◦(u, v − u) ≥ −ε‖v − u‖V , ∀v ∈ V }

and

Ψ(ε) = {u ∈ V : 〈Av − f, v − u〉 + J◦(u, v − u) ≥ −ε‖v − u‖V , ∀v ∈ V }.

Lemma 3.1. Suppose that A : V → V ∗ is a monotone and hemicontinuous
mapping. Then, Ω(ε) = Ψ(ε) for all ε > 0.

Proof. By the monotonicity of mapping A, it is easy to get the inclusion
Ω(ε) ⊂ Ψ(ε). Now we prove that Ψ(ε) ⊂ Ω(ε). In fact, for any u∈Ψ(ε), we have

〈Av − f, v − u〉 + J◦(u, v − u) ≥ −ε‖v − u‖V , ∀v ∈ V.(3.2)

For any w ∈ V and t ∈ [0, 1], letting v = tw + (1 − t)u = u + t(w − u) in (3.2),
we obtain, by the positive homogeneousness of J◦(u, v) with respect to v, that

〈A(tw + (1 − t)u) − f, w − u〉+ J◦(u, w − u) ≥ −ε‖w − u‖V .(3.3)

Taking the limit t → 0+ in (3.3), we get from the hemicontinuity of mapping A

that

〈Au− f, w − u〉 + J◦(u, w − u) ≥ −ε‖w − u‖V .

Since w ∈ V is arbitrary, it follows that u ∈ Ω(ε), which completes the proof of
Lemma 3.1.

Lemma 3.2. Suppose that A : V → V ∗ is a monotone and hemicontinuous
mapping. Then, Ψ(ε) is closed in V for all ε > 0.
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Proof. Let {un} ⊂ Ψ(ε) be a sequence such that un → u in V . Then

〈Av − f, v − un〉 + J◦(un, v − un) ≥ −ε‖v − un‖V , ∀v∈V.(3.4)

It follows from the upper semicontinuity of Clarke’s generalized directional deriva-
tive J◦(u, v) with respect to (u, v) that

lim sup
n→∞

J◦(un, v − un) ≤ J◦(u, v − u).

Taking lim sup at both sides of (3.4), we have

〈Av − f, v − u〉 + J◦(u, v − u) ≥ −ε‖v − u‖V , ∀v ∈ V,

which implies that u ∈ Ψ(ε). Thus, Ψ(ε) is closed in V . This completes the proof
of Lemma 3.2.

Theorem 3.1. Suppose that A : V → V ∗ is a monotone and hemicontinuous
mapping. Then, HVI(A, f, J) is strongly well-posed if and only if

Ω(ε) �= ∅ ∀ε > 0 and diam(Ω(ε)) → 0 as ε → 0.(3.5)

Proof. “Necessity”: Suppose that HVI(A, f, J) is strongly well-posed. Then
HVI(A, f, J) has a unique solution which belongs to Ω(ε) and so Ω(ε) �= ∅ for all
ε > 0. If diam(Ω(ε)) does not converge to 0 as ε → 0, then there exist a constant
l > 0, a nonnegative sequence {εn} with εn → 0 and un, vn ∈ Ω(εn) such that

‖un − vn‖V > l n = 1, 2, · · · .(3.6)

Since un, vn ∈ Ω(εn), both {un} and {vn} are approximating sequence for HVI(A,

f, J). It follows from strong well-posedness of HVI(A, f, J) that both {un} and
{vn} converge strongly to the unique solution of HVI(A, f, J), which is a contra-
diction to (3.6).

“Sufficiency”: Let {un} ⊂ V be an approximating sequence for HVI(A, f, J).
Then, there exists a nonnegative sequence εn with εn → 0 such that

(3.7) 〈Aun−f, v−un〉+J◦(un, v−un) ≥ −εn‖v−un‖V , ∀v ∈ V, n = 1, 2, · · · ,

which implies that un ∈ Ω(εn). It follows from (3.5) that {un} is a Cauchy sequence
and so un converges strongly to some point u ∈ V . Since the mapping A is mono-
tone and Clarke generalized directional derivative J◦(u, v) is upper semicontinuous
with respect to (u, v), by (3.7),

(3.8)

〈Av−f, v−u〉+J◦(u, v − u)≥ lim sup{〈Av−f, v−un〉+J◦(un, v−un)}
≥ lim sup{〈Aun, v−un〉+J◦(un, v−un)}
≥ lim sup−εn‖v−un‖V

=0, ∀v∈V.
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For any w ∈ V and t ∈ [0, 1], letting v = tw + (1 − t)u = u + t(w − u) in (3.8),
we obtain, by the positive homogeneousness of J◦(u, v) with respect to v, that

〈A(tw + (1 − t)u) − f, w − u〉 + J◦(u, w − u) ≥ 0.(3.9)

Taking the limit t → 0+ in (3.9) and using the hemicontinuity of mapping A, we
obtain

〈Au − f, w − u〉 + J◦(u, w − u) ≥ 0.

Since w ∈ V is arbitrary, it follows that u solves HVI(A, f, J).
To complete proof of Theorem 3.1, we need only to prove HVI(A, f, J) has

a unique solution. Assume by contradiction that HVI(A, f, J) has two distinct
solution u1 and u2. Then it’s easy to see that u1, u2 ∈ Ω(ε) for all ε > 0 and

0 < ‖u1 − u2‖V ≤ diam(Ω(ε)) → 0,

which is a contradiction. Therefore, HVI(A, f, J) has a unique solution. This
completes the proof of Theorem 3.1.

Theorem 3.2. Suppose that A : V → V ∗ is a monotone and hemicontinuous
mapping. Then, HVI(A, f, J) is strongly well-posed in the generalized sense if and
only if

Ω(ε) �= ∅ ∀ε > 0 and µ(Ω(ε)) → 0 as ε → 0.(3.10)

Proof. “Necessity”: Suppose that HVI(A, f, J) is strongly well-posed in the
generalized sense. Then the solution set S of HVI(A, f, J) is nonempty and S ⊂
Ω(ε) for any ε > 0. Furthermore, the solution set S of HVI(A, f, J) also is compact.
In fact, for any sequence {un} ⊂ S, it follows from S ⊂ Ω(ε) for any ε > 0 that
{un} ⊂ S is an approximating sequence for HVI(A, f, J). Since HVI(A, f, J)
is strongly well-posed in the generalized sense, {un} has a subsequence which
converges to some point of solution set S. Thus, the solution set S of HVI(A, f, J)
is compact. Now we show that µ(Ω(ε)) → 0 as ε → 0. From S ⊂ Ω(ε) for any
ε > 0, we get

H(Ω(ε), S) = max{e(Ω(ε), S), e(S,Ω(ε))}= e(Ω(ε), S).(3.11)

Taking into account the compactness of solution set S, we obtain by (3.11) that

µ(Ω(ε)) ≤ 2H(Ω(ε), S) = 2e(Ω(ε), S).

So, to prove µ(Ω(ε)) → 0 as ε → 0, it sufficient to show e(Ω(ε), S) → 0 as ε → 0.
Assume by contradiction that e(Ω(ε), S) � 0 as ε → 0. Then there exist a constant
l > 0, a sequence {εn} ⊂ R+ with εn → 0 and un ∈ Ω(εn) such that

un /∈ S + B(0, l),(3.12)
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where B(0, l) is the closed ball centered at 0 with radius l. Since un ∈ Ω(εn), {un}
is an approximating sequence for HVI(A, f, J). So, there exists a subsequence
unk

which converges to some point u ∈ S due to the strong well-posedness in
the generalized sense of HVI(A, f, J), This is a contradiction to (3.12). Then
µ(Ω(ε)) → 0 as ε → 0.

“Sufficiency”: Assume condition (3.10) holds. By Lemma 3.1 and Lemma 3.2,
we get Ω(ε) is nonempty and closed for all ε > 0. Observe that

S = ∩ε>0Ω(ε).(3.13)

Since µ(Ω(ε)) → 0 as ε → 0, by applying the Theorem on page 412 of [23], one
easily concludes that S is nonempty and compact with

e(Ω(ε), S) = H(Ω(ε), S) → 0 as ε → 0.(3.14)

Letting {un} ⊂ V be an approximating sequence for HVI(A, f, J), there exists a
nonnegative sequence {εn} with εn → 0 such that

〈Aun − f, v − un〉 + J◦(un, v − un) ≥ −εn‖v − un‖V , ∀v ∈ V, n = 1, 2, · · ·

and so un ∈ Ω(εn) by the definition of Ω(εn). It follows from (3.14) that

d(un, S) ≤ e(Ω(εn), S) → 0.

Since the solution set S is compact, there exists un ∈ S such that

‖un − un‖V = d(un, S) → 0.(3.15)

Again from the compactness of solution set S, un has a subsequence unk
converging

strongly to some u ∈ S. It follows from (3.15) that

‖unk
− u‖V ≤ ‖unk

− unk
‖V + ‖unk

− u‖V → 0,

which implies that unk
converges strongly to u. Therefore, HVI(A, f, J) is strongly

well-posed in generalized sense. This completes the proof of Theorem 3.2.
The following theorem give some conditions under which the hemivariational

inequality is strongly well-posed in the generalized sense in Euclidean space R
n.

Theorem 3.3. Let A : R
n → R

n be a hemicontinuous and monotone map-
ping. If there exists some ε > 0 such that Ω(ε) is nonempty and bounded. Then
hemivariational inequality HVI(A, f, J) is strongly well-posed in the generalized
sense.
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Proof. Suppose that {un} is an approximating sequence for HVI(A, f, J).
Then there exists a nonnegative sequence {εn} with εn → 0 as n → ∞ such that

〈Aun − f, v − un〉+ J◦(un, v − un) ≥ −εn‖v − un‖, ∀v ∈ R
n.(3.16)

Let ε > 0 be such that Ω(ε) is nonempty and bounded. Then there exists n0 such
that un ∈ Ω(ε) for all n > n0 and this implies that {un} is bounded in R

n by the
boundedness of Ω(ε). Thus, there exists a subsequence {unk

} such that unk
→ u

as k → ∞. Since mapping A is monotone and Clarke generalized directional
derivative J◦(u, v) is upper semicontionuous with respect to (u, v), it follows from
(3.16) that

(3.17)

〈Av, v − u〉 + J◦(u, v − u)
≥ lim sup{〈Av, v − unk

〉 + J◦(unk
, v − unk

)}
≥ lim sup{〈Aunk

, v − unk
〉 + J◦(unk

, v − unk
)}

≥ lim sup−εnk
‖v − unk

‖
= 0, ∀v ∈ R

n.

For any w ∈ R
n and t ∈ [0, 1], letting v = tw + (1− t)u = u + t(w−u) in (3.17),

the positive homogeneousness of J◦(u, v) with respect to v implies that

〈A(tw + (1 − t)u) − f, w − u〉 + J◦(u, w − u) ≥ 0.(3.18)

Taking the limit t → 0+ in (3.18), we obtain, by the hemicontinuity of mapping A,
that

〈Au − f, w − u〉 + J◦(u, w − u) ≥ 0.

Since w ∈ R
n is arbitrary, it follows that u solves HVI(A, f, J). Therefore,

HVI(A, f, J) is strongly well-posed in the generalized sense. This completes the
proof of Theorem 3.3.

3.2. Relations of Well-posedness Between HVI and IP

In this subsection, we introduce the concept of well-posedness for the inclusion
problem and investigate the relations between the well-posedness of hemivariational
inequality and the well-posedness of inclusion problem. In what follows we always
let T be a set-valued mapping from the real reflexive Banach space V to its dual
space V ∗. The inclusion problem associated with mapping T is defined by

IP(T): find x ∈ V such that 0 ∈ T (x).(3.19)
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Definition 3.4. ([24, 27]). A sequence {un} ⊂ V is called an approximating
sequence for inclusion problem IP(T) if d(0, T (un)) → 0, or equivalently, there
exists a sequence wn ∈ T (un) such that ‖wn‖V ∗ → 0 as n → ∞.

Definition 3.5. ([24, 27]). We say that IP(T) is strongly (resp. weakly) well-
posed if it has a unique solution and every approximating sequence converges
strongly (resp. weakly) to the unique solution of IP(T).

Definition 3.6. ([24, 27]). We say that IP(T) is strongly (resp. weakly) well-
posed in the generalized sense if the solution set S of IP(T) is nonempty and every
approximating sequence has a subsequence which converges strongly (resp. weakly)
to some point of solution set S for IP(T).

The following two theorems establish the relations between the strong (resp.
weak) well-posedness of hemivariational inequality and the strong (resp. weak)
well-posedness of inclusion problem.

Theorem 3.4. Hemivariational inequality HVI(A, f, J) is strongly (resp. weakly)
well-posed if and only if inclusion problem IP(A−f+∂J) is strongly (resp. weakly)
well-posed.

Proof. “Necessity”: Supposed that HVI(A, f, J) is strongly (resp. weakly)
well-posed. Then HVI(A, f, J) has a unique solution u∗. By Lemma 2.1, u∗

also is the unique solution of inclusion problem IP(A − f + ∂J). Let {un} be
an approximating sequence for IP(A − f + ∂J) . Then there exists a sequence
ωn ∈ Aun − f + ∂J(un) such that ‖ωn‖V ∗ → 0 as n → ∞. It follows that

J◦(un, v − un) ≥ 〈−Aun + f + ωn, v − un〉, ∀v ∈ V, n = 1, 2, · · ·

and so

(3.20)
〈Aun − f, v − un〉 + J◦(un, v − un)

≥ 〈ωn, v − un〉 ≥ −‖ωn‖V ∗‖v − un‖V , ∀v ∈ V.

By letting εn = ‖ωn‖V ∗ , we obtain {un} is an approximating sequence for HVI(A,
f, J) from ‖ωn‖V ∗ → 0 as n → ∞. Therefore, it follows from the strong (resp.
weak) well-posedness of HVI(A, f, J) that un converges strongly (resp. weakly) to
the unique solution u∗. So, the inclusion problem IP(A−f +∂J) is strongly (resp.
weakly) well-posed.

“Sufficiency”: Conversely, suppose that inclusion problem IP(A − f + ∂J) is
strongly (resp. weakly) well-posed. Then IP(A−f +∂J) has a unique solution u∗,
which implies u∗ is the unique solution for HVI(A, f, J) by Lemma 2.1. Let {un}
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be an approximating sequence for HVI(A, f, J). Then there exists a sequence {εn}
with εn → 0 as n → 0 such that

〈Aun − f, v − un〉 + J◦(un, v − un) ≥ −εn‖v − un‖V , ∀v ∈ V.

From the fact that

J◦(un, v − un) = max{〈ω, v − un〉 : ω ∈ ∂J(un)},
we get that there exists a ω(un, v) ∈ ∂J(un) such that

(3.21) 〈Aun − f, v − un〉+ 〈ω(un, v), v− un〉 ≥ −εn‖v − un‖V , ∀v ∈ V.

By virtue of Lemma 2.2, ∂J(un) is a nonempty convex and bounded subset in V ∗

which implies that {Aun − f + ω : ω ∈ ∂J(un)} is nonempty, convex and bound
in V ∗. So, it follows from Lemma 2.3 with ϕ(u) = εn‖u − un‖ and (3.21) that
there exists ω(un) ∈ ∂J(un) such that

(3.22) 〈Aun − f, v − un〉 + 〈ω(un), v − un〉 ≥ −εn‖v − un‖V , ∀v ∈ V.

For the sake of simplicity in writing we denote ωn = ω(un), it follows from (3.22)
that

〈Aun − f + ωn, v〉 ≤ εn‖v‖V , ∀v ∈ V,

which implies that

‖Aun − f + ωn‖V ∗ ≤ εn → 0.(3.23)

It follows from Aun − f + ωn ∈ Aun − f + ∂J(un) and (3.23) that {un} is an
approximating sequence for IP(A − f + ∂J) . Since inclusion problem IP(A −
f + ∂J) is strongly (resp. weakly) well-posed, we obtain {un} converges strongly
(resp. weakly) to the unique solution u∗. Therefore, HVI(A, f, J) is strongly (resp.
weakly) well-posed. This completes the proof of Theorem 3.4.

Theorem 3.5. Hemivariational inequality HVI(A, f, J) is strongly (resp. weakly)
well-posed in the generalized sense if and only if inclusion problem IP(A−f +∂J)
is strongly (resp. weakly) well-posed in the generalized sense.

Proof. The proof is similar to the proof of Theorem 3.4 and so we omit it here.
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39. A. Petruşel, I. A. Rus and J. C. Yao, Well-posedness in the generalized sense of
the fixed point problems for multivalued operators, Taiwanese J. Math., 11 (2007),
903-914.

40. N. N. Tam, J. C. Yao and N. D. Yen, On some solution methods for pseudomonotone
variational inequalities, J. Optim. Theory Appl., 138 (2008), 253-273.

41. A. N. Tykhonov, On the stability of the functional optimization problem, USSR J.
Comput. Math. Math. Phys., 6 (1966), 631-634.

42. Y. B. Xiao and N. J. Huang, Sub-supersolution method and extremal solutions for
higher order quasi-linear elliptic hemi-variational inequalities, Nonlinear Anal. TMA,
66 (2007), 1739-1752.

43. Y. B. Xiao and N. J. Huang, Generalized quasi-variational-like hemivariational in-
equalities, Nonlinear Anal. TMA, 69 (2008), 637-646.

44. Y. B. Xiao and N. J. Huang, Sub-super-solution methods for a class of higher order
evolution hemivariational inequalities, Nonlinear Anal. TMA, 71 (2009), 558-570.

45. Y. B. Xiao and N. J. Huang, Browder-Tikhonov regularization for a class of evolution
second order hemivariational inequalities, J. Global Optim. 45 (2009), 371-388.

46. X. M. Yang, X. Q. Yang and K. L. Teo, Some remarks on the Minty vector variational
inequality, J. Optim. Theory Appl., 121 (2004), 193-201.

47. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Vol. II, Springer-
verlag, Berlin, 1990.

Yi-bin Xiao
School of Applied Mathematics
University of Electronic Science and Technology of China
Chengdu, Sichuan 610054
P. R. China
E-mail: xiaoyb9999@hotmail.com



1276 Yi-bin Xiao, Nan-jing Huang and Mu-Ming Wong

Nan-jing Huang
Department of Mathematics
Sichuan University Chengdu, Sichuan 610064
P. R. China
E-mail: nanjinghuang@hotmail.com

Mu-Ming Wong
Department of Applied Mathematics
Chung Yuan Christian University
Chung Li 32023, Taiwan
E-mail: mmwong@cycu.edu.tw


