CLASSIFICATION OF RULED SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN MINKOWSKI 3-SPACE

Miekyung Choi ${ }^{1}$, Young Ho Kim ${ }^{2}$ and Dae Won Yoon ${ }^{3}$

Abstract

We study the ruled surfaces in Minkowski 3 -space with pointwise 1 -type Gauss map. As a result, we introduce some new examples of the ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space.

1. Introduction

The notion of finite type immersions has played an important role in classifying and characterizing the submanifolds in Euclidean space or pseudo-Euclidean space since it was introduced by B.-Y. Chen in the late 1970s ([3, 4]). Also, we can apply it to the smooth maps in Euclidean space or pseudo-Euclidean space naturally ($[1,2,6]$). A smooth map ϕ of a submanifold M of Euclidean space or pseudoEuclidean space is said to be of finite type if ϕ can be expressed as a finite sum of eigenfunctions of the Laplacian Δ of M, that is, $\phi=\phi_{0}+\sum_{i=1}^{k} \phi_{i}$, where ϕ_{0} is a constant function, $\phi_{i}(i=1, \cdots, k)$ non-constant functions satisfying $\Delta \phi_{i}=\lambda_{i} \phi_{i}$, $\lambda_{i} \in \mathbb{R}$.

In this regards, it is worth investigating the classification of the submanifolds in Euclidean space or pseudo-Euclidean space in terms of finite type Gauss map. In general, the Laplacian of 1-type Gauss map of a submanifold in Euclidean or pseudo-Euclidean space satisfies $\Delta G=\lambda(G+\mathbb{C})$ for some constant λ and a constant vector \mathbb{C}.

On the other hand, the Gauss map of some minimal surfaces such as a helicoid of the first kind, a helicoid of the second kind, a helicoid of the third kind and the conjugate of Enneper's surface of the second kind in Minkowski 3-space satisfies $\Delta G=f G$ for some smooth function f. It looks like an eigenvalue problem but the

[^0]function f turns out to be non-constant for such surfaces. For this reason, the notion of pointwise 1-type Gauss map in Euclidean space or pseudo-Euclidean space was initiated: A submanifold M in Euclidean space \mathbb{E}^{m} or pseudo-Euclidean space \mathbb{E}_{s}^{m} of index s is said to have pointwise 1-type Gauss map if
\[

$$
\begin{equation*}
\Delta G=f(G+\mathbb{C}) \tag{1.1}
\end{equation*}
$$

\]

for a nonzero smooth function f and some constant vector \mathbb{C}. In particular, if \mathbb{C} is zero, it is said to be of the first kind. Otherwise, it is said to be of the second kind ($[5,7,8,9,10,11,12,14,15]$).

Recently, the present authors have introduced some new examples of the ruled surfaces with pointwise 1-type Gauss map of the second kind in \mathbb{E}^{3} called a cylinder of an infinite type and a rotational ruled surface ([10]). Two of the present authors gave the classification of the ruled surfaces with pointwise 1-type Gauss map of the first kind in Minkowski 3 -space \mathbb{E}_{1}^{3} ([14]).

In the present paper, we mainly focus on a ruled surface in Minkowski 3-space \mathbb{E}_{1}^{3} with pointwise 1-type Gauss map of the second kind. In fact, the class of solution spaces of equation (1.1) could be very big because it could have infinitely many solutions associated with a function f and a constant vector \mathbb{C}.

As a consequence, by combining the results in [14], we give a complete classification of ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space \mathbb{E}_{1}^{3} :

Theorem A (Classification). Let M be a ruled surface in Minkowski 3-space \mathbb{E}_{1}^{3} with pointwise 1-type Gauss map. Then, M is an open part of a Euclidean plane, a Minkowski plane, a hyperbolic cylinder, a Lorentz circular cylinder, a circular cylinder of index 1, a cylinder of an infinite type, a helicoid of the first kind, a helicoid of the second kind, a helicoid of the third kind, the conjugate of Enneper's surface of the second kind, a rotational ruled surface of type I or type II, a transcendental ruled surface, or a B-scroll.

2. Preliminaries

Let \mathbb{E}_{1}^{3} be Minkowski 3-space with the Lorentz metric $d s^{2}=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}$, where $\left(x_{1}, x_{2}, x_{3}\right)$ denotes the standard coordinate system in \mathbb{E}_{1}^{3}. Let M be a nondegenerate connected surface in \mathbb{E}_{1}^{3}. The map $G: M \rightarrow Q^{2}(\epsilon) \subset \mathbb{E}_{1}^{3}$ which maps each point of M to the unit normal vector to M at the point is called the Gauss map of M, where $\epsilon(= \pm 1)$ denotes the sign of the vector field G and $Q^{2}(\epsilon)$ is a 2-dimensional space form with constant sectional curvature ϵ.

Now, we define a ruled surface M in Minkowski 3-space \mathbb{E}_{1}^{3}. Let I and J be some open intervals in the real line \mathbb{R}. Let $\alpha=\alpha(s)$ be a curve in \mathbb{E}_{1}^{3} defined on I
and $\beta=\beta(s)$ a transversal vector field with $\alpha^{\prime}(s)$ along α. Then, a parametrization of a ruled surface M is given by

$$
x(s, t)=\alpha(s)+t \beta(s), \quad s \in I, \quad t \in J
$$

The curve $\alpha=\alpha(s)$ is called a base curve and $\beta=\beta(s)$ a director vector field. In particular, if β is constant, M is said to be cylindrical. Otherwise, it is said to be non-cylindrical.

First, we consider a base curve α is space-like or time-like. Then, the base curve α can be chosen to be orthogonal to the director vector field β which can be normalized as $\langle\beta, \beta\rangle= \pm 1$. In this case, we have five different types according to the character of α and β as follows: According as the base curve α is space-like or time-like, the ruled surface M is said to be of type M_{+}or M_{-}, respectively. Also, the ruled surface of type M_{+}can be divided into three types. If β is space-like, it is said to be of type M_{+}^{1} or M_{+}^{2} if β^{\prime} is non-null or null, respectively. When β is time-like, β^{\prime} is space-like because of the causal vector of β, which is said to be of type M_{+}^{3}. On the other hand, when α is time-like, β is always space-like. Accordingly, it is also said to be of type M_{-}^{1} or M_{-}^{2} if β^{\prime} is non-null or null, respectively. The ruled surface of type M_{+}^{1} or M_{+}^{2} (resp. M_{+}^{3}, M_{-}^{1} or M_{-}^{2}) is clearly space-like (resp. time-like).

A curve in \mathbb{E}_{1}^{3} is said to be null or light-like if its tangent vector field is null along it. If the base curve α is null and the director vector field β along α is null, then the ruled surface M is called a null scroll. It is evidently a time-like surface.

Other cases such as α is non-null and β is null, or α is null and β is non-null are reduced to one of the types $M_{ \pm}^{1}, M_{ \pm}^{2}$ and M_{+}^{3}, or a null scroll by an appropriate change of the base curve ([13]).

3. Cylindrical Ruled Surfaces

In this section, we examine the cylindrical ruled surfaces with pointwise 1-type Gauss map of the second kind in Minkowski 3-space.

Let M be a cylindrical ruled surface in Minkowski 3-space \mathbb{E}_{1}^{3} of type M_{+}^{1}, M_{-}^{1} or M_{+}^{3}. For a unit constant vector field β, M is parameterized by

$$
x(s, t)=\alpha(s)+t \beta
$$

such that $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=\epsilon_{1}(= \pm 1),\left\langle\alpha^{\prime}, \beta\right\rangle=0$ and $\langle\beta, \beta\rangle=\epsilon_{2}(= \pm 1)$.
We consider two cases separately.
Case 1. Let M be a cylindrical ruled surface of type M_{+}^{1} or M_{-}^{1}, i.e., $\epsilon_{2}=1$. Without loss of generality, we may assume that $\alpha(s)=\left(\alpha_{1}(s), \alpha_{2}(s), 0\right)$ is a plane curve parameterized by the arc-length s and the constant vector field β is chosen
as $\beta=(0,0,1)$. Then, the Gauss map G and its Laplacian ΔG of M are given by $G=\alpha^{\prime} \times \beta=\left(-\alpha_{2}{ }^{\prime},-\alpha_{1}{ }^{\prime}, 0\right)$ and $\Delta G=\left(\epsilon_{1} \alpha_{2}^{\prime \prime \prime}, \epsilon_{1} \alpha_{1}^{\prime \prime \prime}, 0\right)$, respectively, where the prime denotes the differentiation with respect to s.

Suppose that M has pointwise 1-type Gauss map of the second kind, that is, the Gauss map G satisfies equation (1.1). Then, the third component of the constant vector \mathbb{C} is zero and we have a system of differential equations:

$$
\begin{align*}
& \epsilon_{1} \alpha_{2}^{\prime \prime \prime}=f\left(-\alpha_{2}^{\prime}+c_{1}\right) \\
& \epsilon_{1} \alpha_{1}^{\prime \prime \prime}=f\left(-\alpha_{1}^{\prime}+c_{2}\right) \tag{3.1}
\end{align*}
$$

where $\mathbb{C}=\left(c_{1}, c_{2}, 0\right)$.
First, we consider the case that M is of type M_{+}^{1}. Since $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=-\alpha_{1}^{\prime 2}+\alpha_{2}^{\prime 2}=$ 1, we may put

$$
\alpha_{1}^{\prime}(s)=\sinh \theta, \quad \alpha_{2}^{\prime}(s)=\cosh \theta
$$

for a function $\theta=\theta(s)$. Therefore, equation (3.1) can be written as

$$
\begin{aligned}
& \left(\theta^{\prime}\right)^{2} \cosh \theta+\theta^{\prime \prime} \sinh \theta=f\left(-\cosh \theta+c_{1}\right) \\
& \left(\theta^{\prime}\right)^{2} \sinh \theta+\theta^{\prime \prime} \cosh \theta=f\left(-\sinh \theta+c_{2}\right)
\end{aligned}
$$

It follows

$$
\begin{equation*}
\left(\theta^{\prime}\right)^{2}=f\left(-1+c_{1} \cosh \theta-c_{2} \sinh \theta\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta^{\prime \prime}=f\left(-c_{1} \sinh \theta+c_{2} \cosh \theta\right) \tag{3.3}
\end{equation*}
$$

Suppose $\theta^{\prime} \equiv 0$. Then, obviously $\Delta G=0$. Since f is non-zero, (3.1) implies $\alpha_{1}^{\prime}=c_{2}, \alpha_{2}^{\prime}=c_{1}$ and thus $G=-\mathbb{C}$. Therefore, M is an open part of a Euclidean plane. If the interior $\operatorname{Int}(\mathrm{U})$ of a closed subset $\mathrm{U}=\left\{p \in M \mid \theta^{\prime}(p)=0\right\}$ is nonempty, U must be M by the above argument and connectedness of M. Otherwise, if θ^{\prime} has zeros, the set of zeros of θ^{\prime} has measure zero.

Now we suppose $\theta^{\prime} \neq 0$. (3.1) shows that f depends only on the parameter s, i.e., $f(s, t)=f(s)$. Differentiating (3.2) with respect to s and using (3.2) and (3.3), we obtain

$$
\begin{equation*}
\theta^{\prime}=c \sqrt[3]{f} \tag{3.4}
\end{equation*}
$$

for some non-zero constant c. On the other hand, combining (3.2) and (3.3), we get the following differential equation

$$
\begin{equation*}
\left(\frac{\left(\theta^{\prime}\right)^{2}}{f}+1\right)^{2}-\left(\frac{\theta^{\prime \prime}}{f}\right)^{2}=c_{1}^{2}-c_{2}^{2} \tag{3.5}
\end{equation*}
$$

By using (3.4), equation (3.5) gives

$$
\begin{equation*}
\left(c^{2} f^{-\frac{1}{3}}+1\right)^{2}-\left(-\frac{c}{2}\left(f^{-\frac{2}{3}}\right)^{\prime}\right)^{2}=c_{1}^{2}-c_{2}^{2} \tag{3.6}
\end{equation*}
$$

If we put $f^{-\frac{1}{3}}=y$, then equation (3.6) becomes

$$
\left(c^{2} y+1\right)^{2}-\left(c y y^{\prime}\right)^{2}=c_{1}^{2}-c_{2}^{2} .
$$

If \mathbb{C} is null, then the solution of the differential equation $\left(c^{2} y+1\right)^{2}-\left(c y y^{\prime}\right)^{2}=0$ is given by

$$
c^{2} y-\ln \left|c^{2} y+1\right|= \pm c^{3}(s+k)
$$

or, equivalently,

$$
\begin{equation*}
c^{2} f^{-\frac{1}{3}}-\ln \left|c^{2} f^{-\frac{1}{3}}+1\right|= \pm c^{3}(s+k) \tag{3.7}
\end{equation*}
$$

for some constant k.
If \mathbb{C} is non-null, the solution of (3.6) is obtained as follows:

$$
\begin{align*}
& \sqrt{\left(c^{2} f^{-\frac{1}{3}}+1\right)^{2}+\left(-c_{1}^{2}+c_{2}^{2}\right)} \\
& \quad-\ln \left(c^{2} f^{-\frac{1}{3}}+1+\sqrt{\left(c^{2} f^{-\frac{1}{3}}+1\right)^{2}+\left(-c_{1}^{2}+c_{2}^{2}\right)}\right) \tag{3.8}\\
& \quad+\ln \sqrt{\left|-c_{1}^{2}+c_{2}^{2}\right|}= \pm c^{3}(s+k)
\end{align*}
$$

for some constant k.
We now consider the case that M is of type M_{-}^{1}. Since $-\alpha_{1}^{\prime 2}+\alpha_{2}^{\prime 2}=-1$, we may put

$$
\alpha_{1}^{\prime}(s)=\cosh \theta, \quad \alpha_{2}^{\prime}(s)=\sinh \theta
$$

for a function $\theta=\theta(s)$. As is the previous case, if $\theta^{\prime} \equiv 0, M$ is an open portion of a Minkowski plane. If θ^{\prime} is non-zero, we get $\theta^{\prime}=c \sqrt[3]{f}$ and

$$
\begin{equation*}
\left(c^{2} f^{-\frac{1}{3}}-1\right)^{2}-\left(-\frac{c}{2}\left(f^{-\frac{2}{3}}\right)^{\prime}\right)^{2}=-c_{1}^{2}+c_{2}^{2} \tag{3.9}
\end{equation*}
$$

for some non-zero constant c. In this case, if \mathbb{C} is null or non-null, then its solution is obtained as, respectively,

$$
\begin{equation*}
c^{2} f^{-\frac{1}{3}}+\ln \left|c^{2} f^{-\frac{1}{3}}-1\right|= \pm c^{3}(s+k) \tag{3.10}
\end{equation*}
$$

or

$$
\begin{align*}
& \sqrt{\left(c^{2} f^{-\frac{1}{3}}-1\right)^{2}-\left(-c_{1}^{2}+c_{2}^{2}\right)} \\
& \quad+\ln \left(c^{2} f^{-\frac{1}{3}}-1+\sqrt{\left(c^{2} f^{-\frac{1}{3}}-1\right)^{2}+\left|-c_{1}^{2}+c_{2}^{2}\right|}\right) \tag{3.11}\\
& \quad-\ln \sqrt{\left|-c_{1}^{2}+c_{2}^{2}\right|}= \pm c^{3}(s+k)
\end{align*}
$$

where k is a constant.
Case 2. Let M be a cylindrical ruled surface of type M_{+}^{3}. Then we may assume that $\beta=(1,0,0)$ and $\alpha(s)=\left(0, \alpha_{2}(s), \alpha_{3}(s)\right)$ without loss of generality. Hence, the Gauss map G and its Laplacian ΔG of M are obtained by $G=\left(0, \alpha_{3}{ }^{\prime},-\alpha_{2}{ }^{\prime}\right)$ and $\Delta G=\left(0,-\alpha_{3}^{\prime \prime \prime}, \alpha_{2}^{\prime \prime \prime}\right)$, respectively.

Suppose that the Gauss map G of M is of pointwise 1-type of the second kind. Then, we have

$$
\begin{aligned}
-\alpha_{3}^{\prime \prime \prime} & =f\left(\alpha_{3}^{\prime}+c_{2}\right), \\
\alpha_{2}^{\prime \prime \prime} & =f\left(-\alpha_{2}^{\prime}+c_{3}\right),
\end{aligned}
$$

where $\mathbb{C}=\left(0, c_{2}, c_{3}\right)$. Since $\alpha(s)$ is parameterized by the arc length, i.e., $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=$ ${\alpha_{2}^{\prime}}^{2}+{\alpha_{3}^{\prime}}^{2}=1$, we may put

$$
\alpha_{2}^{\prime}(s)=\cos \theta, \quad \alpha_{3}^{\prime}(s)=\sin \theta
$$

for a function $\theta=\theta(s)$. Like a similar discussion developed in Case $1, M$ is an open portion of a Minkowski plane when $\theta^{\prime} \equiv 0$. Otherwise, we can have $\theta^{\prime}=c \sqrt[3]{f}$ for some non-zero constant c. Moreover, the smooth function f and the constant vector \mathbb{C} satisfy

$$
\begin{equation*}
\sqrt{c_{2}^{2}+c_{3}^{2}-\left(c^{2} f^{-\frac{1}{3}}-1\right)^{2}}-\sin ^{-1}\left(\frac{c^{2} f^{-\frac{1}{3}}-1}{\sqrt{c_{2}^{2}+c_{3}^{2}}}\right)= \pm c^{3}(s+k) \tag{3.12}
\end{equation*}
$$

where c is a non-zero constant and k a constant.
Definition 3.1. ([10]). A cylindrical ruled surface over an infinite type base curve in Minkowski space is called a cylinder of an infinite type.

Thus, we have
Proposition 3.1. Let M be a cylindrical ruled surface over a non-null base curve in Minkowski 3-space \mathbb{E}_{1}^{3} with pointwise 1-type Gauss map of the second kind. If M is not totally geodesic, then the non-zero smooth function f satisfies
one of the equations (3.7), (3.8), (3.10), (3.11) or (3.12) depending upon the types of the base curve.

Combining the results above and [14], we have
Theorem 3.2. Let M be a cylindrical ruled surface over a non-null base curve in Minkowski 3-space \mathbb{E}_{1}^{3} with pointwise 1-type Gauss map of the first kind. Then, the curvature of the base curve is a non-zero constant. In other words, M is an open part of a hyperbolic cylinder, a Lorentz circular cylinder or a circular cylinder of index 1 .

Theorem 3.3. (Classification). Let M be a cylindrical ruled surface over a non-null base curve in Minkowski 3-space \mathbb{E}_{1}^{3}. Then, M has pointwise 1-type Gauss map of the second kind if and only if M is an open part of a Euclidean plane, a Minkowski plane or a cylinder of an infinite type satisfying (3.7), (3.8), (3.10), (3.11) or (3.12) up to rigid motion.

4. Non-cylindrical Ruled Surfaces

In this section, we classify the non-cylindrical ruled surfaces in Minkowski 3 -space \mathbb{E}_{1}^{3} with pointwise 1 -type Gauss map.

Let M be a non-cylindrical ruled surface of type M_{+}^{1}, M_{+}^{3} or M_{-}^{1} whose Gauss map is of pointwise 1-type of the second kind. Then, M is parameterized by, up to rigid motion,

$$
x(s, t)=\alpha(s)+t \beta(s)
$$

such that $\left\langle\alpha^{\prime}, \beta\right\rangle=0,\langle\beta, \beta\rangle=\epsilon_{2}(= \pm 1)$ and $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=\epsilon_{3}(= \pm 1)$. For later use, we define the smooth functions q, u, Q and R as follows:

$$
q=\left\|x_{s}\right\|^{2}=\epsilon_{4}\left\langle x_{s}, x_{s}\right\rangle, u=\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle, Q=\left\langle\alpha^{\prime}, \beta \times \beta^{\prime}\right\rangle, R=\left\langle\beta^{\prime \prime}, \beta \times \beta^{\prime}\right\rangle
$$

where $\epsilon_{4}(= \pm 1)$ is the sign of the coordinate vector field $x_{s}=\frac{\partial x}{\partial s}$. For an orthonormal frame $\left\{\beta, \beta^{\prime}, \beta \times \beta^{\prime}\right\}$ along the base curve α, we have

$$
\begin{align*}
& \alpha^{\prime}=\epsilon_{3} u \beta^{\prime}-\epsilon_{2} \epsilon_{3} Q \beta \times \beta^{\prime}, \\
& \beta^{\prime \prime}=-\epsilon_{2} \epsilon_{3} \beta-\epsilon_{2} \epsilon_{3} R \beta \times \beta^{\prime}, \tag{4.1}\\
& \alpha^{\prime} \times \beta=-\epsilon_{3} u \beta \times \beta^{\prime}+\epsilon_{3} Q \beta^{\prime}, \\
& \beta \times \beta^{\prime \prime}=-\epsilon_{3} R \beta^{\prime},
\end{align*}
$$

which imply the smooth function q given by

$$
q=\epsilon_{4}\left(\epsilon_{3} t^{2}+2 u t+\epsilon_{3} u^{2}-\epsilon_{2} \epsilon_{3} Q^{2}\right)
$$

We note that t must be chosen so that q takes positive values.

Furthermore, the Gauss map G and the mean curvature H of M are straightforwardly obtained by, respectively,

$$
\begin{aligned}
& G=q^{-\frac{1}{2}}\left(\epsilon_{3} Q \beta^{\prime}-\left(\epsilon_{3} u+t\right) \beta \times \beta^{\prime}\right), \\
& H=\frac{1}{2} \epsilon_{2} q^{-3 / 2}\left(R t^{2}+\left(2 \epsilon_{3} u R+Q^{\prime}\right) t+u^{2} R+\epsilon_{3} u Q^{\prime}-\epsilon_{3} u^{\prime} Q-\epsilon_{2} Q^{2} R\right)
\end{aligned}
$$

On the other hand, the Laplacian ΔG of the Gauss map G can be expressed as follows ([14]):

$$
\begin{equation*}
\Delta G=q^{-7 / 2} \epsilon_{4}\left(A_{1} \beta+A_{2} \beta^{\prime}+A_{3} \beta \times \beta^{\prime}\right), \tag{4.2}
\end{equation*}
$$

where we have put

$$
\begin{aligned}
& A_{1}=\epsilon_{2} R t^{5}+\left(2 \epsilon_{2} Q^{\prime}+5 \epsilon_{2} \epsilon_{3} u R\right) t^{4}+\left(-3 \epsilon_{2} \epsilon_{3} \epsilon_{4} u^{\prime} Q-2 Q^{2} R+8 \epsilon_{2} \epsilon_{3} u Q^{\prime}+10 \epsilon_{2} u^{2} R\right) t^{3} \\
& +\left(-4 Q^{2} Q^{\prime}+3 \epsilon_{4} Q^{2} Q^{\prime}-9 \epsilon_{2} \epsilon_{4} u u^{\prime} Q-6 \epsilon_{3} u Q^{2} R+12 \epsilon_{2} u^{2} Q^{\prime}+10 \epsilon_{2} \epsilon_{3} u^{3} R\right) t^{2} \\
& +\left(3 \epsilon_{3} \epsilon_{4} u^{\prime} Q^{3}+\epsilon_{2} Q^{4} R-8 \epsilon_{3} u Q^{2} Q^{\prime}+6 \epsilon_{3} \epsilon_{4} u Q^{2} Q^{\prime}-9 \epsilon_{2} \epsilon_{3} \epsilon_{4} u^{2} u^{\prime} Q-6 u^{2} Q^{2} R+8 \epsilon_{2} \epsilon_{3} u^{3} Q^{\prime}\right. \\
& \left.+5 \epsilon_{2} u^{4} R\right) t+2 \epsilon_{2} Q^{4} Q^{\prime}-3 \epsilon_{2} \epsilon_{4} Q^{4} Q^{\prime}+3 \epsilon_{4} u u^{\prime} Q^{3}+\epsilon_{2} \epsilon_{3} u Q^{4} R-4 u^{2} Q^{2} Q^{\prime}+3 \epsilon_{4} u^{2} Q^{2} Q^{\prime} \\
& -3 \epsilon_{2} \epsilon_{4} u^{3} u^{\prime} Q-2 \epsilon_{3} u^{3} Q^{2} R+2 \epsilon_{2} u^{4} Q^{\prime}+\epsilon_{2} \epsilon_{3} u^{5} R \text {, } \\
& A_{2}=-\epsilon_{3} R^{\prime} t^{5}+\left(u^{\prime} R-\epsilon_{2} \epsilon_{3} Q R^{2}-\epsilon_{3} Q^{\prime \prime}-5 u R^{\prime}\right) t^{4}+\left(u^{\prime \prime} Q+2 \epsilon_{2} \epsilon_{3} Q^{2} R^{\prime}+3 u^{\prime} Q^{\prime}-3 \epsilon_{2} \epsilon_{3} Q Q^{\prime} R\right. \\
& \left.+4 \epsilon_{3} u u^{\prime} R-4 \epsilon_{2} u Q R^{2}-4 u Q^{\prime \prime}-10 \epsilon_{3} u^{2} R^{\prime}\right) t^{3}+\left(-3 \epsilon_{3} u^{\prime 2} Q-2 Q^{3}+\epsilon_{2} u^{\prime} Q^{2} R+2 \epsilon_{3} Q^{3} R^{2}\right. \\
& -4 \epsilon_{2} \epsilon_{3} Q Q^{\prime 2}+\epsilon_{2} \epsilon_{3} Q^{2} Q^{\prime \prime}+3 \epsilon_{3} u u^{\prime \prime} Q+6 \epsilon_{2} u Q^{2} R^{\prime}+9 \epsilon_{3} u u^{\prime} Q^{\prime}-9 \epsilon_{2} u Q Q^{\prime} R+6 u^{2} u^{\prime} R \\
& \left.-6 \epsilon_{2} \epsilon_{3} u^{2} Q R^{2}-6 \epsilon_{3} u^{2} Q^{\prime \prime}-10 u^{3} R^{\prime}\right) t^{2}+\left(-\epsilon_{2} u^{\prime \prime} Q^{3}-\epsilon_{3} Q^{4} R^{\prime}+5 \epsilon_{2} u^{\prime} Q^{2} Q^{\prime}+3 \epsilon_{3} Q^{3} Q^{\prime} R\right. \\
& -6 u u^{\prime 2} Q-4 \epsilon_{3} u Q^{3}+2 \epsilon_{2} \epsilon_{3} u u^{\prime} Q^{2} R+4 u Q^{3} R^{2}-8 \epsilon_{2} u Q Q^{\prime 2}+2 \epsilon_{2} u Q^{2} Q^{\prime \prime}+3 u^{2} u^{\prime \prime} Q \\
& \left.+6 \epsilon_{2} \epsilon_{3} u^{2} Q^{2} R^{\prime}+9 u^{2} u^{\prime} Q^{\prime}-9 \epsilon_{2} \epsilon_{3} u^{2} Q Q^{\prime} R+4 \epsilon_{3} u^{3} u^{\prime} R-4 \epsilon_{2} u^{3} Q R^{2}-4 u^{3} Q^{\prime \prime}-5 \epsilon_{3} u^{4} R^{\prime}\right) t \\
& -\epsilon_{2} \epsilon_{3} u^{\prime 2} Q^{3}+2 Q^{5}-2 u^{\prime} Q^{4} R-\epsilon_{3} Q^{5} R^{2}-\epsilon_{2} \epsilon_{3} u u^{\prime \prime} Q^{3}-u Q^{4} R^{\prime}+5 \epsilon_{2} \epsilon_{3} u u^{\prime} Q^{2} Q^{\prime}+3 u Q^{3} Q^{\prime} R \\
& -3 \epsilon_{3} u^{2} u^{\prime 2} Q-2 u^{2} Q^{3}+\epsilon_{2} u^{2} u^{\prime} Q^{2} R+2 \epsilon_{3} u^{2} Q^{3} R^{2}-4 \epsilon_{2} \epsilon_{3} u^{2} Q Q^{\prime 2}+\epsilon_{2} \epsilon_{3} u^{2} Q^{2} Q^{\prime \prime}+\epsilon_{3} u^{3} u^{\prime \prime} Q \\
& +2 \epsilon_{2} u^{3} Q^{2} R^{\prime}+3 \epsilon_{3} u^{3} u^{\prime} Q^{\prime}-3 \epsilon_{2} u^{3} Q Q^{\prime} R+u^{4} u^{\prime} R-\epsilon_{2} \epsilon_{3} u^{4} Q R^{2}-\epsilon_{3} u^{4} Q^{\prime \prime}-u^{5} R^{\prime} \text {, } \\
& A_{3}=\epsilon_{2} R^{2} t^{5}+\left(\epsilon_{2} Q R^{\prime}+2 \epsilon_{2} Q^{\prime} R+5 \epsilon_{2} \epsilon_{3} u R^{2}\right) t^{4}+\left(2 \epsilon_{3} Q^{2}-3 \epsilon_{2} \epsilon_{3} u^{\prime} Q R-2 Q^{2} R^{2}+\epsilon_{2} Q^{\prime 2}\right. \\
& \left.+\epsilon_{2} Q Q^{\prime \prime}+4 \epsilon_{2} \epsilon_{3} u Q R^{\prime}+8 \epsilon_{2} \epsilon_{3} u Q^{\prime} R+10 \epsilon_{2} u^{2} R^{2}\right) t^{3}+\left(-\epsilon_{2} \epsilon_{3} u^{\prime \prime} Q^{2}-2 Q^{3} R^{\prime}-5 \epsilon_{2} \epsilon_{3} u^{\prime} Q Q^{\prime}\right. \\
& -Q^{2} Q^{\prime} R+6 u Q^{2}-9 \epsilon_{2} u u^{\prime} Q R-6 \epsilon_{3} u Q^{2} R^{2}+3 \epsilon_{2} \epsilon_{3} u Q^{\prime 2}+3 \epsilon_{2} \epsilon_{3} u Q Q^{\prime \prime}+6 \epsilon_{2} u^{2} Q R^{\prime} \\
& \left.+12 \epsilon_{2} u^{2} Q^{\prime} R+10 \epsilon_{2} \epsilon_{3} u^{3} R^{2}\right) t^{2}+\left(4 \epsilon_{2} u^{\prime 2} Q^{2}-2 \epsilon_{2} \epsilon_{3} Q^{4}+3 \epsilon_{3} u^{\prime} Q^{3} R+\epsilon_{2} Q^{4} R^{2}+3 Q^{2} Q^{\prime 2}\right. \\
& -Q^{3} Q^{\prime \prime}-2 \epsilon_{2} u u^{\prime \prime} Q^{2}-4 \epsilon_{3} u Q^{3} R^{\prime}-10 \epsilon_{2} u u^{\prime} Q Q^{\prime}-2 \epsilon_{3} u Q^{2} Q^{\prime} R+6 \epsilon_{3} u^{2} Q^{2}-9 \epsilon_{2} \epsilon_{3} u^{2} u^{\prime} Q R \\
& \left.-6 u^{2} Q^{2} R^{2}+3 \epsilon_{2} u^{2} Q^{\prime 2}+3 \epsilon_{2} u^{2} Q Q^{\prime \prime}+4 \epsilon_{2} \epsilon_{3} u^{3} Q R^{\prime}+8 \epsilon_{2} \epsilon_{3} u^{3} Q^{\prime} R+5 \epsilon_{2} u^{4} R^{2}\right) t+\epsilon_{3} u^{\prime \prime} Q^{4} \\
& +\epsilon_{2} Q^{5} R^{\prime}-3 \epsilon_{2} u^{\prime} Q^{3} Q^{\prime}-\epsilon_{2} Q^{4} Q^{\prime} R+4 \epsilon_{2} \epsilon_{3} u u^{\prime 2} Q^{2}-2 \epsilon_{2} u Q^{4}+3 u u^{\prime} Q^{3} R+\epsilon_{2} \epsilon_{3} u Q^{4} R^{2} \\
& +3 \epsilon_{3} u Q^{2} Q^{\prime 2}-\epsilon_{3} u Q^{3} Q^{\prime \prime}-\epsilon_{2} \epsilon_{3} u^{2} u^{\prime \prime} Q^{2}-2 u^{2} Q^{3} R^{\prime}-5 \epsilon_{2} \epsilon_{3} u^{2} u^{\prime} Q Q^{\prime}-u^{2} Q^{2} Q^{\prime} R+2 u^{3} Q^{2} \\
& -3 \epsilon_{2} u^{3} u^{\prime} Q R-2 \epsilon_{3} u^{3} Q^{2} R^{2}+\epsilon_{2} \epsilon_{3} u^{3} Q^{\prime 2}+\epsilon_{2} \epsilon_{3} u^{3} Q Q^{\prime \prime}+\epsilon_{2} u^{4} Q R^{\prime}+2 \epsilon_{2} u^{4} Q^{\prime} R+\epsilon_{2} \epsilon_{3} u^{5} R^{2} .
\end{aligned}
$$

Now, we suppose that M has pointwise 1-type Gauss map of the second kind. Then, equation (1.1) together with (4.2) gives

$$
\begin{equation*}
q^{-7 / 2} \epsilon_{4}\left(A_{1} \beta+A_{2} \beta^{\prime}+A_{3} \beta \times \beta^{\prime}\right)=f\left\{q^{-1 / 2}\left(\epsilon_{3} Q \beta^{\prime}-\left(\epsilon_{3} u+t\right) \beta \times \beta^{\prime}\right)+\mathbb{C}\right\} . \tag{4.3}
\end{equation*}
$$

If we respectively take the scalar product to equation (4.3) with β, β^{\prime} and $\beta \times \beta^{\prime}$, then we have the following system of equations:

$$
\begin{gather*}
q^{-7 / 2} \epsilon_{4} A_{1}=f c_{1} \tag{4.4}\\
q^{-7 / 2} \epsilon_{4} A_{2}=f\left(q^{-1 / 2} \epsilon_{3} Q+c_{2}\right) \tag{4.5}\\
-q^{-7 / 2} \epsilon_{4} A_{3}=f\left(q^{-1 / 2}\left(\epsilon_{3} u+t\right)-c_{3}\right) \tag{4.6}
\end{gather*}
$$

where $c_{1}=\epsilon_{2}\langle\mathbb{C}, \beta\rangle, c_{2}=\epsilon_{3}\left\langle\mathbb{C}, \beta^{\prime}\right\rangle$ and $c_{3}=-\epsilon_{2} \epsilon_{3}\left\langle\mathbb{C}, \beta \times \beta^{\prime}\right\rangle$. Differentiating the functions c_{1}, c_{2} and c_{3} with respect to s, we get

$$
\begin{gather*}
c_{1}^{\prime}=\epsilon_{2} \epsilon_{3} c_{2}, \tag{4.7}\\
c_{1}+c_{2}^{\prime}-\epsilon_{3} c_{3} R=0 \tag{4.8}\\
c_{3}^{\prime}-\epsilon_{2} \epsilon_{3} c_{2} R=0 \tag{4.9}
\end{gather*}
$$

Combining equations (4.4), (4.5) and (4.6), we find

$$
\begin{gather*}
q\left(A_{2} c_{1}-A_{1} c_{2}\right)^{2}-Q^{2} A_{1}^{2}=0 \tag{4.10}\\
q\left(A_{1} c_{3}-A_{3} c_{1}\right)^{2}-A_{1}^{2}\left(\epsilon_{3} u+t\right)^{2}=0 \tag{4.11}\\
q\left(A_{2} c_{3}-A_{3} c_{2}\right)^{2}-\left(A_{2}\left(\epsilon_{3} u+t\right)+\epsilon_{3} Q A_{3}\right)^{2}=0 \tag{4.12}
\end{gather*}
$$

The left hand sides of (4.10), (4.11) and (4.12) are polynomials in t with functions of s as the coefficients. Therefore, all of them as functions of s of polynomials in t must be zero.

First, from the leading coefficient in t of the left hand side of (4.10) with the help of (4.7), we get

$$
\begin{equation*}
c_{1} R=\mathrm{a} \text { constant } \tag{4.13}
\end{equation*}
$$

Also, the leading coefficient in t of the left hand side of (4.11) gives

$$
\begin{equation*}
\epsilon_{3} \epsilon_{4}\left(c_{3}-c_{1} R\right)^{2} R^{2}=R^{2} \tag{4.14}
\end{equation*}
$$

If $\epsilon_{3} \epsilon_{4}=-1$, then R is identically zero. In this case, the leading coefficient of the left hand side of (4.11) implies

$$
\left(c_{3}^{2}+1\right) Q^{\prime 2}=0
$$

from which, Q is a constant. If we consider the coefficient of t^{8} of the left hand side of (4.11), we also get

$$
\left(\left(3 \epsilon_{2} c_{3} u^{\prime}-2 \epsilon_{3} c_{1} Q\right)^{2}+9 u^{\prime 2}\right) Q^{2}=0
$$

If $Q \neq 0$, then we have

$$
\left(3 \epsilon_{2} c_{3} u^{\prime}-2 \epsilon_{3} c_{1} Q\right)^{2}+9 u^{\prime 2}=0
$$

which implies $u^{\prime}=0$. It follows the mean curvature H vanishes on M. It contradicts that the Gauss map of M is of pointwise 1-type of the second kind. Thus, $Q=0$. In turn, the mean curvature is zero identically, which is a contradiction, too. Consequently, we have

$$
\epsilon_{3} \epsilon_{4}=1
$$

Case 1. R is not identically zero on M.
We now consider an open subset $\mathbf{U}=\{p \in M \mid R(p) \neq 0\}$. Suppose \mathbf{U} is not empty. Then, (4.14) yields

$$
\begin{equation*}
\left(c_{3}-c_{1} R\right)^{2}=1 \tag{4.15}
\end{equation*}
$$

on U. Differentiating equation (4.15), we obtain c_{3} is a constant on a connected component \mathbf{U}_{0} of \mathbf{U} because $c_{1} R$ is a constant. Therefore, (4.9) implies $c_{2}=0$ on \mathbf{U}_{0}. In view of (4.7), c_{1} is a constant on \mathbf{U}_{0}. So, equation (4.8) yields R is a constant on \mathbf{U}_{0}. By continuity of R and connectedness of M, R is a non-zero constant on M. Therefore, by (4.7), (4.8) and (4.13), c_{1} and c_{3} are constants and $c_{2}=0$ on M. Thus, equations (4.10), (4.11) and (4.12) can be rewritten as follows:

$$
\begin{gather*}
q c_{3}^{2} R^{2} A_{2}^{2}-Q^{2} A_{1}^{2}=0 \tag{4.16}\\
q c_{3}^{2}\left(A_{1}-\epsilon_{3} R A_{3}\right)^{2}-A_{1}^{2}\left(\epsilon_{3} u+t\right)^{2}=0 \tag{4.17}\\
q c_{3}^{2} A_{2}^{2}-\left(A_{2}\left(\epsilon_{3} u+t\right)+\epsilon_{3} Q A_{3}\right)^{2}=0 \tag{4.18}
\end{gather*}
$$

Moreover, combining equations (4.16) and (4.18), we get

$$
\begin{equation*}
Q^{2} A_{1}^{2}-R^{2}\left(A_{2}\left(\epsilon_{3} u+t\right)+\epsilon_{3} Q A_{3}\right)^{2}=0 \tag{4.19}
\end{equation*}
$$

From the leading coefficient of (4.17), we have

$$
\begin{equation*}
c_{3}^{2}\left(1-\epsilon_{3} R^{2}\right)^{2}=1 \tag{4.20}
\end{equation*}
$$

If we examine the coefficients of t^{10} and t^{9} of the left hand side of (4.17) with the help of (4.20), respectively, we get

$$
\begin{equation*}
2 Q^{2}-5 \epsilon_{2} Q^{2}+4 u^{\prime} Q R-6 \epsilon_{3} u^{\prime} Q R+\epsilon_{2} \epsilon_{3} Q^{2} R^{2}-2 \epsilon_{3} Q^{\prime 2}=0 \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
2 Q Q^{\prime}-u^{\prime \prime} Q R-3 u^{\prime} Q^{\prime} R+\epsilon_{2} \epsilon_{3} Q Q^{\prime} R^{2}=0 \tag{4.22}
\end{equation*}
$$

Furthermore, considering the leading coefficient of the left hand side of (4.19), we obtain

$$
\begin{equation*}
\left(u^{\prime} R-\epsilon_{3} Q^{\prime \prime}\right)^{2}=Q^{2} . \tag{4.23}
\end{equation*}
$$

Without loss of generality, we may assume

$$
u^{\prime} R-\epsilon_{3} Q^{\prime \prime}=Q
$$

From the coefficients of t^{8} and t^{7} of the left hand side of (4.19), respectively, we have

$$
\begin{equation*}
Q^{2}\left(u^{\prime} Q-\epsilon_{3} u^{\prime 2} R-\epsilon_{2} \epsilon_{3} Q^{\prime 2} R\right)=0 \tag{4.24}
\end{equation*}
$$

and

$$
\begin{equation*}
Q^{2}\left(2 u^{\prime} R-\epsilon_{3} Q^{\prime}+2 \epsilon_{3} u R\right)=0 \tag{4.25}
\end{equation*}
$$

Suppose the open subset $\mathbf{O}=\{p \in M \mid Q(p) \neq 0\}$ is not empty. Then, (4.24) and (4.25) imply

$$
\begin{equation*}
u^{\prime} Q-\epsilon_{3} u^{\prime 2} R-\epsilon_{2} \epsilon_{3} Q^{\prime 2} R=0 \tag{4.26}
\end{equation*}
$$

and

$$
\begin{equation*}
2 u^{\prime} R-\epsilon_{3} Q^{\prime}+2 \epsilon_{3} u R=0 \tag{4.27}
\end{equation*}
$$

On the other hand, considering the coefficient of t^{8} of the left hand side of (4.16) with the help of (4.21), (4.22) and (4.26), we obtain

$$
\begin{equation*}
\epsilon_{2} Q^{3}-Q^{3}=0 \tag{4.28}
\end{equation*}
$$

If we think of the non-empty subset \mathbf{O}, ϵ_{2} must be 1 . Therefore, (4.21) implies

$$
\begin{equation*}
-3 Q^{2}+4 u^{\prime} Q R-6 \epsilon_{3} u^{\prime} Q R+\epsilon_{3} Q^{2} R^{2}-2 \epsilon_{3} Q^{\prime 2}=0 \tag{4.29}
\end{equation*}
$$

Differentiating equation (4.29) with respect to s, we obtain

$$
\begin{align*}
& -3 Q Q^{\prime}+2 u^{\prime \prime} Q R+2 u^{\prime} Q^{\prime} R-3 \epsilon_{3} u^{\prime \prime} Q R \tag{4.30}\\
& -3 \epsilon_{3} u^{\prime} Q^{\prime} R+\epsilon_{3} Q Q^{\prime} R^{2}-2 \epsilon_{3} Q^{\prime} Q^{\prime \prime}=0 .
\end{align*}
$$

Suppose $\epsilon_{3}=1$. Combining equations (4.22) and (4.30), we get $Q Q^{\prime}=0$. Hence, Q is a non-zero constant on a connected component \mathbf{O}_{0} of \mathbf{O}. By connectedness of M and continuity of Q, Q is a non-zero constant on M. Therefore, equations (4.22) and (4.27) respectively give the following

$$
u^{\prime \prime}=0 \quad \text { and } \quad u^{\prime}+u=0 .
$$

Thus, we have $u^{\prime}=0$. It implies that $Q=0$ because of (4.23), a contradiction. So, \mathbf{O} is empty and thus, $Q \equiv 0$ on M.
Let us now assume $\epsilon_{3}=-1$. Then, (4.30) with the help of (4.22) implies

$$
\begin{equation*}
Q^{\prime}\left(3 Q-4 u^{\prime} R-2 Q R^{2}\right)=0 . \tag{4.31}
\end{equation*}
$$

Consider an open subset $\mathbf{O}_{1}=\left\{p \in \mathbf{O} \mid Q^{\prime}(p) \neq 0\right\}$ and suppose \mathbf{O}_{1} is not empty. Then (4.31) gives

$$
\begin{equation*}
3 Q-4 u^{\prime} R-2 Q R^{2}=0 \tag{4.32}
\end{equation*}
$$

Since $u^{\prime} R+Q^{\prime \prime}=Q$, we have the following differential equation from (4.32)

$$
\begin{equation*}
Q^{\prime \prime}-k^{2} Q=0 \tag{4.33}
\end{equation*}
$$

where $k^{2}=\frac{1+2 R^{2}}{4}(k>0)$, a constant. Thus,

$$
\begin{equation*}
u^{\prime} R=\left(1-k^{2}\right) Q, \tag{4.34}
\end{equation*}
$$

or, Q is given by

$$
Q=\tilde{K}_{1} \cosh k s+\tilde{K}_{2} \sinh k s
$$

for some constants \tilde{K}_{1} and \tilde{K}_{2}. Together (4.34) with (4.22), we have

$$
2-4\left(1-k^{2}\right)-R^{2}=0,
$$

or, using $k^{2}=\frac{1+2 R^{2}}{4}$, we get

$$
R^{2}=1
$$

on \mathbf{O}_{1}. Putting this into (4.26) and using (4.34), we get

$$
Q=0,
$$

which is a contradiction on \mathbf{O}_{1}. Therefore, the open subset \mathbf{O}_{1} is empty and Q is a non-zero constant on a connected component \mathbf{O}_{0} of \mathbf{O}. Again, connectedness of M and continuity of Q imply Q is a non-zero constant on M. Hence, we have $u^{\prime} R=Q$. Together with (4.26), $u^{\prime}=0$ is induced and we get $Q=0$, a
contradiction. Consequently, the open subset \mathbf{O} is empty and $Q \equiv 0$ on M. Hence, no matter what cases of ϵ_{3} may be, we have Q is zero on M.

Therefore, u is a non-zero constant by virtue of (4.23) and the first equation of (4.1) with the help of the fact that α is non-null.

On the other hand, it follows from the second equation in (4.1) that

$$
\beta^{\prime \prime \prime}+\epsilon_{2} \epsilon_{3}\left(1-\epsilon_{3} R^{2}\right) \beta^{\prime}=0
$$

Let us give the initial conditions $\beta(0)=\left(a_{1}, 0, a_{2}\right), \beta^{\prime}(0)=\left(b_{1}, b_{2}, 0\right)$ and $\beta^{\prime \prime}(0)=$ $-\epsilon_{2} \epsilon_{3}\left(a_{1}+a_{2} b_{2} R, a_{2} b_{1} R, a_{2}+a_{1} b_{2} R\right)$ of the above differential equation, where a_{1}, a_{2}, b_{1} and b_{2} are some constants satisfying $-a_{1}^{2}+a_{2}^{2}=\epsilon_{2},-b_{1}^{2}+b_{2}^{2}=\epsilon_{3}$ and $a_{1} b_{1}=0$ with $\left(a_{1}, b_{1}\right) \neq(0,0)$.

Considering equation (4.20), we only have the cases: $\epsilon_{2} \epsilon_{3}\left(1-\epsilon_{3} R^{2}\right)>0$ or $\epsilon_{2} \epsilon_{3}\left(1-\epsilon_{3} R^{2}\right)<0$.

First, if $\epsilon_{2} \epsilon_{3}\left(1-\epsilon_{3} R^{2}\right)>0$, then we have $\beta^{\prime \prime \prime}(s)+a^{2} \beta^{\prime}(s)=0$ and its solution $\beta(s)$ is

$$
\begin{align*}
\beta(s)=(& \frac{\epsilon_{2} \epsilon_{3}}{a^{2}}\left(\epsilon_{3} a_{1} R^{2}+a_{2} b_{2} R\right)+\frac{\epsilon_{2} \epsilon_{3}}{a^{2}}\left(a_{1}+a_{2} b_{2} R\right) \cos a s+\frac{b_{1}}{a} \sin a s \\
& -\frac{\epsilon_{2} \epsilon_{3}}{a^{2}} a_{2} b_{1} R+\frac{\epsilon_{2} \epsilon_{3}}{a^{2}} a_{2} b_{1} R \cos a s+\frac{b_{2}}{a} \sin a s \tag{4.35}\\
& \left.-\frac{\epsilon_{2} \epsilon_{3}}{a^{2}}\left(\epsilon_{3} a_{2} R^{2}+a_{1} b_{2} R\right)+\frac{\epsilon_{2} \epsilon_{3}}{a^{2}}\left(a_{2}+a_{1} b_{2} R\right) \cos a s\right)
\end{align*}
$$

where $a=\sqrt{\epsilon_{2} \epsilon_{3}\left(1-\epsilon_{3} R^{2}\right)}$.
If $\epsilon_{2} \epsilon_{3}\left(1-\epsilon_{3} R^{2}\right)<0$, then the solution of $\beta^{\prime \prime \prime}(s)-a^{2} \beta^{\prime}(s)=0$ is obtained as follows

$$
\begin{align*}
\beta(s)=(& \frac{\epsilon_{2} \epsilon_{3}}{a^{2}}\left(\epsilon_{3} a_{1} R^{2}+a_{2} b_{2} R\right)-\frac{\epsilon_{2} \epsilon_{3}}{a^{2}}\left(a_{1}+a_{2} b_{2} R\right) \cosh a s+\frac{b_{1}}{a} \sinh a s \\
& \frac{\epsilon_{2} \epsilon_{3}}{a^{2}} a_{2} b_{1} R-\frac{\epsilon_{2} \epsilon_{3}}{a^{2}} a_{2} b_{1} R \cosh a s+\frac{b_{2}}{a} \sinh a s \tag{4.36}\\
& \left.\frac{\epsilon_{2} \epsilon_{3}}{a^{2}}\left(\epsilon_{3} a_{2} R^{2}+a_{1} b_{2} R\right)-\frac{\epsilon_{2} \epsilon_{3}}{a^{2}}\left(a_{2}+a_{1} b_{2} R\right) \cosh a s\right)
\end{align*}
$$

where $a=\sqrt{\epsilon_{2} \epsilon_{3}\left(\epsilon_{3} R^{2}-1\right)}$.
By applying the first equation of (4.1), $\alpha^{\prime}=\epsilon_{3} u \beta^{\prime}$ for some non-zero constant u. Therefore, we can easily obtain the base curve $\alpha(s)$ by means of $\beta(s)$ of the form (4.35) or (4.36).

Definition 4.1. A non-cylindrical ruled surface M generated by a base curve $\alpha(s)$ and the director vector field $\beta(s)$ satisfying (4.35) or (4.36) is called a rotational ruled surface of type I or a rotational ruled surface of type II, respectively.

Case 2. $R \equiv 0$ on M.
From (4.9), we see that c_{3} is a constant. Combining equations (4.7) and (4.8), we have $c_{1}+\epsilon_{2} \epsilon_{3} c_{1}^{\prime \prime}=0$. Thus, depending upon the sign of ϵ_{2} and ϵ_{3}, we get

$$
\begin{equation*}
c_{1}=K_{1} \cosh s+K_{2} \sinh s \quad \text { or } \quad c_{1}=K_{3} \sin \left(s+s_{0}\right) \tag{4.37}
\end{equation*}
$$

for some constants $K_{i}(i=1,2,3)$ and s_{0}.
If we think of the leading coefficient of the left hand side of (4.11) with c_{1} as above, we have

$$
\left(c_{3}^{2}-1\right) Q^{\prime 2}=0
$$

Suppose $c_{3}^{2} \neq 1$. Then $Q^{\prime}=0$, that is, Q is a constant. If $Q=0$, the mean curvature H vanishes on M, which is a contradiction. Therefore, Q is a non-zero constant.

If we consider the leading coefficients of the left hand sides of (4.10) and (4.11), respectively, we get

$$
\begin{equation*}
c_{1} u^{\prime \prime}+3 \epsilon_{2} c_{2} u^{\prime}=0 \quad \text { and } \quad\left(3 \epsilon_{2} c_{3} u^{\prime}+2 \epsilon_{3} c_{1} Q\right)^{2}=9 u^{\prime 2} \tag{4.38}
\end{equation*}
$$

Since $c_{1}^{\prime}=\epsilon_{2} \epsilon_{3} c_{2}$, the first equation of (4.38) implies

$$
c_{1} u^{\prime \prime}+3 \epsilon_{3} c_{1}^{\prime} u^{\prime}=0
$$

Suppose c_{1} is non-trivial. Then, the solution of the above differential equation is given by

$$
\begin{equation*}
u^{\prime}=k_{1} c_{1}^{ \pm 3} \tag{4.39}
\end{equation*}
$$

where k_{1} is a constant. Putting (4.37) and (4.39) into the second equation of (4.38), we obtain $k_{1}=0$ and $K_{i}=0(i=1,2,3)$, which is a contradiction. Thus, we have $c_{1}=0$. From (4.4), we get $A_{1}=0$. It implies that $u^{\prime}=0$, that is, u is a constant. Hence we see that the mean curvature H vanishes identically that is again a contradiction. Consequently, we get $c_{3}^{2}=1$.

Now, if we consider the leading coefficient of the left hand side of (4.10) with the help of (4.7), we have

$$
c_{1} Q^{\prime \prime}+2 c_{1}^{\prime} Q^{\prime}=0
$$

Suppose c_{1} is non-zero. Then the solution of the above equation is given by

$$
\begin{equation*}
Q^{\prime}=k_{2} c_{1}^{-2} \tag{4.40}
\end{equation*}
$$

where k_{2} is a constant. Since the coefficient of t^{9} of the left hand side of (4.11) with $c_{3}^{2}=1$ is zero, we have

$$
Q^{\prime}\left(Q Q^{\prime \prime}+Q^{2}+2 \epsilon_{2} \epsilon_{3} Q^{2}\right)=0
$$

Consider an open set $\mathbf{V}=\left\{p \in M \mid Q^{\prime}(p) \neq 0\right\}$. Suppose \mathbf{V} is not empty. Then we get

$$
\begin{equation*}
Q Q^{\prime \prime}+Q^{\prime 2}+2 \epsilon_{2} \epsilon_{3} Q^{2}=0 \tag{4.41}
\end{equation*}
$$

Equations (4.37), (4.40) and (4.41) lead to $k_{2}=0$ and so $Q^{\prime}=0$, a contradiction. Therefore, \mathbf{V} is empty and Q is a non-zero constant on M since M is not minimal. Thus, the fact that the leading coefficient of the left hand side of (4.10) is zero gives $c_{1} u^{\prime \prime}+3 \epsilon_{3} c_{1}^{\prime} u^{\prime}=0$ because of (4.7). If c_{1} is non-trivial, we have a solution of the form (4.39). Since $c_{3}^{2}=1$, from the leading coefficient of (4.11), we also get

$$
\begin{equation*}
c_{1} Q \pm 3 \epsilon_{2} \epsilon_{3} u^{\prime}=0 \tag{4.42}
\end{equation*}
$$

Putting (4.37) and (4.39) into (4.42), we obtain $c_{1}=0$.
Similarly as before, (4.4) yields $u^{\prime}=0$. Therefore, the mean curvature H vanishes, which is a contradiction. As a consequence, the case of $R=0$ can never occur.

Consequently, we have
Theorem 4.1. Let M be a non-cylindrical ruled surface of type M_{+}^{1}, M_{-}^{1} or M_{+}^{3} in Minkowski 3-space \mathbb{E}_{1}^{3}. Suppose that M has pointwise 1-type Gauss map of the second kind. Then, M is an open part of a rotational ruled surfaces of type I or type II.

Now we examine a non-cylindrical ruled surface of type M_{+}^{2} or M_{-}^{2} with pointwise 1 -type Gauss map of the second kind.

Let M be a non-cylindrical ruled surface of type M_{+}^{2} or M_{-}^{2}. Then, the parametrization for M is given by

$$
x(s, t)=\alpha(s)+t \beta(s)
$$

such that $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=\epsilon_{1}(= \pm 1),\langle\beta, \beta\rangle=1,\left\langle\alpha^{\prime}, \beta\right\rangle=0$ and β^{\prime} is null. Let us also put

$$
q=\left\|x_{s}\right\|^{2}=\epsilon_{4}\left\langle x_{s}, x_{s}\right\rangle, \quad u=\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle .
$$

On the other hand, it is easy to see that $\beta \times \beta^{\prime}$ is null. Since the null vector fields β^{\prime} and $\beta \times \beta^{\prime}$ are orthogonal, we may take

$$
\begin{equation*}
\beta^{\prime}=\beta \times \beta^{\prime} . \tag{4.43}
\end{equation*}
$$

Moreover, we may assume $\beta(0)=(0,0,1)$. Thus, $\beta(s)$ is given by

$$
\begin{equation*}
\beta(s)=(a s, a s, 1) \tag{4.44}
\end{equation*}
$$

for a non-zero constant a. For an orthonormal frame $\left\{\alpha^{\prime}, \beta, \alpha^{\prime} \times \beta\right\}$ along α, we have

$$
\begin{equation*}
\beta^{\prime}=\epsilon_{1} u\left(\alpha^{\prime}-\alpha^{\prime} \times \beta\right) \quad \text { and } \quad \alpha^{\prime \prime}=-u \beta+\frac{u^{\prime}}{u} \alpha^{\prime} \times \beta \tag{4.45}
\end{equation*}
$$

Let $\alpha(s)=\left(\alpha_{1}(s), \alpha_{2}(s), \alpha_{3}(s)\right)$. Since $\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle=u$ and $\left\langle\alpha^{\prime}, \beta\right\rangle=0$, we obtain

$$
\begin{equation*}
\alpha_{1}^{\prime}-\alpha_{2}^{\prime}=-\frac{u}{a} \quad \text { and } \quad \alpha_{3}^{\prime}=-u s \tag{4.46}
\end{equation*}
$$

Equation (4.46) together with $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=\epsilon_{1}$ implies

$$
\begin{equation*}
\alpha_{1}^{\prime}+\alpha_{2}^{\prime}=\frac{a \epsilon_{1}}{u}-a u s^{2} \tag{4.47}
\end{equation*}
$$

Combining equations (4.46) and (4.47), we get

$$
\begin{equation*}
\alpha^{\prime}(s)=\left(\frac{1}{2}\left(\frac{a \epsilon_{1}}{u}-a u s^{2}-\frac{u}{a}\right), \frac{1}{2}\left(\frac{a \epsilon_{1}}{u}-a u s^{2}+\frac{u}{a}\right),-u s\right) . \tag{4.48}
\end{equation*}
$$

On the other hand, the Gauss map G of M is given by

$$
\begin{equation*}
G=q^{-\frac{1}{2}}\left(A-t \beta^{\prime}\right) \tag{4.49}
\end{equation*}
$$

where we put $A=\alpha^{\prime} \times \beta$. By a straightforward computation, the Laplacian ΔG of the Gauss map G can be expressed as ([14])
$\Delta G=q^{-\frac{7}{2}}\left(\left(-2 u^{2} q+u^{\prime \prime} t q-4 \epsilon_{4} u^{2} t^{2}\right)\left(A-t \beta^{\prime}\right)-\epsilon_{4} u \beta^{\prime} q^{2}+3 u^{\prime} t A^{\prime} q-\epsilon_{4} A^{\prime \prime} q^{2}\right)$.
Now we suppose that M has pointwise 1-type Gauss map of the second kind. Then, we obtain

$$
\begin{align*}
& \left(-2 u^{2} q+u^{\prime \prime} t q-4 \epsilon_{4} u^{\prime 2} t^{2}\right)\left(A-t \beta^{\prime}\right)-\epsilon_{4} u \beta^{\prime} q^{2}+3 u^{\prime} t A^{\prime} q-\epsilon_{4} A^{\prime \prime} q^{2} \\
= & f\left(q^{3}\left(A-t \beta^{\prime}\right)+q^{\frac{7}{2}} \mathbb{C}\right) \tag{4.50}
\end{align*}
$$

for some non-zero smooth function f and a constant vector \mathbb{C}.
If we take the scalar product to equation (4.50) with α^{\prime}, β and $\alpha^{\prime} \times \beta$, respectively, then we obtain the following:

$$
\begin{gather*}
B_{1}=f\left(-q^{3} t u+q^{\frac{7}{2}}\left\langle\mathbb{C}, \alpha^{\prime}\right\rangle\right) \tag{4.51}\\
B_{2}=f q^{\frac{7}{2}}\langle\mathbb{C}, \beta\rangle \tag{4.52}\\
B_{3}=f\left(-\epsilon_{1} q^{3}-u q^{3} t+q^{\frac{7}{2}}\left\langle\mathbb{C}, \alpha^{\prime} \times \beta\right\rangle\right) \tag{4.53}
\end{gather*}
$$

where

$$
\begin{aligned}
& B_{1}=2 u^{3} q t-u u^{\prime \prime} t^{2} q+4 \epsilon_{4} u u^{\prime 2} t^{3}+3 \epsilon_{1} \frac{u^{\prime 2}}{u} t q-\epsilon_{1} \epsilon_{4} \frac{u^{\prime \prime}}{u} q^{2}+\epsilon_{1} \epsilon_{4} \frac{u^{\prime 2}}{u^{2}} q^{2} \\
& B_{2}=-3 u u^{\prime} t q+2 \epsilon_{4} u^{\prime} q^{2} \\
& B_{3}=2 \epsilon_{1} u^{2} q-\epsilon_{1} u^{\prime \prime} t q+4 \epsilon_{1} \epsilon_{4} u^{\prime 2} t^{2}+2 u^{3} q t-u u^{\prime \prime} t^{2} q+4 \epsilon_{4} u u^{\prime 2} t^{3}+\epsilon_{1} \epsilon_{4} q^{2} \frac{u^{\prime 2}}{u^{2}}
\end{aligned}
$$

If we put $\mathbb{C}=c_{1} \alpha^{\prime}+c_{2} \beta+c_{3} \alpha^{\prime} \times \beta$, (4.51)-(4.53) imply

$$
\begin{gather*}
\left(c_{2} B_{1}-\epsilon_{1} c_{1} B_{2}\right)^{2} q=u^{2} t^{2} B_{2}^{2}, \tag{4.54}\\
\left(c_{2} B_{3}+\epsilon_{1} c_{3} B_{2}\right)^{2} q=\left(\epsilon_{1}+u t\right)^{2} B_{2}^{2}, \tag{4.55}\\
\left(u t B_{3}-\left(\epsilon_{1}+u t\right) B_{1}\right)^{2}=q\left(c_{1} B_{3}+c_{3} B_{1}\right)^{2}, \tag{4.56}
\end{gather*}
$$

which are polynomials in t with functions of s as the coefficients. Hence, the leading coefficient of the left hand side of (4.54) must be zero, which means $c_{2}^{2} u^{3}\left(u u^{\prime \prime}-\right.$ $\left.2 u^{\prime 2}\right)^{2}=0$. Because $u \neq 0$, we get

$$
\begin{equation*}
c_{2}^{2}\left(u u^{\prime \prime}-2 u^{\prime 2}\right)^{2}=0 . \tag{4.57}
\end{equation*}
$$

Consider an open subset $\mathbf{U}=\left\{p \in M \mid\left(u u^{\prime \prime}-2 u^{\prime 2}\right)(p) \neq 0\right\}$. Suppose \mathbf{U} is not empty. Then, $c_{2}=0$ on \mathbf{U}. Therefore, equation (4.54) can be reduced to

$$
\begin{equation*}
B_{2}^{2}\left(c_{1}^{2} q-u^{2} t^{2}\right)=0 . \tag{4.58}
\end{equation*}
$$

Since the leading coefficient of the left hand side of (4.58) must be zero, $u^{6} u^{\prime 2}=0$ on \mathbf{U}, from which, $u^{\prime}=0$ on \mathbf{U}. It is a contradiction. Thus, \mathbf{U} is empty and we have

$$
\begin{equation*}
u u^{\prime \prime}-2 u^{\prime 2}=0 . \tag{4.59}
\end{equation*}
$$

Suppose there is a point $s_{0} \in$ domain (α) such that $u^{\prime}\left(s_{0}\right)=0$. Then, (4.54) implies $c_{2}=0$. Also, (4.59) gives $u^{\prime \prime}\left(s_{0}\right)=0$. If we evaluate the left hand side of (4.56), it turns out to be zero at s_{0} and thus

$$
\epsilon_{1} c_{1}+\left(c_{1}+c_{3}\right) u\left(s_{0}\right) t=0
$$

It holds for each t and hence $c_{1}=c_{3}=0$, that is, \mathbb{C} is zero vector, which is a contradiction. Therefore, $u^{\prime} \neq 0$ everywhere. From (4.59), we get

$$
\frac{u^{\prime \prime}}{u^{\prime}}-\frac{2 u^{\prime}}{u}=0
$$

from which,

$$
u(s)=\frac{1}{b s+c}
$$

for some constants $b \neq 0$ and c. Thus, from (4.48), the base curve $\alpha(s)$ is given by

$$
\begin{align*}
\alpha(s)= & \frac{1}{2}\left(a \epsilon_{1}\left(\frac{b}{2} s^{2}+c s\right)-\frac{a}{2 b} s^{2}+\frac{a c}{b^{2}} s-\left(\frac{a c^{2}}{b^{3}}+\frac{1}{a b}\right) \ln |b s+c|+d_{1},\right. \\
& a \epsilon_{1}\left(\frac{b}{2} s^{2}+c s\right)-\frac{a}{2 b} s^{2}+\frac{a c}{b^{2}} s-\left(\frac{a c^{2}}{b^{3}}-\frac{1}{a b}\right) \ln |b s+c|+d_{2}, \tag{4.60}\\
& \left.-\frac{2}{b} s+\frac{2 c}{b} \ln |b s+c|+d_{3}\right),
\end{align*}
$$

where $d_{i}(i=1,2,3)$ are some integration constants.
Definition 4.2. A ruled surface M generated by the base curve of the form (4.60) and the director vector field given by (4.44) is called a transcendental ruled surface.

Consequently, we have
Theorem 4.2. Let M be a non-cylindrical ruled surface of type M_{+}^{2} or M_{-}^{2} in Minkowski 3-space \mathbb{E}_{1}^{3}. Suppose that the Gauss map G of M is of pointwise 1-type of the second kind. Then, M is an open portion of a transcendental ruled surface.

Combining Theorem 4.1, Theorem 4.2 and the results of [14], we have
Theorem 4.3. (Classification). Let M be a non-cylindrical ruled surface over a non-null base curve in Minkowski 3-space \mathbb{E}_{1}^{3}. Then, M has pointwise 1-type Gauss map if and only if M is an open part of a helicoid of the first kind, a helicoid of the second kind, a helicoid of the third kind, the conjugate of Enneper's surface of the second kind, a rotational ruled surface of type I or II, or a transcendental ruled surface.

5. Null Scrolls

In this section, we study a null scroll with pointwise 1-type Gauss map in Minkowski 3 -space \mathbb{E}_{1}^{3}. We mainly focus to prove the following theorem.

Theorem 5.1. Let M be a null scroll with pointwise 1-type Gauss map of the second kind in Minkowski 3-space \mathbb{E}_{1}^{3}. Then, M is an open part of a Minkowski plane.

Proof. Let $\alpha=\alpha(s)$ be a null curve in \mathbb{E}_{1}^{3} and $\beta=\beta(s)$ a null vector field satisfying $\left\langle\alpha^{\prime}, \beta\right\rangle=1$ along α. For a null scroll M parameterized by

$$
x=x(s, t)=\alpha(s)+t \beta(s)
$$

we have the natural coordinate frame $\left\{x_{s}, x_{t}\right\}$ given by

$$
x_{s}=\alpha^{\prime}+t \beta^{\prime} \quad \text { and } \quad x_{t}=\beta(s)
$$

Furthermore, we may choose an appropriate parameter s in such a way that $u=$ $\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle=0$, which is possible if the base curve α is chosen as a null geodesic of M. Again, we define the smooth functions q and v as follows:

$$
q=\left\langle x_{s}, x_{s}\right\rangle \quad \text { and } \quad v=\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle
$$

On the other hand, the Gauss map G of M is determined by

$$
\begin{equation*}
G=x_{s} \times x_{t}=\alpha^{\prime} \times \beta+t \beta^{\prime} \times \beta \tag{5.1}
\end{equation*}
$$

and the Laplacian of the Gauss map G is obtained by ([14])

$$
\begin{equation*}
\Delta G=-2 \beta^{\prime \prime} \times \beta+2 v t \beta^{\prime} \times \beta . \tag{5.2}
\end{equation*}
$$

In terms of the pseudo-orthonormal frame $\left\{\alpha^{\prime}, \beta, \alpha^{\prime} \times \beta\right\}$, we obtain

$$
\begin{equation*}
\beta^{\prime}=-Q \alpha^{\prime} \times \beta, \quad \beta^{\prime} \times \beta=Q \beta \quad \text { and } \quad \beta^{\prime \prime} \times \beta=R \beta-v \alpha^{\prime} \times \beta, \tag{5.3}
\end{equation*}
$$

where $Q=\left\langle\alpha^{\prime}, \beta^{\prime} \times \beta\right\rangle$ and $R=\left\langle\alpha^{\prime}, \beta^{\prime \prime} \times \beta\right\rangle$.
We now suppose that M has pointwise 1-type Gauss map of the second kind. Then, with the help of (5.3), we have

$$
\begin{equation*}
(2 v t Q-2 R) \beta+2 v \alpha^{\prime} \times \beta=f\left(\alpha^{\prime} \times \beta+t Q \beta+\mathbb{C}\right) \tag{5.4}
\end{equation*}
$$

for some non-zero smooth function f and a constant vector \mathbb{C}.
If we take the scalar product to equation (5.4) with α^{\prime}, β and $\alpha^{\prime} \times \beta$, respectively, then we have the following system of equations:

$$
\begin{equation*}
2 v t Q-2 R=f\left(Q t+c_{2}\right), \tag{5.5}
\end{equation*}
$$

where $c_{1}=\langle\mathbb{C}, \beta\rangle, c_{2}=\left\langle\mathbb{C}, \alpha^{\prime}\right\rangle$ and $c_{3}=\left\langle\mathbb{C}, \alpha^{\prime} \times \beta\right\rangle$. Clearly, (5.6) gives $c_{1}=0$. From (5.7), the function f depends only on the parameter s. Therefore, from (5.5), we can obtain

$$
(2 v-f) Q=0 \quad \text { and } \quad 2 R+f c_{2}=0 .
$$

Consider an open subset $\mathbf{U}=\{p \in M \mid Q(p) \neq 0\}$. Suppose that \mathbf{U} is not empty. Then $f=2 v$ on \mathbf{U} which implies $c_{3} f=0$ by (5.7) and thus $c_{3}=0$. Therefore, the constant vector \mathbb{C} can be written as $\mathbb{C}=c_{2} \beta$. Differentiating the constant vector \mathbb{C} with respect to s, we have $0=c_{2}^{\prime} \beta(s)+c_{2} \beta^{\prime}(s)$. Since β and β^{\prime} are linearly independent for each s, c_{2} vanishes, which is a contradiction because \mathbb{C} is not zero vector. Therefore, the open subset \mathbf{U} is empty, that is, $Q=0$. Hence, (5.3) gives β is a constant vector. It follows that $R=0$ and $v=0$. Thus, $\Delta G=0$. Since the Gauss map is of pointwise 1 -type of the second kind, we may get $G=-\mathbb{C}$. Thus, the surface M is an open part of a Minkowski plane. Consequently, the proof is completed.

Combining Theorem 5.1 and the results in [14], we have
Theorem 5.2. (Classification). Let M be a null scroll with pointwise 1-type Gauss map in Minkowski 3-space \mathbb{E}_{1}^{3}. Then, M is an open part of a Minkowski plane or a B-scroll.

Remark. Summing up all the cases, Theorem 3.2, Theorem 3.3, Theorem 4.3 and Theorem 5.2, we have a complete classification theorem of the ruled surfaces in Minkowski 3-space \mathbb{E}_{1}^{3} with pointwise 1-type Gauss map, which is described in Section 1.

Fig. 1.

Fig. 2.

Fig. 3.

Acknowledgment

The authors would like to express sincere thanks to the referee for his valuable suggestions and comments toward improvement of the paper.

References

1. C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J., 34 (1992), 355-359.
2. C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II. 16 1993, pp. 31-42.
3. B.-Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific Publ., New Jersey, 1984.
4. B.-Y. Chen, Finite type submanifolds and generalizations, University of Rome, 1985.
5. B.-Y. Chen, M. Choi and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42 (2005), 447-455.
6. B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35 (1987), 161-186.
7. M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38 (2001), 753-761.
8. M. Choi, D.-S. Kim and Y. H. Kim, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc., 46 (2009), 215-223.
9. M. Choi, Y. H. Kim, H. Liu and D. W. Yoon, Helicoidal surfaces and their Gauss map in Minkowski 3-space, Bull. Korean Math. Soc., to appear.
10. M. Choi, Y. H. Kim and D. W. Yoon, Classification of ruled surfaces with pointwise 1-type Gauss map, Taiwanese J. Math., to appear.
11. U. Dursun, Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math., 11 (2007), 1407-1416.
12. U-H. Ki, D.-S. Kim, Y. H. Kim and Y.-M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math., 13 (2009), 317-338.
13. D.-S. Kim, Y. H. Kim and D. W. Yoon, Finite type ruled surfaces in LorentzMinkowski space, Taiwanese J. Math., 11 (2007), 1-13.
14. Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys., 34 (2000), 191-205.
15. Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math., 35 (2005), 1555-1581.

Miekyung Choi ${ }^{1}$, Young Ho Kim ${ }^{2}$ and Dae Won Yoon ${ }^{3}$
${ }^{1,3}$ Department of Mathematics education and RINS
Gyeongsang National University
Jinju 660-701
Korea
E-email: mkchoi@knu.ac.kr dwyoon@gnu.ac.kr
${ }^{2}$ Department of Mathematics
Kyungpook National University
Taegu 702-701
Korea
E-email: yhkim@knu.ac.kr

[^0]: Received April 23, 2009, accepted December 11, 2009.
 Communicated by B. Y. Chen.
 2000 Mathematics Subject Classification: 53A35, 53B30.
 Key words and phrases: Ruled surface, Minimal surface, Null scroll, Minkowski space, Pointwise 1-type Gauss map.
 ${ }^{1}$ This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund)(KRF-2008-355-C00003).
 ${ }^{2}$ Supported by KOSEF R01-2007-000-20014-0 (2007).

