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ON THE SECOND EQUATION OF OBATA
Fazilet Erkekoglu

Abstract. In this paper we prove some results related to a certain vector field
satisfying the second equation of Obata [8] on vector fields.

1. INTRODUCTION

In this paper we prove some results related to a non-zero vector field Z on an n-
dimensional Riemannian manifold (M, g) satisfying (V22)(X,Y)+\[29(Z, X)Y +
gV, 2)X+g(X,Y)Z] =0forall X, Y € I(T'M) and for A\(> 0) € R. In fact, the
idea underlying this paper is to characterize (or represent) Riemannian manifolds
analytically by a differential equation on certain class of Riemannian manifolds
determined by mild geometric/topological assumptions.

2. PRELIMINARIES

Here, we briefly state the main concepts and definitions used throughout this
paper.

Let Z be a vector field on (M, ¢g), a Riemannian manifold of dimension n, V
the Levi-Civita connection and

R(X,Y)Z =VxVyZ - VyVxZ - Vixy|Z

the curvature tensor, where X,Y € T'(T'M). We write also < X,Y > if this is
convenient. The Ricci curvature (tensor) is the trace of R : trace(X — R(X,Y)Z)
and denoted by Ric(Y, Z). If {Xi,---, X, } is a local orthonormal frame for T'M,
then
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Thus Ric is a symmetric bilinear form. It could also be defined as a symmetric
(1,1) tensor
Ric(Z) = 7 R(Z, X;) X;.

The scalar curvature is defined by Sc = trRic. Let Z be a vector field on this
n-dimensional Riemannian manifold (M, g) with Levi-Civita connection V. The
second covariant differential V2Z of Z is defined by

(V2Z)(X,Y)=VxVyZ - Vv,vZ,

where X, Y € I'(T'M). We define the Laplacian AZ of Z on (M, g) to be the
trace of V2Z with respect to g, that is,

AZ = traceV*Z = Z(V2Z)(Xz‘7 Xi),
i=1

where {X7,---,X,} is a local orthonormal frame for 7M.
Also, the affinity tensor L,V of Z is defined by

(LzV)(X,Y)=L;VxY -V, xY — VxLY,

where L is the Lie derivative with respect to Z and X,Y € I'(T'M). (See, for
example page 109 of [9]). We define the tension field OZ of Z on (M, g) to be
the trace of L,V with respect to g that is,

OZ = trace L;V = Z(LZV)(sz Xi),
i=1

where {X7,---, X,} is a local orthonormal frame for T'M.
By a straightforward computation, it can be shown by using the torsion-free
property of V that

(LzV)(X,Y) = (V22)(X,Y) + R(Z, X)Y,
(see page 110 of [9]) and hence
0Z = AZ + Ric(Z),
where X, Y € T'(T'M). (Also see page 40 of [11]).
The divergence of a vector field Z, divZ, on (M, g) is defined as
divZ =tr(VZ) = Zn:g(VXiZ, X;)
i=1

if {X;} is an orthonormal basis of T'M.
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3. THE SECOND EQUATION OF OBATA

The elementary results of this chapter could also be collected from [2]. First,
we state a differential equation, which is a slight generalization of an equation given
by Obata [8], characterizing Euclidian spheres. It is shown in [10] that, a necessary
and a sufficient condition for a connected, simply connected, complete n(> 2)-
dimensional Riemannian manifold (M, ¢) to be isometric with the Euclidian sphere
of radius \/LX’ A > 0 is the existence of a nonconstant function f on M satisfying
the equation

(VEVAX,Y)+ A2¢(VF X)Y +g(Y, VX +g(X,Y)Vf] =0,

for all X,Y € I'(T'M). In fact, we can replace V f with a nonzero vector field in
the above equation.

Lemma 3.1. Let (M, g) be an n-dimensional Riemannian manifold and A € R.
If Z is a vector field on (M, g) satisfying the equation

(V22)(X,Y) + A29(Z, X)Y + g(Y. 2)X + 9(X,Y)Z] = 0,
forall X,Y € T'(T'M), then

AZ = —(n+ 3)AZ.

Proof.  If we take the trace of the equation
(V2Z)(X,Y) + A29(Z, X)Y + g(Y, Z)X + g(X,Y)Z] = 0,
with respect to g on (M, g) we obtain another differential equation

AZ = tr(V32Z)

= Zn:(VQZ)(Xz‘7Xz‘)
i=1

=Y (-A29(Z, X)X + g(Xi, 2) X + 9(Xi, Xi) Z])
i=1

= —)\ Zn:[?)g(Z, Xi)Xi+9(X;, X;)Z]
i=1
= —\(3Z+nZ)

= —(n+3)\7,

here { X} is an orthonormal frame of 7'M, in fact an eigenvalue equation. ]
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Remark 3.2. Note that, on a connected, compact Riemannian manifold (M, g)
the Laplacian A is negative semi-definite on spaces of vector fields. Thus, if (M, g)
is compact, eigenvalues of A are non-positive on vector fields. The case Z is an
eigen vector field corresponding to the 0 eigen value occurs if and only if Z is a
parallel vector field on (M, g) (see Theorem 3.2 in [4]) .

In conclusion, we can say that on a compact Riemannian manifold (M, g), the
eigenspace corresponding to the zero eigenvalue of A consist of parallel vector
fields on (M, g). Also note here that, since Ric(Z,Z) = 0 for a parallel vector
field Z, the eigenspace corresponding to the zero eigenvalue of A does not exist if
Ric(z,x) # 0 for all z(# 0) € TpM for some p € M.

Remark 3.3. Note also that, on a compact Riemannian manifold (M, g) the
Laplacian is an elliptic operator. Thus, by the spectral theorem, the eigenvalues \;
of A are of the form

—00 — <N < <AL < A =0.

Thus, if Ric(z,x) # 0 for all z(# 0) € TpM for some p € M, then the largest
eigenvalue of A on the vector space of vector fields on (M, g) is negative.

Lemma 3.4. Let (M, g) be an n-dimensional Riemannian manifold and A € R.
If Z is a vector field on (M, g) satisfying the equation

(V2Z2)(X,Y) + \29(Z, X)Y +g(Y, Z2)X + g(X,Y)Z] =0,
forall X,Y € I'(T M), then
(i) R(X.Y)Z = Ng(Z,Y)X — (X, 2)Y],
forall X,Y € I'(T'M), and hence
Ric(Z)=An—-1)Z,
(i) VdivZ = —2X\(n+1)Z,
and hence
V2divZ = —2\(n+ 1)V Z,
where V2div Z is the Hessian tensor of div Z.
Proof.
() Let X, Y € T'(TM). Then,
R(X,Y)Z = ViyZ - Vy.xZ
= -AN29(Z, X)Y+9(V,2) X +g(X,Y)Z] — (=N)[29(Z,Y)X
+9(X,2)Y +9(Y, X)Z]
= \M29(Z, V)X —29(Z, X)Y + 9(X, 2)Y — g(Y, Z)X]
= Ag(Z2, )X —g(Z, X)Y].
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Hence

g(Ric(Z), X) = g(Zn: R(Z, X)X, X)

= A(Z, X)) 9(Xi, Xi) =AY 9(Z, X)g(X, X))
i=1 =1

= An—1)9(Z,X),
here {X1,---, X, } is an orthonormal frame for 7'M near p € M.

(i) Let {Xy,---,X,} be an adapted orthonormal frame near p € M, that is,
{X1,---, Xy} is an orthonormal frame in 7'M with (VX;), = 0 for ¢ =
1,...,n,and let X e T'(TM). Thenatp € M,

9(Vdiv 2, X) = X (div Z)

=D _Xg(Vx.Z, X)
i=1

=Y [9(VxVx,Z. X)) + g(Vx,Z, Vx X))]
=1

= [9((V’2)(X, X), Xi) — 9(Vvyx, Z, Xi)]
i=1
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= 9(—M29(Z, X)Xi+ g(Xi, Z)Xi + 9(X, Xi) Z}, X3)
i=1

= —2)g(Z. X)) g(Xi, Xi) =AY _9(Z, Xi)g(X, X;)
=1 =1

—)\Zg(X, Xi)g(Z, X3)
=1
= —2nX\g(Z, X) —2)\g(Z, X)
= —2(n+1)Ag(Z, X)
= g(=2(n+1)A\Z, X).

Hence, it follows that Vdiv Z = —2(n+1)AZ and hence V3div Z = —2(n+
1)AVZ. ]

Definition 3.5. Let (M, g) be a Riemannian manifold and A € R. A vector
field Z on M satisfying

for all X, Y € I'(T'M), is called a A-nullity vector field on (M, g).

That is, Z is a nullity vector field with respect to the curvature-like tensor field

n (M,g). (See Sections 2 and 4 of [10]).
In particular, if there exist a nonzero \(# 0)-nullity vector field Z on a Rie-
mannian manifold (M, g) then (M, g) is irreducible. (see [1], [5], [10] and the
references therein for details).

Remark 3.6. Let (M, g) be an n-dimensional Riemannian manifold and A € R.
If Z is a vector field on (M, g) satisfying the equation

(V2Z2)(X,Y) + \29(Z, X)Y +g(Y, Z2)X + g(X,Y)Z] =0,

forall X,Y € T'(TM) then, Z is a A-nullity vector field by Lemma 3.4. That is, Z
is a nullity vector field with respect to the curvature-like tensor field F/(X, Y)W =
R(X, Y)W — A[g(W,Y)X — g(X,W)Y] on (M, g). If, in addition, Z is nonzero
and A # 0, then (M, g) is irreducible.
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Definition 3.7. A vector field Z on (M, g) is projective if it satisfies
(LzV)(X,Y) = n(X)Y —n(Y)X,
for any vector fields Y and Z, = being a certain 1-form.
Corollary 3.8. Let (M, g) be an n-dimensional Riemannian manifold and \ €
R. If Z is a vector field on (M, g) satisfying the equation
(V2Z2)(X,Y) + \29(Z, X)Y +g(Y, Z2)X + g(X,Y)Z] = 0,
for all X,Y € T'(T'M), then Z is a projective vector field.
Proof. Let X,Y € I'(TM). Then,
(LzV)(X,Y) = (V22)(X,Y) + R(Z, X)Y
= —A29(Z, X)Y +g(Y, 2)X + g(X,Y)Z] + \[g(Y, X)Z
—9(Z,Y)X]
= —20g(Z, X)Y —2)g(Z,Y)X. m

In fact, if (M, g) is compact, then this can be obtained differently (see Corollary
3.15 below).

Corollary 3.9. Let (M, g) be an n-dimensional Riemannian manifold and \ €
R. If Z is a vector field on (M, g) satisfying the equation

(V2Z2)(X,Y) + \29(Z, X)Y +g(Y, Z2)X + g(X,Y)Z] = 0,
forall X,Y € T'(T'M), then
A(divZ) = =2(n+ 1)\div Z.
Proof. If we take the trace of the equation
VidivZ = —2(n+1)AVZ
by Lemma 3.11, we obtain another differential equation
A(div Z) = tr(V3div Z)
=tr(—2(n+1)A\VZ2)
= 2(n+1)Atr(VZ)
= —2(n+ 1)\div Z,

in fact an eigenvalue equation. ]



780 Fazilet Erkekoglu

Remark 3.10. Considering the differential equations
(V2Z)(X,Y) + \g(Z,X)Y =0,
and
(V2Z)(X,Y) + \29(Z, X)Y +g(Y, Z)X + g(X,Y)Z] = 0,

for A > 0 on the n-dimensional Euclidian sphere of radius % intuitively, the first
differential equation corresponds to the first eigenvalue of the Laplacian (that is,
Adiv Z = —nAdiv Z) and the latter differential equation corresponds to the second
eigenvalue of the Laplacian (that is, Adiv Z = —2(n + 1)\div Z) on the Euclidian
sphere of radius % Also, a vector field satisfying the first equation is necessarily
a conformal vector field (see Remark 3.5 in [6]). A vector field satisfying the latter

differential equation is necessarily a projective vector field by Corollary 3.8 (see
also Corollary 3.16).

Lemma 3.11. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a
non-zero vector field on (M, g) satisfying the equation

(V2Z2)(X,Y) +\29(Z, X)Y +g(Y, Z)X + g(X,Y)Z = 0,
for all X,Y € I'(T'M) then, Vdiv Z also satisfies the same equation.

Proof. Since Z is non-zero, it follows from Lemma 3.4 that div Z is non-
constant and V2div Z = —2(n + 1)AVZ. Hence,VZ is self-adjoint and can be

written as VZ = C“%Zid + o, where ¢ is the traceless self-adjoint part of VZ. Let
X,Y e T(TM). Then, by Lemma 3.4,
(Vo) (X.,Y) = (v(vZ - P20 (x,v)
= (V(v2) - V("2 (x, v)
= v22(x,Y) - V(22 a) (v
— V2Z(X,Y) - Vy dizzid(Y) + 0y
— V2Z(X,Y) - Vy dizzy + dizzvxy
= V2Z(X,Y) - X(diZZ)Y - diZZvXY n dizzvxy

= V2Z(X,)Y) - %X(div 2)Y

1
= V2Z(X,Y) - ~g(Vdiv Z, X)Y
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1
—2g(Z, X)Y — M\g(Y, Z2)X — A\g(X,Y)Z — —g(Vdiv Z, X)Y
n

1

—2A —2(n+ 1))\9(

VdivZ, X)Y — A Y, VdivZ)X

—2(n—|—1))\g(
1
A———g(X,Y vl — — vz, X)Y
)\—Q(n—i—l))\g( ,Y)Vdiv ng(de , X)
1

g(Vdiv Z, X)Y +

g(Y, Vdiv Z) X

n+1 2(n+1)
1 1
X,Y)VdivZ — —g(VdivZ, X)Y
+2(n+1)g( ,Y)Vdiv ng(de , X)
(— — Lx, Vaivz)y + — (v, Vdiv 2)X
(n+1) n g, Ve 2(n—|—1)g Van
1
X,Y)VdivZ
+2(n—|— 1)9( ,Y)Vdiv
-1 1
. 4(X,VdivZ,)Y Y, Vdiv Z)X
n(n+1)g( 7Vd’“) 7) +2(n+1)g( 7Vd“) )
1
X,Y)VdivZ
+2(n—|— 1)9( ,Y)Vdiv
(V2Vdiv Z)(X,Y)
—2(n+ HANV?2)(X,Y)
o+ V(I 01 oy (x, Y
vZ
o+ AV Z i) 4+ Vo (X, V)

“o(n + 1))\[(%)g(Vdiv Z,X)Y + Vo(X,Y)]

n+1 -1

) Ag(VdivZ, X)Y —2(n + 1))‘[m

1
2(n+1)
n+1

+ g(VdivZ,Y)X + 9(X,Y)Vdiv Z|

2(n+1)

1
—2( — E))\g(Vdiv Z, X)Y = \g(X,Vdiv2)Y
—\g(X,Y)VdivZ

—A[29(X,VdivZ)Y + g(Vdiv Z,Y)X + g(X,Y)Vdiv Z).

9(X, Vdiv Z)Y

781
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Corollary 3.12. Let (M, g) be an n-dimensional Riemannian manifold. If Z is
a non-zero vector field on (M, g) satisfying the equation

(V2Z)(X,Y)+ N29(Z, X)Y + g(Y, Z)X + g(X,Y)Z] = 0,
forall X,Y € I'(T M), then
AVdivZ = —(n+ 3)AVdiv Z.
Proof. If we take the trace of the equation
(V2Vdiv Z)(X,Y) = —\[2¢(X, Vdiv 2)Y +g(Vdiv Z,Y) X +g(X,Y)Vdiv Z),
with respect to g on (M, g) we obtain another differential equation

AVdivZ = tr(V*Vdiv Z)

= Zn:(VZZ)(Xz‘, Xi)
=1

=Y =A29(X;, Vdiv Z)X; + g(Vdiv Z, X;) X; + g(X;, X;)Vdiv Z

=1

= -\ [Bg(Vdiv Z, X;)X; + g(X;, X;)Vdiv Z]
=1
= —\(8VdivZ +nVdiv Z)

= —A(n+3)VdivZ. [
Lemma 3.13. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a
non-zero vector field on (M, g) satisfying the equation
(V22)(X,Y) + A29(Z, X)Y + 9(Z,Y)X +g(X,Y)Z] = 0,

forall X,Y € I'(T' M), then
0Z = —4)\Z.

Proof. It follows from Lemma 3.1 and Lemma 3.4 that,

oz

AZ + Ric(Z)
= —(n+3)AZ+ (n—1)AZ

= —4)\Z. []
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Remark 3.14. Let (M, g) be a compact n(> 2)-dimensional Riemannian man-
ifold. Recall that the tension operator O on I'(T'M) is also a linear, self-adjoint,
elliptic operator with respect to the inner product <, > on the vector space I'(T'M)
of vector fields on M defined by < X, Y >= [, , g(X,Y).

Corollary 3.15. Let (M, g) be an n-dimensional Riemannian manifold. If Z is
a non-zero vector field on (M, g) satisfying the equation

(V2Z)(X,Y) + M2g(Z. X)Y +g(Z,Y)X + g(X,Y)Z] =0,
for all X,Y € I'(T'M), then it also satisfies the equation
2

oz — VdivZ = 0.
n+1
Proof. By Lemma 3.4 and Lemma 3.13,
07— —2 VdivZ = —ANZ — —2—(=2)A(n+1)Z
n+1 we = n+1 "
= —ANZ +4)\7
= 0. [ |

Corollary 3.16. Let (M, g) be an n-dimensional compact Riemannian manifold.
If Z is a non-zero vector field on (M, g) satisfying the equation

(V2Z)(X,Y) + M2g(Z. X)Y +g(Z,Y)X + g(X,Y)Z] =0,
for all X,Y € T'(T'M), then Z is a projective vector field.

Proof. This can easily be obtained from Corollary 3.15 (see page 45 of
[11]). [ |

Lemma 3.17. Let (M, g) be an Einstein n-dimensional Riemannian manifold
with scalar curvature 7. If Z is a non-zero vector field satisfying the equation
(V2Z2)(X,Y) + \29(Z, X)Y +g(Z, V)X +9(X,Y)Z] = 0,A > 0,

forall X,Y € T'(T'M), then
.

)\:m.

Proof. If (M, g) is an Einstein n-dimensional Riemannian manifold with scalar
curvature 7 and Z be a vector field on (M, g) then

div AZ = Ldiv Z + Adiv Z,
n
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by Lemma 3.8 of [4]. On the other hand, AZ = —(n+3)AZ by Lemma 3.1. Hence
divAZ = div[—(n+ 3)\Z]
= —(n+3)\divZ
— %dm Z + Adiv Z,
which implies
AdivZ = —(n+ 3)\div Z — %dm Z
= —[(n+3)A+ %]div Z.
Comparing this with
AdivZ = =2(n + 1)\div Z,
by Corollary 3.9 yields
—[(n+3)A+ %] = —2(n+ 1)\ = % = [2(n+1) — (n+3)]A

.
> A= —-. u
n(n—1)
Theorem 3.18. Let (M, g) be a connected, simply connected, complete, n(> 2-
dimensional Riemannian manifold. Then, a necessary and a sufficient condition for
(M, g) to be isometric with the Euclidian sphere of radius %,)\ > 0, is the

existence of a nonzero vector field Z on M satisfying the equation
(V2Z2)(X,Y) + \[29(Z, X)Y +g(Z,Y)X + g(X,Y)Z] =0,\ > 0,
forall X,Y e I'(TM).
Proof. It follows from Theorem A of [10] together with Lemma 3.13 for
f=divZ. ]

Remark 3.19. Note that, the differential equation (V22) (X, Y)+A[29(Z, X)Y+
9(Z, )X 4+ g(X,Y)Z] = 0, A > 0, can also be considered as an analytic charac-
terization (or representative) of Euclidian spheres in the class of connected, simply
connected, complete Riemannian manifolds by Theorem 3.18.

Theorem 3.20. Let (M, g) be an, n(> 2)-dimensional Riemannian manifold.
If there exist a nonzero vector field Z on (M, g) satisfying the equation

(V2Z2)(X,Y) + \29(Z, X)Y +g(Z,Y)X + g(X,Y)Z] =0,X > 0,

forall X,Y € T'(T'M) and if (M, g) contains the whole trajectory of Z with its
limit points, then (M, g) is of constant curvature at each point of the trajectory.
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Proof. It follows from Theorem B of [10] together with Lemma 3.13 for
f=divZ. ]

Remark 3.21. The assumption A\ > 0 implies that = > 0 in Lemma 3.17 and
hence below.

Theorem 3.22. Let (M, g) be a complete, n(> 2)-dimensional Einstein space
of (positive) constant scalar curvature 7. If there exist a nonzero vector field Z on
(M, g) satisfying the equation

(V2Z2)(X,Y) + A\29(Z, X)Y +g(Z,Y)X +g(X,Y)Z] = 0,\ > 0,

forall X,Y € T'(T'M), then (M, g) is of constant curvature .

Proof. It follows from [7] together with Corollary 3.8 or Corollary 3.16 and
Lemma 3.17 (see Theorem 9.1 in [10] also). ]

Theorem 3.23. Let (M, g) be a complete, n(> 2)-dimensional Riemannian
manifold of (positive) constant scalar curvature 7. If there exist a nonzero vector
field Z on (M, g) satisfying the equation

(V2Z2)(X,Y) + A\29(Z, X)Y +g(Z,Y)X +g(X,Y)Z] = 0,\ > 0,

for all X,Y € T'(T'M), then (M, g) is of constant curvature A = D)
Proof. It follows from Theorem 9.2 of [10] together with Corollary 3.8 or
Corollary 3.16 and Lemma 3.17. [ |

Remark 3.24. Let (M, g) be a compact n(> 2)-dimensional Riemannian mani-
fold. Recall that the tension operator O is also a linear, self-adjoint, elliptic operator
with respect to the inner product on I'(T'M ) defined by

<X,Y >:/ 9(X.,Y),
M

where X, Y are vector fields on (M, g). Hence furthermore, if (), g) is Einstein
with 7 > 0 then eigenvalues of O bounded from above by 7(-2=2-) by Theorem

s . . . n(n—1) .
3.9 of [4]. That is, if Z is a nonzero vector field satisfying the eigenvalue equation

0Z = pZ, then p < T(TLZ’LTL_—21))'

Also see [3] for a survey on characterizing specific Riemannian manifolds by
differential equations.
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