TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 3, pp. 1075-1088, June 2011 This paper is available online at http://www.tjm.nsysu.edu.tw/

# MODULE HOMOMORPHISMS ASSOCIATED WITH BANACH ALGEBRAS

#### Ali Ghaffari

Abstract. Let A be a Banach algebra. In this paper, among the other things, we present a few results in the theory of homomorphisms on  $A^*$ . We want to find out when the equality T(af) = aT(f) for every  $a \in A$  and  $f \in A^*$  implies the equality T(Ff) = FT(f) for every  $f \in A^*$  and  $F \in A^{**}$ . One of the main results of this paper is to introduce and study the notion of a weakly almost periodic operator.

### 1. INTRODUCTION

Let A be a Banach algebra. Terminologies and notations not explained in this section will be explained or referenced in the next section. The investigation of conditions which force a bounded linear map on dual a Banach algebra to be  $\lambda_a^*$  $(a \in A)$  has been of interest in recent literature. In [2], Baker, Lau and Pym proved that  $Hom_A(A^*, A^*) = (A^*A)^*$ . For some Banach algebras A, they also proved that if  $T: A^* \to A^*A$  is a bounded linear map and satisfyies T(xf) = xT(f) for all  $x \in A, f \in A^*$ , then there is  $a \in A$  such that  $T = \lambda_a^*$  (see Theorem 1.1 in [2]). For a locally compact abelian group G, the set of all bounded linear maps from  $L^p(G)$ into  $L^{q}(G)$  which commute with translation has been studied by Larsen [12]. He proved that the multipliers for  $A_p(G)$  (the Herz-Figa-Talamanca algebra) can be identified with the bounded measures on G provided G is noncompact. In [7], we have studied the homomorphisms on hypergroup algebras. For a locally compact group G, the bounded linear operators on  $L^{\infty}(G)$  into  $L^{\infty}(G)$  which commute with convolutions and translations have been studied by Lau in [14] and by Lau and Pym in [18]. They also went further, and for several subspaces H of  $L^{\infty}(G)$ , they obtained a number of interesting and nice results. This paper is organized as

Communicated by J. C. Yao.

2000 Mathematics Subject Classification: Primary 43A22; Secondary 43A60.

Received October 4, 2009, accepted November 25, 2009.

*Key words and phrases*: Banach algebras, Left multipliers, Operators, Weak operator topology, Weakly almost periodic, Weak\*-weak\* continuous.

This research was in part supported by a grant from IPM (No. 88430020).

follows: After preparation of some notations in Section 2, we study in Section 3 the operators on the dual some of Banach algebras. For a Banach algebra A, we want to find out when the equality T(af) = aT(f)  $(a \in A, f \in A^*)$  implies that T(Ff) = FT(f)  $(f \in A^*, F \in A^{**})$ . For some Banach algebras A, the set of all bounded linear maps  $T : A^* \to A^*$  which T(Ff) = FT(f)  $(F \in A^{**})$ and  $f \in A^*$  can be identified with A. In Section 4, we introduce weakly almost periodic operators on dual of a Banach algebra A. We study the relationship of weakly almost periodic operators with weakly almost periodic functionals in  $A^*$ .

## 2. NOTATION AND PRELIMINARY RESULTS

We introduce our notations briefly; for other ideas used here we refer the reader to [2, 8] and [11]. Let A be a Banach algebra. Then  $A^*$  and  $A^{**}$  will denote the first and second conjugate spaces of A. For any  $a \in A$ , let  $\lambda_a$  be the left multiplication operators determined by a. A bounded linear map  $T : A \to A$  is called a left multiplier if T(ab) = T(a)b for all  $a, b \in A$ . Let  $\mathcal{M}(A)$  denote the algebra of all left multipliers on A. The theory of multipliers studied by Larsen [12] and has received a good deal of attention from harmonic analysts.

Let A be a Banach algebra. The first Arens product on  $A^{**}$  is defined in stages as follows. Let  $a, b \in A$ ,  $f \in A^*$  and  $F, G \in A^{**}$ .

Define  $fa \in A^*$  by  $\langle fa, b \rangle = \langle f, ab \rangle$ .

Define  $Ff \in A^*$  by  $\langle Ff, a \rangle = \langle F, fa \rangle$ .

Define  $GF \in A^{**}$  by  $\langle GF, f \rangle = \langle G, Ff \rangle$ .

Then  $A^{**}$  is a Banach algebra (for more details see [2]). For G fixed in  $A^{**}$ , the mapping  $F \mapsto FG$  is weak\*-weak\* continuous on  $A^{**}$ . For F fixed in  $A^{**}$ , the mapping  $G \mapsto FG$  is in general not weak\*-weak\* continuous on  $A^{**}$ .

The second Arens multiplication is defined as follows: For a, b in A, f in  $A^*$  and F, G in  $A^{**}$ , the elements a.f, f.F of  $A^*$  and F.G of  $A^{**}$  are defined by the equalities

$$\langle b, a.f \rangle = \langle ba, f \rangle, \ \langle a, f.F \rangle = \langle a.f, F \rangle, \ \langle f, F.G \rangle = \langle f.F, G \rangle.$$

The symbols b(A),  $b(A^*)$  will be used for the unit ball in A,  $A^*$ , respectively.

Throughout this paper, G denotes a locally compact group with a fixed left Haar measure. Let  $C_{\circ}(G)$  be the closed subspace of  $C_b(G)$  consisting of all functions in  $C_b(G)$  which vanish at infinity. Let LUC(G) denote the space of bounded left uniformly continuous functions on G. The Banach spaces  $L^p(G)$ ,  $1 \le p \le \infty$ , are as defined in [11].

#### 3. CHARACTERIZATION SOME OF HOMOMORPHISMS

We denote by  $wap(A^*)$  the space of  $f \in A^*$  for which the mapping  $a \mapsto af$  from A into  $A^*$  is weakly compact (see [2], [6] and [19]). This is in fact equivalent to the condition that  $a \mapsto fa$  be weakly compact (see Theorem 1 in [4]).  $wap(A^*)$  is a Banach subspace. It is known that

 $wap(A^*) = \{ f \in A^*; \langle FG, f \rangle = \langle F.G, f \rangle \text{ for all } F, G \in A^{**} \}$ 

(for the equivalence of these two descriptions see, for example, Theorem 1 of [4] and the remarks which follow it). In the following theorem  $A^*$  can be identified with the set of all bounded linear maps  $T : A^{**} \to A^*$  which are weak\*-weak\* continuous and T(FG) = FT(G) for all  $F, G \in A^{**}$ .

**Theorem 3.1.** Let A be a Banach algebra with a bounded approximate identity bounded by 1. Let  $T : A^{**} \to A^*$  be a bounded linear map such that T(FG) = FT(G) for every  $F, G \in A^{**}$ . Then the following conditions hold:

- (1) there exists a unique  $f \in A^*$  such that T(a) = af for all  $a \in A$  and ||T|| = ||f||. In addition, T is weakly compact if and only if  $f \in wap(A^*)$ .
- (2) there exists a unique  $f \in A^*$  such that T(F) = Ff for all  $F \in A^{**}$  and ||T|| = ||f||. T is a weak\*-weak\* continuous.

Moreover the correspondence between T and f defines a linear isometric from the set of all  $T : A^{**} \to A^*$  which are weak\*-weak\* continuous and satisfy T(FG) = FT(G) for all  $F, G \in A^{**}$ , onto  $A^*$ .

Proof.

(1) Let (e<sub>α</sub>) be a bounded approximate identity bounded by 1 for A. The net (T(e<sub>α</sub>)) admits a subnet (T(e<sub>β</sub>)) converging to a functional f on A in the weak\* topology (see V.4.2 in [5]). For a ∈ A, we claim that T(a) = af. Because if b ∈ A, then

$$\langle T(a), b \rangle = \lim_{\alpha} \langle T(ae_{\alpha}), b \rangle = \lim_{\alpha} \langle aT(e_{\alpha}), b \rangle = \lim_{\alpha} \langle T(e_{\alpha}), ba \rangle$$
  
=  $\langle f, ba \rangle = \langle fb, a \rangle = \langle af, b \rangle.$ 

Thus T(a) = af. Let  $h \in A^*$  and let af = ah for all  $a \in A$ . In particular then for each  $\alpha \in I$ ,  $\langle f - h, e_{\alpha}a \rangle = \langle af - ah, e_{\alpha} \rangle = 0$ . Hence  $\langle f, a \rangle = \langle h, a \rangle$ for each  $a \in A$  which implies that f = h, since  $(e_{\alpha})$  is a bounded approximate identity for A. Therefore f is unique. Clearly  $||T(a)|| = ||af|| \le ||a|| ||f||$ shows that  $||T|| \le ||f||$ . Now, let  $\epsilon > 0$  be given. There exists  $a \in A$  with  $||a|| \le 1$  such that

$$|\langle f, a \rangle| \ge ||f|| - \epsilon.$$

For every  $\alpha \in I$ , we have

$$\begin{aligned} |\langle f, e_{\alpha} a \rangle| &= |\langle af, e_{\alpha} \rangle| = |\langle T(a), e_{\alpha} \rangle| \\ &\leq \|T(a)\| \leq \|T\|. \end{aligned}$$

It follows that

$$||f|| - \epsilon \le |\langle f, a \rangle| \le ||T||.$$

Consequently ||T|| = ||f||.

If T is weakly compact, then  $\{T(F); F \in A^{**}, ||F|| \leq 1\}$  is relatively weakly compact in  $A^*$ . Hence  $\{af; a \in b(A)\}$  is relatively weakly compact in  $A^*$  and so  $f \in wap(A)$ .

Now let  $f \in wap(A)$ . Then  $\{af; a \in b(A)\}$  is relatively weakly compact in  $A^*$ . We claim that

$$\{T(F); F \in A^{**}, \|F\| \le 1\} \subseteq \overline{\{af; a \in b(A)\}}.$$

In fact, let  $F \in A^{**}$ ,  $||F|| \leq 1$  and  $(a_{\alpha})$  be a net in A with  $||a_{\alpha}|| \leq 1$  such that  $a_{\alpha} \to F$  in the weak\*-topology [21]. By compactness of  $\{af; a \in b(A)\}$ , we can assume  $a_{\alpha}f \to g$  in  $A^*$  (in the weak topology), passing to a subnet if necessary. Clearly  $a_{\alpha}f \to Ff$  in the weak\* topology and so g = Ff. Consequently

$$Ff \in \overline{\{af, a \in b(A)\}}.$$

It follows that T is weakly compact.

(2) Let (e<sub>α</sub>) be a bounded approximate identity for A. Then we may suppose that (e<sub>α</sub>) converges in the weak\*-topology on A\*\*, say to E [2]. It is easy to see that FE = F for every F ∈ A\*\*. Put T(E) = f. For every F ∈ A\*\*, T(FE) = FT(E) = Ff. From part 1, f is unique, and ||T|| = ||f||. The final assertion of the theorem is now apparent.

**Remark 3.2.** Let G be an amenable locally compact group. Then the Fourier algebra A(G) has a bounded approximate identity. Hence Theorem 3.1 is applicable in this case. Furthermore, the subspace  $wap(A(G)^*) \subseteq A(G)^*$  was studied in [16] and the Banach algebra  $A(G)^{**}$  was studied in [15].

Let A be a Banach algebra with a bounded approximate identity bounded by 1. By  $A^*A$ , we denote the subspace of  $A^*$  consisting of the functionals of the form fa, for all f in  $A^*$  and a in A. This is known to be a norm closed linear subspace of  $A^*$  [19].

Baker, Lau and Pym [2] proved that  $Hom_A(A^*, A^*)$  (where  $T \in Hom_A(A^*, A^*)$ means T(fa) = T(f)a for every  $f \in A^*$  and  $a \in A$ ) can be identified isometrically isomorphic with  $(A^*A)^*$ . Indeed, for every  $T \in Hom_A(A^*, A^*)$  there exists

a unique element  $n \in (A^*A)^*$  such that T(f) = nf for all  $f \in A^*$ . It is easy to see that, A is a right ideal in  $(A^*A)^*$  if and only if every  $T \in Hom_A(A^*, A^*)$  is weak\*-weak\* continuous.

# Example 3.3.

(a) Let G be a locally compact abelian group. We know that  $L_0^{\infty}(G)$  is the space of bounded measurable functions on G which vanish at infinity [18]. As known [18], for any  $F \in L_0^{\infty}(G)^*$  and  $f \in L_0^{\infty}(G)$ ,  $Ff \in L_0^{\infty}(G)$ . In this case, the first Arens multiplication is well defined on  $L_0^{\infty}(G)^*$  and  $L_0^{\infty}(G)^*$ is a Banach algebra. By Theorem 2.11 in [18],  $L^1(G)$  is a two-sided ideal of  $L_0^{\infty}(G)^*$ . It is known that  $L^1(G)$  is a two-sided ideal in  $L^1(G)^{**}$  if and only if G is a compact group [10]. Let  $T \in Hom_{L^1(G)}(L_0^{\infty}(G), L_0^{\infty}(G))$ , and  $(e_{\alpha})$  be a bounded approximate identity for  $L^1(G)$  [11]. For  $F \in L_0^{\infty}(G)^*$ ,  $f \in L_0^{\infty}(G)$ , we have

$$\langle T(Ff), \mu \rangle = \lim_{\alpha} \langle T(Ff), \mu * e_{\alpha} \rangle = \lim_{\alpha} \langle e_{\alpha} T(Ff), \mu \rangle$$
  
= 
$$\lim_{\alpha} \langle T(e_{\alpha} Ff), \mu \rangle = \lim_{\alpha} \langle e_{\alpha} FT(f), \mu \rangle$$
  
= 
$$\lim_{\alpha} \langle FT(f), \mu * e_{\alpha} \rangle = \langle FT(f), \mu \rangle,$$

where  $\mu \in L^1(G)$ . This shows that T(Ff) = FT(f).

- (b) Let A be a Banach algebra and let T be a bounded linear operator from  $A^*$  into  $A^*$  which is weak\*-weak\* continuous and satisfy T(af) = aT(f) for all  $a \in A, f \in A^*$ . Then T(Ff) = FT(f) for all  $F \in A^{**}$  and  $f \in A^*$  (see Theorem 3.1 and its proof).
- (c) Let G be a locally compact abelian group. Let T be a bounded linear operator from  $L^{\infty}(G)$  into  $L^{\infty}(G)$  such that T(Ff) = FT(f) for all  $F \in L^{1}(G)^{**}$ and  $f \in L^{\infty}(G)$ . Then |T|(Ff) = F|T|(f) (|T| is the modulus of T, see [1] and [8]) for all  $F \in L^{1}(G)^{**}$  an  $f \in L^{\infty}(G)$ . In fact,  $T^{*}$  is a left multiplier on  $L^{1}(G)^{**}$ . Now, let  $f \in L^{1}(G)$  and let  $\{F_{\alpha}\}$  be a net in  $L^{1}(G)^{**}$  such that  $F_{\alpha} \to F$  in the weak\* topology. Since  $T^{*}$  is weak\*-weak\* continuous,  $\{T^{*}(f)F_{\alpha}\}$  converges to  $T^{*}(f)F$  in the weak\* topology. Hence  $T^{*}(f) \in L^{1}(G)$  see [17]. It follows that  $T^{*} : L^{1}(G) \to L^{1}(G)$  is a left multiplier. Consequently by Theorem 1 in [23], there exists  $\mu \in M(G)$  such that  $T^{*} = \lambda_{\mu}^{**}$ . It is easy to see that  $T = \lambda_{\mu}^{*}$ . By Theorem 3.5 in [8],

$$\begin{aligned} |T|(Ff) &= |\lambda_{\mu}^{*}|(Ff) = \lambda_{|\mu|}^{*}(Ff) \\ &= Ff|\mu| = F\lambda_{|\mu|}^{*}(f) \\ &= F|\lambda_{\mu}^{*}|(f) = F|T|(f). \end{aligned}$$

Moreover, if  $T \in Hom_{L^{1}(G)}(L^{\infty}(G), L^{\infty}(G))$  is weak\*-weak\* continuous, then  $|T| \in Hom_{L^{1}(G)}(L^{\infty}(G), L^{\infty}(G))$ .

Question: Does Example 3.3 (c) remain valid when  $T \in Hom_{L^1(G)}(L^{\infty}(G))$ ,  $L^{\infty}(G)$  is not weak\*-weak\* continuous?

It is well known (and easy to prove) that for every  $G \in A^{**}$  the mapping  $F \mapsto FG$  from  $A^{**}$  into  $A^{**}$  is weak\*-weak\* continuous. The set of all G in  $A^{**}$  for which  $F \mapsto GF$  from  $A^{**}$  into  $A^{**}$  is weak\*-weak\* continuous is called the topological center of  $A^{**}$ . The set of all F in  $(A^*A)^*$  for which  $G \mapsto GF$  from  $(A^*A)^*$  into  $(A^*A)^*$  is weak\*-weak\* continuous is called the topological center of  $A^{**}$ . The set of all F in  $(A^*A)^*$  for which  $G \mapsto GF$  from  $(A^*A)^*$  into  $(A^*A)^*$  is weak\*-weak\* continuous is called the topological center of  $(A^*A)^*$ . The topological centers of  $A^{**}$  and  $(A^*A)^*$  are denoted respectively by  $Z_t(A^{**})$  and  $Z_t((A^*A)^*)$  (more information on this problem can be found in [2] and [19]). A. T. Lau and V. Losert [17] have proved that if G is a locally compact topological group, then the topological center of  $L^1(G)^{**}$  is  $L^1(G)$ .

**Theorem 3.4.** Let G be a locally compact abelian group. Then the following conditions are equivalent:

- (1) G is a compact group.
- (2) for every bounded linear operator  $T \in Hom_{L^1(G)}(L^{\infty}(G), L^{\infty}(G)), T(Ff)$ = FT(f) for all  $F \in L^1(G)^{**}$  and  $f \in L^{\infty}(G)$ .

*Proof.* Let G be a compact group. Then  $L_0^{\infty}(G) = L^{\infty}(G)$ . So, by Example 3.3 (a), for every  $T \in Hom_{L^1(G)}(L^{\infty}(G), L^{\infty}(G))$  we have T(Ff) = FT(f) for all  $F \in L^1(G)^{**}$  and  $f \in L^{\infty}(G)$ .

Conversely, let for every  $T \in Hom_{L^1(G)}(L^{\infty}(G), L^{\infty}(G))$ , we have T(Ff) = FT(f) for all  $F \in L^1(G)^{**}$  and  $f \in L^{\infty}(G)$ . So, by Theorem 1.1 in [2], GFf = FGf for every  $F, G \in L^1(G)^{**}$  and  $f \in L^{\infty}(G)$ . Hence for every  $\mu \in L^1(G)$ , we have

$$\langle GF, f\mu \rangle = \langle FG, f\mu \rangle.$$

But  $L^{\infty}(G)L^1(G) = LUC(G)$  [11]. Therefore  $Z_t(LUC(G)^*) = LUC(G)^*$ . On the other hand,  $Z_t(LUC(G)^*) = M(G)$  ([13]) and  $LUC(G)^* = M(G) \oplus C_0(G)^{\perp}([9])$ . Consequently  $C_0(G)^{\perp} = \{0\}$ , we conclude that G is compact.

Let A be a Banach algebra with a bounded approximate identity bounded by 1. For each a in A define  $\rho_a : A^* \to [0, \infty)$  by  $\rho_a(f) = ||fa||$ . The topology defined on  $A^*$  by these seminorms is denoted by  $\tau_c$  (for details see [6]). It is known that  $w^* \leq \tau_c \leq ||.||$ . Let  $T \in \mathcal{B}(A^*, A^*)$  and let T(af) = aT(f) for every  $a \in A$ and  $f \in A^*$ . If T is weak\*-weak\* continuous, then T(Ff) = FT(f) for every  $F \in A^{**}$  and  $f \in A^*$  (see Example 3.3). Now, let T be  $\tau_c \cdot \tau_c$  continuous. Does the equality T(af) = aT(f) ( $a \in A$ ,  $f \in A^*$ ) imply that T(Ff) = FT(f) ( $F \in A^{**}$ ,  $f \in A^*$ )?

**Theorem 3.5.** Let A be a Banach algebra with  $\mathcal{M}(A) = \{\lambda_a; a \in A\}$ . Let  $T: A^* \to A^*$  be a bounded linear map such that T(Ff) = FT(f) for all  $F \in A^{**}$ 

and  $f \in A^*$ . Then  $T = \lambda_a^*$  for some  $a \in A$  if any one of the following conditions holds.

(1) T is weak\*-weak\* continuous

(2) 
$$Z_t(A^{**}) = A$$
.

Moreover, if A has a bounded approximate identity bounded by 1. Then ||T|| = ||a||.

*Proof.* Let  $T^* : A^{**} \to A^{**}$  be adjoint to T. Then  $T^*$  is a left multiplier on  $A^{**}$ . In fact, for  $F, G \in A^{**}$ , we have

$$\langle T^*(FG), f \rangle = \langle FG, T(f) \rangle = \langle F, GT(f) \rangle = \langle F, T(Gf) \rangle$$
  
=  $\langle T^*(F), Gf \rangle = \langle T^*(F)G, f \rangle.$ 

Hence  $T^*(FG) = T^*(F)G$ , showing that  $T^*$  is a left multiplier on  $A^{**}$ . We next show that for each  $a \in A$ ,  $T^*(a) \in A$ . Let  $a \in A$  and  $(f_\alpha)$  be a net in  $A^*$  such that  $f_\alpha \to f$   $(f \in A^*)$  in the weak\* topology. We have

$$\lim_{\alpha} \langle T^*(a), f_{\alpha} \rangle = \lim_{\alpha} \langle a, T(f_{\alpha}) \rangle = \lim_{\alpha} \langle T(f_{\alpha}), a \rangle$$
$$= \langle T(f), a \rangle = \langle T^*(a), f \rangle,$$

since T is weak\*-weak\* continuous. Therefore  $T^*(a) \in A^{**}$  is weak\*-weak\* continuous. By ([21], Chapter 3),  $T^*(a) \in A$ . So T\* restricted to A is a left multiplier from A into A. Consequently by assumption, there exists  $x \in A$  such that

$$T^*(a) = xa = \lambda_x^{**}(a),$$

for each  $a \in A$ . In particular  $T^* = \lambda_x^{**}$ , by weak\*-continuity of the adjoint. It is clear that  $T = \lambda_x^*$ .

As before, the proof will be complete if we show that  $T^*(a) \in A$  for all  $a \in A$ . To that end, suppose that  $a \in A$  and  $(F_\alpha)$  is a net in  $A^{**}$  such that  $F_\alpha \to F$  ( $F \in A^{**}$ ) in the weak\* topology. Since  $T^*$  is weak\*-weak\* continuous and  $aF_\alpha \to aF$  in the weak\* topology, we have

$$T^*(aF_\alpha) \to T^*(aF) = T^*(a)F.$$

Consequently  $T^*(a)F_{\alpha} \to T^*(a)F$ , showing that  $T^*(a)$  is in the topological center of  $A^{**}$ . By assumption,  $T^*(a) \in A$ .

Now, let  $(e_{\alpha})$  be a bounded approximate identity bounded by 1. There exists a functional  $f \in A^*$  with  $||f|| \leq 1$  such that  $|\langle f, a \rangle| + \epsilon \geq ||a||$ . We have

$$||T|| \ge ||T(f)|| = ||\lambda_a^*(f)|| = ||fa|| \ge \lim_{\alpha} |\langle fa, e_{\alpha} \rangle|$$
$$= \lim_{\alpha} |\langle f, ae_{\alpha} \rangle| = |\langle f, a \rangle| \ge ||a|| - \epsilon.$$

As  $\epsilon > 0$  may be arbitrary, we have  $||T|| \ge ||a||$ . Clearly,  $||T|| \le ||a||$ . Consequently ||T|| = ||a||.

**Theorem 3.6.** Let G be a locally compact abelian group. Let T be a compact weak\*-weak\* continuous linear operator of  $L^{\infty}(G)$  to itself and satisfy T(Ff) = FT(f) for all  $F \in L^1(G)^{**}$ ,  $f \in L^{\infty}(G)$ . Then every  $T \in Hom_{L^1(G)}(L^{\infty}(G), L^{\infty}(G))$  is weak\*-weak\* continuous.

*Proof.* Let T be a compact bounded linear operator of  $L^{\infty}(G)$  to itself and satisfy T(Ff) = FT(f) for all  $F \in L^1(G)^{**}$ ,  $f \in L^{\infty}(G)$ . It is easy to see that  $T = \lambda_{\mu}^*$  for some  $\mu \in M(G)$ , since  $\mathcal{M}(L^1(G)) = M(G)$  (see [12] and [23]). Indeed,  $T^*$  is a left multiplier on  $L^{\infty}(G)^*$  (see Theorem 3.5 and its proof). Therefore  $T^*|_{L^1(G)} = \lambda_{\mu}$  for some  $\mu \in M(G)$ . On the other hand,  $T^* = \lambda_{\mu}^{**}$  is a compact left multiplier on  $L^1(G)$ . Therefore if  $(e_{\alpha})$  is a bounded approximate identity bounded by 1 for  $L^1(G)$  [11], without loss of generality, we may assume that  $\mu * e_{\alpha} \to \eta$  ( $\eta \in L^1(G)$ ) in the norm topology. Now, let  $f \in C_0(G)$ . Since  $C_0(G) \subseteq LUC(G) \subseteq L^{\infty}(G)L^1(G)$  [11], we have  $f = g\nu$  for some  $g \in L^{\infty}(G)$ and  $\nu \in L^1(G)$ . We can write

$$\begin{split} \langle f, \mu \rangle &= \langle g\nu, \mu \rangle = \langle g, \nu * \mu \rangle = \lim_{\alpha} \langle g, \nu * e_{\alpha} * \mu \rangle \\ &= \langle g, \nu * \eta \rangle = \langle f, \eta \rangle. \end{split}$$

This shows that  $\mu = \eta \in L^1(G)$ . On the other hand, Sakai [22] has proved that if G is a locally compact non-compact group, then the only element  $\nu \in L^1(G)$  for which the operator  $\eta \to \eta * \nu$  is compact, is equal to 0.

Consequently G is compact and every  $T \in Hom_{L^1(G)}(L^{\infty}(G), L^{\infty}(G))$  is weak\*-weak\* continuous. In fact,  $L^1(G)$  is a two-sided ideal in  $L^1(G)^{**}$ . Let  $\mu \in L^1(G)$ , and let  $\{F_{\alpha}\}$  converges to F in the weak\*-topology. Let  $\{e_{\beta}\}$  be a bounded approximate identity for  $L^1(G)$  [11]. For every  $f \in L^{\infty}(G)$  and  $\alpha$ ,

$$\begin{split} \langle T^*(\mu)F_{\alpha},f\rangle &= \langle T^*(\mu),F_{\alpha}f\rangle = \langle T(F_{\alpha}f),\mu\rangle = \lim_{\beta} \langle T(F_{\alpha}f),e_{\beta}*\mu\rangle \\ &= \lim_{\beta} \langle \mu T(F_{\alpha}f),e_{\beta}\rangle = \lim_{\beta} \langle T(\mu F_{\alpha}f),e_{\beta}\rangle = \lim_{\beta} \langle \mu F_{\alpha}T(f),e_{\beta}\rangle \\ &= \lim_{\beta} \langle F_{\alpha}T(f),e_{\beta}*\mu\rangle = \lim_{\beta} \langle F_{\alpha},T(f)e_{\beta}*\mu\rangle = \langle F_{\alpha},T(f)\mu\rangle. \end{split}$$

This shows that  $\langle T^*(\mu)F_{\alpha}, f \rangle$  converges to  $\langle F, T(f)\mu \rangle$ . On the other hand,

$$\langle F, T(f)\mu \rangle = \lim_{\beta} \langle FT(f), e_{\beta} * \mu \rangle = \lim_{\beta} \langle T(\mu Ff), e_{\beta} \rangle$$
  
= 
$$\lim_{\beta} \langle \mu T(Ff), e_{\beta} \rangle = \langle T^{*}(\mu)F, f \rangle.$$

Consequently  $\{T^*(\mu)F_\alpha\}$  converges to  $T^*(\mu)F$  in the weak\*-topology, and so  $T^*(\mu) \in Z_t(L^1(G)^{**}) = L^1(G)$  [17]. Now, let  $\{f_\alpha\}$  converges to f in the weak\*-topology. For  $\mu \in L^1(G)$ ,

$$\lim_{\alpha} \langle T(f_{\alpha}), \mu \rangle = \lim_{\alpha} \langle f_{\alpha}, T^{*}(\mu) \rangle = \langle f, T^{*}(\mu) \rangle = \langle T(f), \mu \rangle.$$

This proves that T is weak\*-weak\* continuous.

## 4. COMPACTNESS AND WEAKLY ALMOST PERIODICITY

In the present section we state a collection of characterizations of weakly almost periodic operators and compact operators for a Banach algebra A in terms of elements in  $A^*$ .

Let T be a weakly compact operator in  $Hom_A(A^*, A^*)$ . For every  $f \in A^*$ ,

$$\{T(f)a; a \in b(A)\} = \{T(fa); a \in b(A)\} \subseteq ||f|| \{T(h); h \in b(A^*)\}.$$

Since T is weakly compact, the last set is relatively compact with respect to the weak topology of  $A^*$ . Hence  $T(f) \in wap(A^*)$ .

**Definition 4.1.** For an operator  $T : A^* \to A^*$  we are able to speak of the translate  $T_a$ , which is that operator which to each f in  $A^*$  associates the element T(f)a in  $A^*$ . An operator T is said to be weakly almost periodic [almost periodic] if the set  $\{T_a; a \in b(A)\}$  of translates of T is relatively compact with respect to weak operator topology [strong operator topology] in  $\mathcal{B}(A^*, A^*)$ .

**Theorem 4.2.** Let A be a Banach algebra. An operator T in  $Hom_A(A^*, A^*)$  is weakly almost periodic if and only if each element in  $T(A^*)$  is weakly almost periodic.

*Proof.* Let  $\{T_a; a \in b(A)\}$  be a relatively compact set in  $\mathcal{B}(A^*, A^*)$  (in the weak operator topology). Let  $f \in A^*$  and let  $\{a_\alpha\}$  be an arbitrary net in b(A). Since  $\{T_a; a \in b(A)\}$  is relatively compact, there exists an element S in  $\mathcal{B}(A^*, A^*)$  and a subnet  $\{T_{a_\beta}\}$  of  $\{T_{a_\alpha}\}$  such that  $\{T_{a_\beta}\}$  converges to S in the weak operator topology of  $\mathcal{B}(A^*, A^*)$ . By VI.1.3 in [5],  $T(f)a_\beta$  converges to S(f) in the weak topology in  $A^*$ . Thus  $\{T(f)a; a \in b(A)\}$  is relatively weakly compact.

To prove the converse, let  $T(f) \in A^*$  be weakly almost periodic for each f in  $A^*$ . To every  $S \in \mathcal{B}(A^*, A^*)$  we associate the operator  $N_S : f \mapsto S(f)$  on  $A^*$ . Let also

$$N: S \mapsto (N_S(f))_{f \in A^*}$$
$$\mathcal{B}(A^*, A^*) \to \prod_{f \in A^*} A^*.$$

We claim that N is a homeomorphism from  $\mathcal{B}(A^*, A^*)$  with respect to weak operator topology into the product of the weak topology on the right. It is easy to see that N is injective. Now, let  $S_{\alpha} \to S$  in the weak operator topology of  $\mathcal{B}(A^*, A^*)$ . Thus for each  $f \in A^*$ ,  $S_{\alpha}(f)$  converges to S(f) in the weak topology of  $A^*$  (see VI.1.3 in [5]). This shows that N is a continuous linear map. Since every weak operator-neighborhood of 0 contains a neighborhood of the form

 $V = \{S \in \mathcal{B}(A^*, A^*); \ |\langle F_i, S(f_j) \rangle| < \epsilon \ \text{ for } 1 \le i \le n, \ 1 \le j \le m\}$ 

where  $F_i \in A^{**}$ ,  $f_j \in A^*$  and  $\epsilon > 0$ , it is easy to see that N is open (or see [21]). Consequently N is a homeomorphism.

By assumption, for each  $f \in A^*$ ,  $\{T(f)a; a \in b(A)\}$  is relatively weakly compact. The image of  $\{T_a; a \in b(A)\}$  lies in the subset

$$\mathcal{P} := \prod_{f \in A^*} \{ T(f)a; \ a \in b(A) \}.$$

By Tychonoff 's Theorem,  $\mathcal{P}$  is compact. Hence  $\{T_a; a \in b(A)\}$  is relatively compact in the weak operator topology.

**Remarks 4.3.** The combination of Theorem 4.2 and its previously mentioned result gives: for a locally compact group G, one considers the space wap(G) of all continuous weakly almost periodic functions on G, that is, all  $f \in C(G)$  for which  $\{xf; x \in G\}$  is relatively compact in the weak topology of C(G) [2]. It is well known that  $wap(L^{\infty}(G)) = wap(G)$ . Let G be an infinite locally compact group. If  $I : L^{\infty}(G) \to L^{\infty}(G)$  is weakly compact, then  $L^{\infty}(G)$  is reflexive [21]. This is contradiction (see Corollary 5.5 in [19]). We conclude that  $L^{\infty}(G) \neq wap(G)$ . By Theorem 4.2, the identity operator on  $L^{\infty}(G)$  is not weakly almost periodic.

Completely analogous to Theorem 4.2, we also have

**Theorem 4.4.** Let A be a Banach algebra. An operator T in  $Hom_A(A^*, A^*)$  is almost periodic if and only if each element in  $T(A^*)$  is almost periodic.

For  $f \in A^*$  define bounded linear map  $T_f : A \to A^*$  by the formula:  $T_f(a) = af$ . By a direct verification we obtain  $||T_f|| \le ||f||$ .  $T_f$  is said to be weakly almost periodic if  $\{(T_f)_a; a \in b(A)\}$  is relatively weakly compact in the weak operator topology in  $\mathcal{B}(A, A^*)$  where  $(T_f)_a(x) = T_f(xa)$  for each  $x \in A$ .

**Theorem 4.5.** Let A be a commutative Banach algebra. For f in  $A^*$ , the following are equivalent:

- (i)  $T_f$  is weakly almost periodic.
- (ii)  $fx \in wap(A^*)$  for every  $x \in A$ .

*Proof.* Suppose that  $\{(T_f)_a; a \in b(A)\}$  is relatively weakly compact in the weak operator topology of  $\mathcal{B}(A, A^*)$ . Let  $x \in A$  and  $\{fxa_\alpha\}$  be a net in  $\{fxa; a \in b(A)\}$ . Since  $T_f$  is weakly almost periodic, the net  $\{(T_f)_{a_\alpha}\}$  admits a subnet  $\{(T_f)_{a_\beta}\}$  converging to an element T in  $\mathcal{B}(A, A^*)$  in the weak operator topology. By VI.1.3 in [5],  $fxa_\beta \to T(x)$  in the weak topology in  $A^*$ . This shows that  $\{fxa; a \in b(A)\}$  is relatively weakly compact. By [4],  $fx \in wap(A^*)$ .

To prove the converse, it is known that a subset  $X \subseteq \mathcal{B}(A, A^*)$  is compact in the weak operator topology if and only if it is closed in the weak operator topology and the weak closure of  $\{T(x); T \in X\}$  is weakly compact for each  $x \in A$  [5]. By assumption,  $\{fxa; a \in b(A)\}$  is weakly compact and so  $T_f$  is weakly almost periodic.

**Definition 4.6.** Let A be a Banach algebra, X a subset of  $A^*$ . We say that X is invariant if  $fa \in X$  whenever  $f \in X$  and  $a \in b(A)$ . X is said to be equi-almost periodic if the following condition is true: for every  $\epsilon > 0$ , there exists a finite subset  $S \subseteq b(A)$  with the property that for every  $a \in b(A)$  there exists  $b \in S$  such that  $||fa - fb|| < \epsilon$  for all  $f \in X$ .

The above definition is motivated by Lemma 3 in Loomis [20]. It is known that if G is a locally compact group, then each bounded linear map  $T : L^1(G) \to L^{\infty}(G)$ with  $T(\mu * \nu) = T(\mu)\nu$  is a convolution-type operator  $H_{\theta}$  induced by an element  $\theta$  of  $L^{\infty}(G)$ . It is known ([3], [24]) that  $H_{\theta}$  is compact if and only if  $\theta \in wap(L^1(G))$ .

**Theorem 4.7.** Let A be a Banach algebra with a bounded approximate identity bounded by 1. An operator T in  $Hom_A(A^*, A^*)$  is compact if and only if  $T(b(A^*))$  is equi-almost periodic.

Proof. Let  $T \in Hom_A(A^*, A^*)$  be compact. Let  $\epsilon > 0$  be given. By hypothesis, there exist a finite number of elements  $\{f_1, ..., f_n\}$  in  $b(A^*)$  such that for given fin  $b(A^*)$ , an  $f_i$  may be found such that  $||T(f_i) - T(f)|| < \frac{\epsilon}{3}$ . Since T is compact, it is easy to see that T is almost periodic. It follows from Theorem 4.4 that  $T(f_i)$  $(i \in \{1, ..., n\})$  is almost periodic. It is easy to see that  $\{T(f_1), ..., T(f_n)\}$  is equialmost periodic (more information on this problem can be found in [20]). We may determine a subset  $\{a_1, ..., a_m\}$  in b(A) such that for each a in b(A) an  $a_k$  may be found such that  $||T(f_ia) - T(f_ia_k)|| < \frac{\epsilon}{3}$  whenever  $i \in \{1, ..., n\}$ . For f in  $b(A^*)$ , there exists  $f_i \in \{f_1, ..., f_n\}$  such that

$$||T(fa) - T(f_ia)|| = ||T(f)a - T(f_i)a|| \le ||T(f) - T(f_i)|| < \frac{\epsilon}{3}$$

and also  $||T(fa_k) - T(f_ia_k)|| < \frac{\epsilon}{3}$ . Using the triangle inequality, we obtain

$$||T(f)a - T(f)a_k|| = ||T(fa) - T(fa_k)|| < \epsilon.$$

To prove the converse, let  $\epsilon > 0$  be given. There exists a finite subset  $\{a_1, ..., a_n\}$ in b(A) such that for every  $a \in b(A)$ , a point  $a_i$   $(i \in \{1, ..., n\})$  may be found such that  $||T(f)a - T(f)a_i|| < \frac{\epsilon}{3}$  whenever  $f \in b(A^*)$ . Now, let  $\{e_\alpha\}$  be a bounded approximate identity bounded by 1 for A. We have

$$\begin{aligned} \langle T(f), a \rangle - \langle T(f), a_i \rangle | &= \lim_{\alpha} |\langle T(f), ae_{\alpha} \rangle - \langle T(f), a_i e_{\alpha} \rangle | \\ &= \lim_{\alpha} |\langle T(fa), e_{\alpha} \rangle - \langle T(fa_i), e_{\alpha} \rangle | \\ &\leq ||T(fa) - T(fa_i)|| < \frac{\epsilon}{3}, \end{aligned}$$

whenever  $f \in b(A^*)$ . Since T is a bounded linear map, it follows that the clouser of  $\{\langle T(f), a_i \rangle; 1 \leq i \leq n, f \in b(A^*)\}$  in  $\mathbb{C}$  is compact. We can choose a finite subset  $\{f_1, ..., f_m\}$  in  $b(A^*)$  such that for each f in  $b(A^*)$  an  $f_k$   $(1 \leq k \leq m)$  may be found such that  $|\langle T(f), a_i \rangle - \langle T(f_k), a_i \rangle| < \frac{\epsilon}{3}$  for all  $i \in \{1, ..., n\}$ . We have

$$\begin{aligned} |\langle T(f), a \rangle - \langle T(f_k), a \rangle| &\leq |\langle T(f), a \rangle - \langle T(f), a_i \rangle| + |\langle T(f), a_i \rangle - \langle T(f_k), a_i \rangle| \\ &+ |\langle T(f_k), a_i \rangle - \langle T(f_k), a \rangle| < \epsilon \end{aligned}$$

whenever  $a \in b(A)$ . This shows that  $||T(f) - T(f_k)|| \le \epsilon$ . Hence the set

$$\{T(f); f \in b(A)\}$$

is totally bounded, which means that T is compact.

References

- C. D. Aliprantis and O. Burkinshaw, *Positive Operators*, Academic Press, New York-London, 1985.
- J. Baker, A. T. Lau and J. S. Pym, Module homomorphisms and topological centers associated with weakly sequentially complete Banach algebras, *J. Funct. Anal.*, 158 (1998), 186-208.
- G. Crombez and W. Govaerts, Compcat convolution operators between *B<sup>p</sup>(G)*-spaces, *Coll. Math.*, **39** (1978), 325-329.
- J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, *Proc. Roy.* Soc. Edinburgh Sect. A, 84 (1979), 309-325.
- 5. N. Dunford and J. Schwartz, "Linear operators", Part 1, Interscience, New York, 1958.
- A. Ghaffari, Strongly and weakly almost periodic linear maps on semigroup algebras, Semigroup Forum, 76 (2008), 95-106.
- A. Ghaffari and A. R. Medghalchi, Characterization of operators on the dual of hypergroups which commute with translations and convolutions, *Acta Math. Sinica*, *English Series*, **20** (2004), 201-208.

- 8. F. Ghahramani and A. T. Lau, Multipliers and modulus on Banach algebras related to locally compact groups, *J. Funct. Anal.*, **150** (1997), 478-497.
- F. Ghahramani, A. T. Lau and V. Losert, Isometric isomorphisms between Banach algebras related to locally compact groups, *Trans. Amer. Math. Soc.*, **321** (1990), 273-283.
- 10. M. Grosser,  $L^1(G)$  as an ideal in its second dual space, *Proc. Amer. Math. Soc.*, 143 (1990), 243-249.
- 11. E. Hewitt and K. A. Ross, *Abstract Harmonic analysis*, Vol. I, Springer Verlage, Berlin, 1963; Vol. II, Springer Verlage, Berlin, 1970.
- 12. R. Larsen, An introduction to the theory of multipliers, Springer Verlag, Berlin, Heidelberg, New York, 1971.
- A. T. Lau, Continuity of Arens multiplication on the dual space of bounded uniformly continuous functions on a locally compact groups and topological semigroups, *Math. Proc. Camb. Phil. Soc.*, **99** (1986), 273-283.
- 14. A. T. Lau, Operators which commute with convolution on subspaces of  $L^{\infty}(G)$ , Colloq. Math., **39** (1978), 351-359.
- 15. A. T. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, *Trans. Amer. Math. Soc.*, **267** (1981), 53-63.
- 16. A. T. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, *Trans. Amer. Math. Soc.*, **251** (1979), 39-59.
- 17. A. T. Lau and V. Losert, On the second conjugate algebra of  $L^1(G)$  of a locally compact group, *J. London Math. Soc.*, **37** (1988), 464-470.
- 18. A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, *J. London Math. Soc.*, **41** (1990), 445-460.
- 19. A. T. Lau and A. Ulger, Topological centers of certain dual algebras, *Trans. Amer. Math. Soc.*, **348** (1996), 1191-1212.
- 20. L. H. Loomis, The spectral characterization of a class of almost periodic functions, *Annals of Math.*, **72** (1960), 362-368.
- 21. W. Rudin, Functional analysis, McGraw Hill, New York, 1991.
- 22. S. Sakai, Weakly compact operators on operator algebras, *Pacific J. Math.*, **14** (1964), 659-664.
- J. G. Wendel, Left centralizers and isomorphisms of groups algebras, *Pacific J. Math.*, 2 (1952), 251-261.
- 24. K. Ylinen, Characterizations of B(G) and  $B(G) \cap AP(G)$  for locally compact groups, *Proc. Amer. Math. Soc.*, **58** (1976), 151-157.

Ali Ghaffari School of Mathematics Institute for Research in Fundamental Sciences (IPM) P. O. Box 19395-5746 Tehran, Iran

Current Address: Department of Mathematics Semnan University Semnan, Iran E-mail: aghaffari@semnan.ac.ir