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EXTENSION OF ISOMETRIES ON UNIT SPHERE OF L∞

Dong-Ni Tan

Abstract. We prove that every surjective isometry between unit spheres of
L∞(Σ, Ω, µ) and a Banach space F can be linearly and isometrically extended
to the whole space, which means that if the unit sphere of a Banach space F
is isometric to the unit sphere of L∞(Σ, Ω, µ), then F is linearly isometric to
L∞(Σ, Ω, µ).

1. INTRODUCTION

Let (Ω, Σ, µ) be a σ-finite measure space. By L∞(Ω, Σ, µ) we denote the space
of all measurable essentially bounded functions f with the essential supremum norm

‖f‖ = ess. supt∈Ω|f(t)|.
Throughout this paper, we shall denote L∞(Σ, Ω, µ) by L∞. As usual, for any
Banach space F , its unit sphere is denoted by S(F ).

The classical Mazur-Ulam theorem [13] stated that any surjective isometry V
between two real normed spaces with V (0) = 0 must be linear. Mankiewicz
[12] extended this result by showing that every surjective isometry between open
connected subsets of two normed spaces E and F can be extended to an affine
isometry from E onto F . These two results demonstrate that the linear structure of
a normed space is completely determined by its unit ball as a metric space. A very
natural set which one feels may determine the space is the unit sphere. In 1987,
Tingley raised the following problem in [15]:

Problem. Let E and F be normed spaces with unit spheres S(E) and S(F )
respectively. Suppose that V : S(E) → S(F ) is a surjective isometry. Is there a
linear isometry Ṽ : E → F such that Ṽ |S(E) = V .
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It is called isometric extension problem or Tingley’s problem. To this problem,
we always consider the real case. It is because the answer is obviously negative in
the complex case. For example, E = F = C and V (x) = x̄ for all x ∈ C with
|x| = 1. Since there is no linear or even metrically convex structure on unit spheres,
it is hard to answer this problem. So far, it is still open in the general case.

During the past decade, Ding and his students have been working on this topic
(see [7] for its history) and have obtained many important results. For the surjective
isometries between unit spheres of classical Banach spaces Tingley’s problem has
been almost solved in the positive way (see [1–6, 8–11, 14, 16–17]).

Recently, for every isometry V between the unit spheres of L∞ and a Banach
space F , Li and Ren [9] gave some sufficient conditions as follows:

(i) For any x1, x2 in S(L∞) and real numbers λ1, λ2 in R, ‖λ1V (x1)+λ2V (x2)‖
= 1 implies that λ1V (x1) + λ2V (x2) ∈ V [S(L∞)].

(ii) For any mutual disjoint subsets {A1, · · ·An} of Ω with µ(Ak) > 0(1 ≤ k ≤
n), x in S(L∞) and real numbers {λ1, · · · , λn}, V (x) =

∑n
k=1 λkV (χAk

)
implies that there exist x0 ∈ S(L∞) and real numbers {λ′

1, · · · , λ′
n} such

that x =
∑n

k=1 λ′
kχAk

+ x0 where supp.x0 ⊂ (∪n
k=1Ak)c.

(ii)′ For any disjoint elements x1 and x2 in S(L∞), we have

dim.spanV [S(span{x1, x2})] = 2.

Li and Ren [9] proved that V satisfying (i) (ii) or (i) (ii)’ can be linearly extended to
the whole space. These conditions are similar to those given by Ding [5] for L∞(Γ)–
type spaces. It is easy to see that if V is surjective, then (i) is satisfied. However,
we shall point out that in fact the conditions (ii) and (ii)’ can be removed. Although
this can be inferred from one of the main results of Liu [11] who established that
for every bijective-ε-isometry T between unit spheres of two Banach spaces E, F ,
if E has property (m), then T can be extended to a bijective 5ε-isometry between
their closed unit balls (it is also shown in [11] by the knowledge of vector lattices
that L∞ has property (m)), the proof here is a direct and simple method which is
quite distinct from that of [11]. We feel it may be worth noting in the literature.

2. MAIN RESULTS

The following lemma has been proved in [5]. We give its proof just for com-
pleteness.

Lemma 2.1. (See [5, Lemma 2]). Let Y be a normed space, and let {yi}n
i=1

be a sequence in the unit sphere S(Y ). If for all signs θ k = ±1 (1 ≤ k ≤ n) and
for every 1 ≤ m ≤ n,
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‖θ1y1 + · · ·+ θmym‖ = 1,(2.1)

then for all {λk}n
k=1 ⊂ R,

‖λ1y1 + · · ·+ λnyn‖ = max{|λk| : 1 ≤ k ≤ n}.

Proof. We may assume that max{|λi| : 1 ≤ i ≤ n} = |λ1|. By the assumption
(2.1) and the Hahn-Banach theorem, there exists a functional f ∈ Y ∗ with ‖f‖ = 1
such that

f(y1) = 1, f(yk) = 0 for 2 ≤ k ≤ n.

Thus we have ‖λ1y1 + · · ·+ λnyn‖ ≥ |f(
∑n

i=1 λiyi)| = |λ1|. On the other hand,
notice that every normed space Y can be embedded linearly and isometrically into
a C(Ω) space with Ω being a compact subset of the unit ball of Y ∗. Thus we can
consider Y as a linear subspace of C(Ω). Then by (2.1),

n∑
i=1

|yi(t)| ≤ 1 ∀ t ∈ Ω.

Therefore, ∣∣∣∣∣
(

n∑
i=1

λiyi

)
(t)

∣∣∣∣∣ ≤
n∑

i=1

|λiyi(t)| ≤ |λ1|, ∀ t ∈ Ω,

which leads to ∥∥∥∥∥
n∑

i=1

λiyi

∥∥∥∥∥ ≤ |λ1|, ∀ t ∈ Ω.

Thus the proof is complete.

Lemma 2.2. (See [10, Corollary 1] or [8, Corollary 2.2]). Let E , F be
Banach spaces, and let V : S(E) → S(F ) be a surjective isometry. Then for all
x, y ∈ S(E),

‖V (x) + V (y)‖ = 2

if and only if ‖x + y‖ = 2.

To derive our main result, we need a simple basic fact in L∞ described as
follows.

Lemma 2.3. Let f be in L∞, and let r > 0. For every A ∈ Σ, if µ({t ∈
A, |f(t)| < r}) > 0, then there is an n0 ∈ N such that µ({t ∈ A, |f(t)| <

r − 1/n0}) > 0.
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The following lemma can also be seen in [9]. Our proof here simplifies the
original one.

Lemma 2.4. Let F be a Banach space. Suppose that V : S(L∞) → S(F ) be
a surjective isometry. Then for every A ∈ Σ with µ(A) > 0,

V (−χA) = −V (χA),

where χA is the characteristic function of the set A.

Proof. By the hypothesis on V , for every A ∈ Σ with µ(A) > 0 there is an
f ∈ S(L∞) such that V (f) = −V (χA). Then we assert that |f(t)| = 1 a.e on A.
Indeed if this is not true, then there is a measurable subset C0 ⊂ A with µ(C0) > 0
such that |f(t)| < 1 for every t ∈ C0. By Lemma 2.3 we may find an n0 ≥ 1 and
a subset C1 of C0 with µ(C1) > 0 such that |f(t)| < 1 − 1/n0 for every t ∈ C1.
Thus by Lemma 2.2,

2 − 1
n0

≥ ‖f − χC1‖ = ‖ − V (χA) − V (χC1)‖ = ‖χA + χC1‖ = 2.

A contradiction thus proves the assertion. Moreover, for every A0CA with µ(A0) >

0 by ‖f − χA0‖ = ‖V (f)− V (χA0)‖ = 2 we see in fact that f(t) = −1 a.e on A.
Now for every measurable B ⊂ Ω \ A with µ(B) > 0, we may also find

f1, f2 ∈ S(L∞) such that V (f1) = −V (χB) and V (f2) = −V (−χB). Analogous
to the above argument we see that

f1(t) = −1 and f2(t) = 1 a.e on B.

Thus the equations

‖f − fi‖ = ‖V (f)− V (fi)‖ = 1 for i = 1, 2

allow us to conclude that f(t) = 0 a.e on B. This finally yields f = −χA and
completes the proof.

Theorem 2.5. Let F be a Banach space. Then every surjective isometry V from
S(L∞) onto S(F ) can be extended to be a linear isometry on the whole space L ∞.

Proof. For any disjoint members A1, A2 ∈ Σ with µ(Ai) > 0 (i = 1, 2) and
a1, a2 ∈ R \ {0} with max{|ai| : i = 1, 2} = 1, note first from Lemma 2.4 that
‖V (χA1) ± V (χA2)‖ = 1. Thus we obtain from Lemma 2.1 that

‖a1V (χA1) + a2V (χA2)‖ = 1.



Extension of Isometries on Unit Sphere of L∞ 823

This guarantees that there is an f ∈ S(L∞) such that

V (f) = a1V (χA1) + a2V (χA2).

For each i ∈ {1, 2}, we apply Lemma 2.1 and Lemma 2.4 again to obtain that

‖f + sign(ai)χAi‖ = ‖V (f) + sign(ai)V (χAi)‖ = 1 + |ai|
and

‖f − sign(ai)χAi‖ = ‖V (f)− sign(ai)V (χAi)‖ = max
j �=i

{1 − |ai|, |aj|} ≤ 1.

Hence we conclude that

sign(f(t)) · sign(ai) ≥ 0 a.e. on Ai.(2.2)

and

|f(t)| ≤ |ai| a.e. on Ai.(2.3)

Now for every measurable subset B ⊂ Ω \ (A1 ∪ A2) with µ(B) > 0, we can
also find a g ∈ S(L∞) such that

V (g) = a2V (χA2) + V (χB).

An observation that ‖g + χB‖ = ‖V (g) + V (χB)‖ = 2 ensures the existence of a
measurable set B0 ⊂ B with µ(B0) > 0 such that

ess. supt∈B0
|g(t)| = 1 and g(t) ≥ 0 a.e. on B0.

Then we can deduce from this and ‖f − g‖ = ‖V (f) − V (g)‖ = 1 that there is a
measurable subset B1 of B0 with µ(B1) > 0 such that

f(t) ≥ 0 for every t ∈ B1.

And much more, since B is arbitrary, we see in fact that

f(t) ≥ 0 a.e. on Ω \ (A1 ∪ A2).

Considering the element a2V (χA2) − V (χB) in the same way, we can obtain that

f(t) ≤ 0 a.e. on Ω \ (A1 ∪ A2).

The two possibilities therefore yield

f(t) = 0 a.e. on Ω \ (A1 ∪ A2).(2.4)
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For every measurable set A0
1 ⊂ A1 with µ(A0

1) > 0, let f0 ∈ S(L∞) satisfy
V (f0) = −sign(a1)V (χA0

1
) + a2V (χA2). Then similar to the previous argument,

we know that

sign(f0(t)) · sign(a2) ≥ 0 a.e. on A2(2.5)

and

f0(t) = 0 a.e. on Ω \ (A0 ∪ A2).(2.6)

From (2.2) (2.5), (2.4) and (2.6), it is easily verified that

‖f − f0|| = max{ess.supt∈A0
1
|f(t)− f0(t)|,

ess.supt∈A2
|f(t)− f0(t)|, ess.supt∈A1\A0

1
|f(t)|}

≤ max{ess.supt∈A0
1
|f(t)− f0(t)|, 1}.

The fact that V is an isometry therefore implies that

max{ess.supt∈A0
1
|f(t)− f0(t)|, 1} ≥ ‖|a1|V (χA1) + V (χA0

1
)‖

≥ ‖V (χA1) + V (χA0
1
)‖ − (1 − |a1|)

= 2 − (1− |a1|) = 1 + |a1|.
Noticing f0(t) ≤ 1 a.e. and inequality (2.3) we see that ess. supt∈A0

1
|f(t)| = |a1|.

Inferring from relation (2.2) and using the arbitrariness of A0
1 and Lemma 2.3 again

we are sure that

f(t) = a1 a.e. on A1.

Similarly we can obtain that f(t) = a2 a.e. on A2. To sum up we have established
that

V (a1χA1 + a2χA2 ) = a1V (χA1) + a2V (χA2).

With this in hand we are able to apply induction to prove that

V

(
n∑

i=1

λiχBi

)
=

n∑
i=1

λiV (χBi)(2.7)

for any finite sequence {B1, · · · , Bn} of mutual disjoint members of Σ with µ(Bi) >
0 and {λ1 · · ·λn} ⊂ R with max{|λi| : 1 ≤ i ≤ n} = 1. Indeed, assume that equa-
tion (2.7) holds for n ≤ k − 1. Then for all signs θi = ±1 (1 ≤ i ≤ k) and
1 ≤ m ≤ k,
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‖θ1V (χB1) + · · ·+ θmV (χBm)‖ =

∥∥∥∥∥V
(

m−1∑
i=1

θiχBi

)
+ θmV (χBm)

∥∥∥∥∥ = 1.

It follows from this and Lemma 2.1 that

‖λ1V (χB1) + · · ·+ λkV (χBk
)‖ = 1.

Take h ∈ S(L∞) such that

V (h) =
k∑

i=1

λiV (χBi).

Then proceeding in a similar manner as above case where n = 2 implies that
h =

∑k
i=1 λiχBi . This finishes the proof of equation (2.7).

Now the required extension mapping Ṽ : L∞ → F is defined by

Ṽ (f) =

‖f‖V ( f
‖f‖) if f 	= 0,

0 if f = 0.

Then by (2.7) and its definition, Ṽ is a linear isometry on the subspace X consisting
of all simple functions of L∞. Since X is dense in L∞, it follows that Ṽ must be
a linear isometry on the whole space L∞, and its restriction to the unit sphere is
just V . The proof is complete.

The following conclusion improves the main results in [9] by showing that the
conditions (∆2) in [9, Theorem 3.1] and (∆3) in [9, Theorem 3.2] can be removed.

Corollary 2.6. LetF be a Banach space. Then every isometryV :S(L∞)→S(F )
can be extended to a linear isometry if and only if the following condition holds:
(∆) For any x1, x2 in S(L∞) and real numbers λ1, λ2 in R, ‖λ1V (x1)+λ2V (x2)‖ =
1 implies that λ1V (x1) + λ2V (x2) ∈ V [S(L∞)].

Proof. It is obvious that if V can be linearly extended, then condition
(∆) is satisfied. For the converse, note that condition (∆) implies that there is a
linear subspace F0 of F such that its unit sphere S(F0) is just V [S(L∞)]. Indeed
F0 =

⋃
r≥0 r ·V [S(L∞)], and it is clear that F0 is a Banach space. Thus the desired

conclusion follows immediately from Theorem 2.5.

Remark 2.7. Given a nonempty index set Γ, recall that a normed space E is
called an L∞(Γ)–type space if it is a subspace of �∞(Γ) such that {eγ}γ∈Γ ⊂ E .
Such as, c00(Γ), c0(Γ), �∞(Γ) (in particular, c00, c0, �∞) are all L∞(Γ)–type spaces.
It is easy to see from the proof of Theorem 2.5 that the statement of Corollary 2.6
remains valid if we replace L∞ by L∞(Γ)–type spaces. This generalizes the main
result [5, Theorem 1] by dropping the assumption (ii) of Theorem 1.



826 Dong-Ni Tan

Remark 2.8. An analogous result of Theorem 2.5 holds for L1(µ) (see [6]).
However, both cases do not extend to general ”into” isometries with respect to
”linear” extension. For example, define V : S(�∞(2)) → S(�∞(3)) by

V (a1, a2) = (a1, a2, f(a2)),

where f(t) : R → R is a non-linear Lipschitz map with f(0) = 0 whose Lipschitz-
constant is ≤ 1. Then it is apparent that V is an isometry but cannot be ”linearly”
extended to �∞(2). For the L1(µ)-case, let T : S(�1

(2)) → S(�1
(3)) be defined by

T (a1, a2) =

(1/8a1, 7/8a1, a2) if a1 ≥ 0,

(1/2a1, 1/2a1, a2) otherwise.

Then V is an isometry but T (−1, 0) 	= −T (1, 0), and thus cannot be ”linearly”
extended.
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