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ON THE SECOND EQUATION OF OBATA

Fazilet Erkekog̃lu

Abstract. In this paper we prove some results related to a certain vector field
satisfying the second equation of Obata [8] on vector fields.

1. INTRODUCTION

In this paper we prove some results related to a non-zero vector field Z on an n-
dimensional Riemannian manifold (M, g) satisfying (∇2Z)(X, Y )+λ[2g(Z,X)Y +
g(Y, Z)X+g(X,Y )Z] = 0 for all X, Y ∈ Γ(TM) and for λ(> 0) ∈ R. In fact, the
idea underlying this paper is to characterize (or represent) Riemannian manifolds
analytically by a differential equation on certain class of Riemannian manifolds
determined by mild geometric/topological assumptions.

2. PRELIMINARIES

Here, we briefly state the main concepts and definitions used throughout this
paper.

Let Z be a vector field on (M, g), a Riemannian manifold of dimension n, ∇
the Levi-Civita connection and

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

the curvature tensor, where X, Y ∈ Γ(TM). We write also < X, Y > if this is
convenient. The Ricci curvature (tensor) is the trace of R : trace(X → R(X, Y )Z)
and denoted by Ric(Y, Z). If {X1, · · · , Xn} is a local orthonormal frame for TM ,
then

Ric(Y, Z) = Σn
i=1g(R(Xi, Y )Z, Xi) = Σn

i=1g(R(Y, Xi)Xi, Z).
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Thus Ric is a symmetric bilinear form. It could also be defined as a symmetric
(1,1) tensor

Ric(Z) = Σn
i=1R(Z, Xi)Xi.

The scalar curvature is defined by Sc = trRic. Let Z be a vector field on this
n-dimensional Riemannian manifold (M, g) with Levi-Civita connection ∇. The
second covariant differential ∇2Z of Z is defined by

(∇2Z)(X, Y ) = ∇X∇Y Z −∇∇X Y Z,

where X, Y ∈ Γ(TM). We define the Laplacian ∆Z of Z on (M, g) to be the
trace of ∇2Z with respect to g, that is,

∆Z = trace∇2Z =
n∑

i=1

(∇2Z)(Xi, Xi),

where {X1, · · · , Xn} is a local orthonormal frame for TM.

Also, the affinity tensor LZ∇ of Z is defined by

(LZ∇)(X, Y ) = LZ∇XY −∇LZXY −∇XLZY,

where LZ is the Lie derivative with respect to Z and X, Y ∈ Γ(TM). (See, for
example page 109 of [9]). We define the tension field �Z of Z on (M, g) to be
the trace of LZ∇ with respect to g that is,

�Z = trace LZ∇ =
n∑

i=1

(LZ∇)(Xi, Xi),

where {X1, · · · , Xn} is a local orthonormal frame for TM .
By a straightforward computation, it can be shown by using the torsion-free

property of ∇ that

(LZ∇)(X, Y ) = (∇2Z)(X, Y ) + R(Z, X)Y,

(see page 110 of [9]) and hence

�Z = ∆Z + Ric(Z),

where X, Y ∈ Γ(TM). (Also see page 40 of [11]).
The divergence of a vector field Z, divZ, on (M, g) is defined as

divZ = tr(∇Z) =
n∑

i=1

g(∇XiZ, Xi)

if {Xi} is an orthonormal basis of TM .
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3. THE SECOND EQUATION OF OBATA

The elementary results of this chapter could also be collected from [2]. First,
we state a differential equation, which is a slight generalization of an equation given
by Obata [8], characterizing Euclidian spheres. It is shown in [10] that, a necessary
and a sufficient condition for a connected, simply connected, complete n(≥ 2)-
dimensional Riemannian manifold (M, g) to be isometric with the Euclidian sphere
of radius 1√

λ
, λ > 0 is the existence of a nonconstant function f on M satisfying

the equation

(∇2∇f)(X, Y ) + λ[2g(∇f, X)Y + g(Y,∇f)X + g(X, Y )∇f ] = 0,

for all X, Y ∈ Γ(TM). In fact, we can replace ∇f with a nonzero vector field in
the above equation.

Lemma 3.1. Let (M, g) be an n-dimensional Riemannian manifold and λ ∈ R.
If Z is a vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z] = 0,

for all X, Y ∈ Γ(TM), then

∆Z = −(n + 3)λZ.

Proof. If we take the trace of the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z] = 0,

with respect to g on (M, g) we obtain another differential equation

∆Z = tr(∇2Z)

=
n∑

i=1

(∇2Z)(Xi, Xi)

=
n∑

i=1

(−λ[2g(Z, Xi)Xi + g(Xi, Z)Xi + g(Xi, Xi)Z])

= −λ

n∑
i=1

[3g(Z, Xi)Xi + g(Xi, Xi)Z]

= −λ(3Z + nZ)

= −(n + 3)λZ,

here {Xi} is an orthonormal frame of TM , in fact an eigenvalue equation.
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Remark 3.2. Note that, on a connected, compact Riemannian manifold (M, g)
the Laplacian ∆ is negative semi-definite on spaces of vector fields. Thus, if (M, g)
is compact, eigenvalues of ∆ are non-positive on vector fields. The case Z is an
eigen vector field corresponding to the 0 eigen value occurs if and only if Z is a
parallel vector field on (M, g) (see Theorem 3.2 in [4]) .

In conclusion, we can say that on a compact Riemannian manifold (M, g), the
eigenspace corresponding to the zero eigenvalue of ∆ consist of parallel vector
fields on (M, g). Also note here that, since Ric(Z, Z) = 0 for a parallel vector
field Z, the eigenspace corresponding to the zero eigenvalue of ∆ does not exist if
Ric(x, x) �= 0 for all x( �= 0) ∈ TpM for some p ∈M .

Remark 3.3. Note also that, on a compact Riemannian manifold (M, g) the
Laplacian is an elliptic operator. Thus, by the spectral theorem, the eigenvalues λi

of ∆ are of the form

−∞ ← · · ·< λi < · · ·< λ1 < λ0 = 0.

Thus, if Ric(x, x) �= 0 for all x( �= 0) ∈ TpM for some p ∈ M , then the largest
eigenvalue of ∆ on the vector space of vector fields on (M, g) is negative.

Lemma 3.4. Let (M, g) be an n-dimensional Riemannian manifold and λ ∈ R.
If Z is a vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z] = 0,

for all X, Y ∈ Γ(TM), then
(i) R(X, Y )Z = λ[g(Z, Y )X − g(X, Z)Y ],

for all X, Y ∈ Γ(TM), and hence
Ric(Z) = λ(n− 1)Z,

(ii) ∇div Z = −2λ(n + 1)Z,
and hence
∇2div Z = −2λ(n + 1)∇Z,
where ∇2div Z is the Hessian tensor of div Z.

Proof.
(i) Let X, Y ∈ Γ(TM). Then,

R(X, Y )Z = ∇2
X,Y Z −∇2

Y,XZ

= −λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z]− (−λ)[2g(Z, Y )X

+g(X, Z)Y + g(Y, X)Z]

= λ[2g(Z, Y )X − 2g(Z, X)Y + g(X, Z)Y − g(Y, Z)X ]

= λ[g(Z, Y )X − g(Z, X)Y ].
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Hence

g(Ric(Z), X) = g
( n∑

i=1

R(Z, Xi)Xi, X
)

=
n∑

i=1

g(R(Z, Xi)Xi, X)

=
n∑

i=1

R(Z, Xi, Xi, X)

=
n∑

i=1

R(Xi, X, Z, Xi)

=
n∑

i=1

g(R(Xi, X)Z, Xi)

=
n∑

i=1

g(λ[g(Z,X)Xi− g(Z, Xi)X ], Xi)

= λg(Z, X)
n∑

i=1

g(Xi, Xi)− λ

n∑
i=1

g(Z, Xi)g(X, Xi)

= λng(Z, X)− λg(Z, X)

= λ(n− 1)g(Z, X),

here {X1, · · · , Xn} is an orthonormal frame for TM near p ∈M .

(ii) Let {X1, · · · , Xn} be an adapted orthonormal frame near p ∈ M , that is,
{X1, · · · , Xn} is an orthonormal frame in TM with (∇Xi)p = 0 for i =
1, . . . , n, and let X ∈ Γ(TM). Then at p ∈M ,

g(∇divZ, X) = X(divZ)

=
n∑

i=1

Xg(∇XiZ, Xi)

=
n∑

i=1

[g(∇X∇XiZ, Xi) + g(∇XiZ,∇XXi)]

=
n∑

i=1

[g((∇2Z)(X, Xi), Xi)− g(∇∇XXiZ, Xi)]
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=
n∑

i=1

g(−λ{2g(Z,X)Xi + g(Xi, Z)Xi + g(X, Xi)Z}, Xi)

= −2λg(Z, X)
n∑

i=1

g(Xi, Xi)− λ

n∑
i=1

g(Z, Xi)g(X, Xi)

−λ

n∑
i=1

g(X, Xi)g(Z, Xi)

= −2nλg(Z, X)− 2λg(Z, X)

= −2(n + 1)λg(Z, X)

= g(−2(n + 1)λZ, X).

Hence, it follows that∇div Z = −2(n+1)λZ and hence∇2div Z = −2(n+
1)λ∇Z.

Definition 3.5. Let (M, g) be a Riemannian manifold and λ ∈ R. A vector
field Z on M satisfying

R(X, Y )Z = λ[g(Z, Y )X − g(X, Z)Y ],

for all X, Y ∈ Γ(TM), is called a λ-nullity vector field on (M, g).

That is, Z is a nullity vector field with respect to the curvature-like tensor field

F (X, Y )W = R(X, Y )W − λ[g(W, Y )X − g(X, W )Y ],

on (M, g). (See Sections 2 and 4 of [10]).
In particular, if there exist a nonzero λ( �= 0)-nullity vector field Z on a Rie-

mannian manifold (M, g) then (M, g) is irreducible. (see [1], [5], [10] and the
references therein for details).

Remark 3.6. Let (M, g) be an n-dimensional Riemannian manifold and λ ∈ R.
If Z is a vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z] = 0,

for all X, Y ∈ Γ(TM) then, Z is a λ-nullity vector field by Lemma 3.4. That is, Z

is a nullity vector field with respect to the curvature-like tensor field F (X, Y )W =
R(X, Y )W − λ[g(W, Y )X − g(X, W )Y ] on (M, g). If, in addition, Z is nonzero
and λ �= 0, then (M, g) is irreducible.
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Definition 3.7. A vector field Z on (M, g) is projective if it satisfies

(LZ∇)(X, Y ) = π(X)Y − π(Y )X,

for any vector fields Y and Z, π being a certain 1-form.

Corollary 3.8. Let (M, g) be an n-dimensional Riemannian manifold and λ ∈
R. If Z is a vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z] = 0,

for all X, Y ∈ Γ(TM), then Z is a projective vector field.

Proof. Let X, Y ∈ Γ(TM). Then,

(LZ∇)(X, Y ) = (∇2Z)(X, Y ) + R(Z, X)Y

= −λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z] + λ[g(Y, X)Z

−g(Z, Y )X ]

= −2λg(Z, X)Y − 2λg(Z, Y )X.

In fact, if (M, g) is compact, then this can be obtained differently (see Corollary
3.15 below).

Corollary 3.9. Let (M, g) be an n-dimensional Riemannian manifold and λ ∈
R. If Z is a vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z] = 0,

for all X, Y ∈ Γ(TM), then

∆(div Z) = −2(n + 1)λdivZ.

Proof. If we take the trace of the equation

∇2div Z = −2(n + 1)λ∇Z

by Lemma 3.11, we obtain another differential equation

∆(div Z) = tr(∇2div Z)

= tr(−2(n + 1)λ∇Z)

= −2(n + 1)λtr(∇Z)

= −2(n + 1)λdivZ,

in fact an eigenvalue equation.
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Remark 3.10. Considering the differential equations

(∇2Z)(X, Y ) + λg(Z, X)Y = 0,

and
(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z] = 0,

for λ > 0 on the n-dimensional Euclidian sphere of radius 1√
λ

, intuitively, the first
differential equation corresponds to the first eigenvalue of the Laplacian (that is,
∆div Z = −nλdiv Z) and the latter differential equation corresponds to the second
eigenvalue of the Laplacian (that is, ∆div Z = −2(n + 1)λdiv Z) on the Euclidian
sphere of radius 1√

λ
. Also, a vector field satisfying the first equation is necessarily

a conformal vector field (see Remark 3.5 in [6]). A vector field satisfying the latter
differential equation is necessarily a projective vector field by Corollary 3.8 (see
also Corollary 3.16).

Lemma 3.11. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a
non-zero vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z = 0,

for all X, Y ∈ Γ(TM) then, ∇div Z also satisfies the same equation.
Proof. Since Z is non-zero, it follows from Lemma 3.4 that div Z is non-

constant and ∇2div Z = −2(n + 1)λ∇Z. Hence,∇Z is self-adjoint and can be
written as ∇Z = div Z

n id + σ, where σ is the traceless self-adjoint part of ∇Z. Let
X, Y ∈ Γ(TM). Then, by Lemma 3.4,

(∇σ)(X, Y ) = (∇(∇Z − div Z

n
id)(X, Y )

= (∇(∇Z))−∇(
div Z

n
id)(X, Y )

= ∇2Z(X, Y )−∇X(
div Z

n
id)(Y )

= ∇2Z(X, Y )−∇X
div Z

n
id(Y ) +

div Z

n
id(∇XY )

= ∇2Z(X, Y )−∇X
div Z

n
Y +

div Z

n
∇XY

= ∇2Z(X, Y )−X(
divZ

n
)Y − div Z

n
∇XY +

div Z

n
∇XY

= ∇2Z(X, Y )− 1
n

X(div Z)Y

= ∇2Z(X, Y )− 1
n

g(∇div Z, X)Y
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= −2λg(Z, X)Y − λg(Y, Z)X − λg(X, Y )Z − 1
n

g(∇div Z, X)Y

= −2λ
1

−2(n + 1)λ
g(∇divZ, X)Y − λ

1
−2(n + 1)λ

g(Y,∇divZ)X

−λ
1

−2(n + 1)λ
g(X, Y )∇div Z − 1

n
g(∇divZ, X)Y

=
1

n + 1
g(∇div Z, X)Y +

1
2(n + 1)

g(Y,∇divZ)X

+
1

2(n + 1)
g(X, Y )∇div Z − 1

n
g(∇div Z, X)Y

= (
1

(n + 1)
− 1

n
)g(X,∇divZ)Y +

1
2(n + 1)

g(Y,∇divZ)X

+
1

2(n + 1)
g(X, Y )∇div Z

=
−1

n(n + 1)
g(X,∇divZ, )Y +

1
2(n + 1)

g(Y,∇divZ)X

+
1

2(n + 1)
g(X, Y )∇div Z

Thus,

(∇2∇div Z)(X, Y )

= −2(n + 1)λ(∇2Z)(X, Y )

= −2(n + 1)λ∇(
divZ

n
id + σ)(X, Y )

= −2(n + 1)λ[∇divZ

n
id) +∇σ](X, Y )

= −2(n + 1)λ[(
1
n

)g(∇divZ, X)Y +∇σ(X, Y )]

= −2
n + 1

n
λg(∇divZ, X)Y − 2(n + 1)λ[

−1
n(n + 1)

g(X,∇divZ)Y

+
1

2(n + 1)
g(∇divZ, Y )X +

1
2(n + 1)

g(X, Y )∇div Z]

= −2(
n + 1

n
− 1

n
)λg(∇divZ, X)Y − λg(X,∇divZ)Y

−λg(X, Y )∇div Z

= −λ[2g(X,∇divZ)Y + g(∇div Z, Y )X + g(X, Y )∇div Z].
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Corollary 3.12. Let (M, g) be an n-dimensional Riemannian manifold. If Z is
a non-zero vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Y, Z)X + g(X, Y )Z] = 0,

for all X, Y ∈ Γ(TM), then

∆∇div Z = −(n + 3)λ∇div Z.

Proof. If we take the trace of the equation

(∇2∇div Z)(X, Y ) = −λ[2g(X,∇divZ)Y +g(∇div Z, Y )X +g(X, Y )∇div Z],

with respect to g on (M, g) we obtain another differential equation

∆∇div Z = tr(∇2∇div Z)

=
n∑

i=1

(∇2Z)(Xi, Xi)

=
n∑

i=1

−λ[2g(Xi,∇div Z)Xi + g(∇divZ, Xi)Xi + g(Xi, Xi)∇div Z

= −λ

n∑
i=1

[3g(∇divZ, Xi)Xi + g(Xi, Xi)∇div Z]

= −λ(3∇divZ + n∇div Z)

= −λ(n + 3)∇div Z.

Lemma 3.13. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a
non-zero vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Z, Y )X + g(X, Y )Z] = 0,

for all X, Y ∈ Γ(TM), then
�Z = −4λZ.

Proof. It follows from Lemma 3.1 and Lemma 3.4 that,

�Z = ∆Z + Ric(Z)

= −(n + 3)λZ + (n− 1)λZ

= −4λZ.
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Remark 3.14. Let (M, g) be a compact n(≥ 2)-dimensional Riemannian man-
ifold. Recall that the tension operator � on Γ(TM) is also a linear, self-adjoint,
elliptic operator with respect to the inner product <, > on the vector space Γ(TM)
of vector fields on M defined by < X, Y >=

∫
M g(X, Y ).

Corollary 3.15. Let (M, g) be an n-dimensional Riemannian manifold. If Z is
a non-zero vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z,X)Y + g(Z, Y )X + g(X, Y )Z] = 0,

for all X, Y ∈ Γ(TM), then it also satisfies the equation

�Z − 2
n + 1

∇div Z = 0.

Proof. By Lemma 3.4 and Lemma 3.13,

�Z − 2
n + 1

∇div Z = −4λZ − 2
n + 1

(−2)λ(n + 1)Z

= −4λZ + 4λZ

= 0.

Corollary 3.16. Let (M, g) be an n-dimensional compact Riemannian manifold.
If Z is a non-zero vector field on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z,X)Y + g(Z, Y )X + g(X, Y )Z] = 0,

for all X, Y ∈ Γ(TM), then Z is a projective vector field.

Proof. This can easily be obtained from Corollary 3.15 (see page 45 of
[11]).

Lemma 3.17. Let (M, g) be an Einstein n-dimensional Riemannian manifold
with scalar curvature τ . If Z is a non-zero vector field satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z,X)Y + g(Z, Y )X + g(X, Y )Z] = 0, λ > 0,

for all X, Y ∈ Γ(TM), then
λ =

τ

n(n − 1)
.

Proof. If (M, g) is an Einstein n-dimensional Riemannian manifold with scalar
curvature τ and Z be a vector field on (M, g) then

div ∆Z =
τ

n
div Z + ∆div Z,
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by Lemma 3.8 of [4]. On the other hand, ∆Z = −(n+3)λZ by Lemma 3.1. Hence

div ∆Z = div [−(n + 3)λZ]

= −(n + 3)λdiv Z

=
τ

n
div Z + ∆div Z,

which implies

∆div Z = −(n + 3)λdivZ − τ

n
div Z

= −[(n + 3)λ +
τ

n
]div Z.

Comparing this with
∆div Z = −2(n + 1)λdivZ,

by Corollary 3.9 yields

−[(n + 3)λ +
τ

n
] = −2(n + 1)λ ⇒ τ

n
= [2(n + 1)− (n + 3)]λ

⇒ λ =
τ

n(n− 1)
.

Theorem 3.18. Let (M, g) be a connected, simply connected, complete, n(≥ 2-
dimensional Riemannian manifold. Then, a necessary and a sufficient condition for
(M, g) to be isometric with the Euclidian sphere of radius 1√

λ
, λ > 0, is the

existence of a nonzero vector field Z on M satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Z, Y )X + g(X, Y )Z] = 0, λ > 0,

for all X, Y ∈ Γ(TM).

Proof. It follows from Theorem A of [10] together with Lemma 3.13 for
f = div Z.

Remark 3.19. Note that, the differential equation (∇2Z)(X, Y )+λ[2g(Z, X)Y+
g(Z, Y )X + g(X, Y )Z] = 0, λ > 0, can also be considered as an analytic charac-
terization (or representative) of Euclidian spheres in the class of connected, simply
connected, complete Riemannian manifolds by Theorem 3.18.

Theorem 3.20. Let (M, g) be an, n(≥ 2)-dimensional Riemannian manifold.
If there exist a nonzero vector field Z on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z, X)Y + g(Z, Y )X + g(X, Y )Z] = 0, λ > 0,

for all X, Y ∈ Γ(TM) and if (M, g) contains the whole trajectory of Z with its
limit points, then (M, g) is of constant curvature at each point of the trajectory.
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Proof. It follows from Theorem B of [10] together with Lemma 3.13 for
f = div Z.

Remark 3.21. The assumption λ > 0 implies that τ > 0 in Lemma 3.17 and
hence below.

Theorem 3.22. Let (M, g) be a complete, n(≥ 2)-dimensional Einstein space
of (positive) constant scalar curvature τ . If there exist a nonzero vector field Z on
(M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z,X)Y + g(Z, Y )X + g(X, Y )Z] = 0, λ > 0,

for all X, Y ∈ Γ(TM), then (M, g) is of constant curvature λ.

Proof. It follows from [7] together with Corollary 3.8 or Corollary 3.16 and
Lemma 3.17 (see Theorem 9.1 in [10] also).

Theorem 3.23. Let (M, g) be a complete, n(≥ 2)-dimensional Riemannian
manifold of (positive) constant scalar curvature τ . If there exist a nonzero vector
field Z on (M, g) satisfying the equation

(∇2Z)(X, Y ) + λ[2g(Z,X)Y + g(Z, Y )X + g(X, Y )Z] = 0, λ > 0,

for all X, Y ∈ Γ(TM), then (M, g) is of constant curvature λ = τ
n(n−1)

.

Proof. It follows from Theorem 9.2 of [10] together with Corollary 3.8 or
Corollary 3.16 and Lemma 3.17.

Remark 3.24. Let (M, g) be a compact n(≥ 2)-dimensional Riemannian mani-
fold. Recall that the tension operator � is also a linear, self-adjoint, elliptic operator
with respect to the inner product on Γ(TM) defined by

< X, Y >=
∫

M
g(X, Y ),

where X, Y are vector fields on (M, g). Hence furthermore, if (M, g) is Einstein
with τ > 0 then eigenvalues of � bounded from above by τ( n−2

n(n−1)
) by Theorem

3.9 of [4]. That is, if Z is a nonzero vector field satisfying the eigenvalue equation
�Z = µZ, then µ ≤ τ( n−2

n(n−1)
).

Also see [3] for a survey on characterizing specific Riemannian manifolds by
differential equations.
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