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COMMON FIXED POINTS OF A FINITE FAMILY OF NONSELF
GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE

MAPPINGS

Shuechin Huang

Abstract. Suppose that C is a nonempty subset of a real Banach space X. In
this article, we construct two types of iterative schemes with errors for a fi-
nite family {Ti}k

i=1 of nonself generalized asymptotically quasi-nonexpansive
mappings of C into X. Furthermore, not only a necessary and sufficient con-
dition for {xn} generated by each of those iterations to converge to a common
fixed point of {Ti}k

i=1 is obtained, but also the weak and strong convergence
theorems of {xn} in uniformly convex Banach spaces are established as well.

1. INTRODUCTION

Let X be a real Banach space and let C be a nonempty subset of X . Suppose
that T : C → X is a mapping and denote the fixed point set of T by F (T ). We
recall the following definition, when T is a self-mapping of C.

Definition 1.1. A mapping T : C → C is said to be

(i) uniformly λ-Lipschitzian if there exists λ > 0 such that

(1) ‖T nx − T ny‖ ≤ λ‖x− y‖, ∀x, y ∈ C, n ∈ N;

(ii) nonexpansive if

‖Tx− Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C, n ∈ N;

(iii) quasi-nonexpansive if
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‖Tx − p‖ ≤ ‖x− p‖, ∀x ∈ C, p ∈ F (T ), n ∈ N;

(iv) asymptotically nonexpansive if there exists a sequence {r n} in [0, 1] with
limn→∞ rn = 0 such that

(2) ‖T nx − T ny‖ ≤ (1 + rn)‖x − y‖, ∀x, y ∈ C, n ∈ N;

(v) asymptotically quasi-nonexpansive if there exists a sequence {r n} in [0, 1]
with limn→∞ rn = 0 such that

(3) ‖T nx − p‖ ≤ (1 + rn)‖x− p‖, ∀x ∈ C, p ∈ F (T ), n ∈ N;

(vi) generalized asymptotically quasi-nonexpansive if there exist two sequences
{rn} and {sn} in [0, 1] with limn→∞ rn = 0 and limn→∞ sn = 0 such that

(4) ‖T nx − p‖ ≤ (1 + rn)‖x− p‖+ sn‖x − T nx‖, ∀x ∈ C, p ∈ F (T ), n ∈ N.

Suppose that C is a convex subset of a real Banach space X . There are three
classical iterations used to approximate a fixed point of a nonexpansive mapping
T : C → C. That is,

(i) Halpern iteration [11]: Choose u, x1 ∈ C and define
xn+1 = αnu + (1 − αn)Txn, n ∈ N,

where {αn} ⊂ [0, 1].
(ii) Mann iteration [17]: Choose x1 ∈ C and define

xn+1 = αnxn + (1− αn)Txn, n ∈ N,

where {αn} ⊂ [0, 1].
(iii) Ishikawa iteration [12]: Choose x1 ∈ C and define

yn = αnxn + (1 − αn)Txn,

xn+1 = βnxn + (1− βn)Tyn, n ∈ N,

where {αn}, {βn} ⊂ [0, 1].

If T is yet a mapping from C into X , the preceding iterations may not be well
defined. A motivation of this paper was to construct an iterative scheme with errors
for a finite family of nonself mappings and generate a sequence to approximate a
common fixed point of them.

In 2003, Chidume, Ofoedu and Zegeye [4] introduced the notion of nonself
asymptotically nonexpansive mappings as an important generalization of asymptot-
ically nonexpansive self-mappings.
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Definition 1.2. A subset A of a topological space X is said to be a retract of
X if there exists a continuous mapping R : X → A (called a retraction) such that
R(a) = a, for all a ∈ A. If, in addition, R is nonexpansive, then A is said to be a
nonexpansive retract of X .

If R : X → A is a retraction, then R2 = R. A retract of a Hausdorff space
must be a closed subset. Every closed convex subset of a uniformly convex Banach
space is a retract.

Definition 1.3. Let C be a nonempty subset of a real Banach space X and
let R : X → C be a nonexpansive retraction of X onto C. A nonself mapping
T : C → X is said to be

(i) uniformly λ-Lipschitzian if there exists λ > 0 such that

(5) ‖T (RT )n−1x − T (RT )n−1y‖ ≤ λ‖x − y‖, ∀x, y ∈ C, n ∈ N;

(ii) asymptotically nonexpansive if there exists a sequence {r n} in [0, 1] with
limn→∞ rn = 0 such that

(6) ‖T (RT )n−1x − T (RT )n−1y‖ ≤ (1 + rn)‖x − y‖, ∀x, y ∈ C, n ∈ N;

(iii) asymptotically quasi-nonexpansive if there exists a sequence {r n} in [0, 1]
with limn→∞ rn = 0 such that

(7) ‖T (RT )n−1x − p‖ ≤ (1 + rn)‖x− p‖, ∀x ∈ C, p ∈ F (T ), n ∈ N;

(iv) generalized asymptotically quasi-nonexpansive if there exist two sequences
{rn} and {sn} in [0, 1] with limn→∞ rn = 0 and limn→∞ sn = 0 such that

(8) ‖T (RT )n−1x − p‖ ≤ (1 + rn)‖x− p‖+ sn‖x − T (RT )n−1x‖,

for all x ∈ C, p ∈ F (T ), n ∈ N.

If T is a self-mapping of C in Definition 1.3, then (5)-(8) in which R becomes
the identity mapping are exactly the cases (1)-(4) respectively. Suppose that T :
C → X is generalized asymptotically quasi-nonexpansive with respective to {rn}
and {sn}. If s1 < 1, then using (8) with n = 1, we see that F (T ) is closed. Also,
we have the following implications from this definition:
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uniformly
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Let X be a real Banach space and let C be a nonempty subset of X and let {Ti : C →
X}k

i=1 be a family of (not necessarily distinct) nonself generalized asymptotically
quasi-nonexpansive mappings with respect to {rin} and {sin}. Suppose that, for i =
1, . . . , k, {uin}∞n=1 ⊂ X and {αin}∞n=1, {βin}∞n=1 ⊂ [0, 1] such that αin + βin ≤ 1.
Let R : X → C be a nonexpansive retraction. This work is devoted to study the
following two types of iterative schemes with errors for {Ti}k

i=1:
I. Choose x1 arbitrarily in C. Define an iterative sequence by

(9)

y1n =R((1−α1n−β1n)xn+α1nT1(RT1)n−1xn+β1nu1n),

yin =R((1−αin−βin)xn+αinTi(RTi)n−1y(i−1)n+βinuin), 2≤ i≤k−1,

xn+1 =ykn=R((1−αkn−βkn)xn+αknTk(RTk)n−1y(k−1)n+βknukn), n∈N.

II. Choose x1 arbitrarily in C. Define an iterative sequence by

(10)

y1n =R((1 − α1n − β1n)xn + α1nT1(RT1)n−1xn + β1nu1n),

yin =R((1−αin−βin)y(i−2)n+αinTi(RTi)n−1y(i−1)n+βinuin), 2≤ i≤k − 1,

xn+1 =ykn =R((1−αkn−βkn)y(k−2)n+αknTk(RTk)n−1y(k−1)n+βknukn), n∈N,

where y0n = xn.
The algorithm (9) is the generalized process of the classical finite-step iterations,

while the algorithm (10) is a new iterative scheme. In fact, the problem of the
convergence of {xn} generated by (9) to a fixed point of (generalized) asymptotically
quasi-nonexpansive self-mappings has been tremendously studied. In particular, if
k = 1, the iteration (9) is precisely the Mann iteration. When k = 2 and T1 and
T2 are (possibly the same) self-mappings of C, the iterative scheme (9) is reduced
to the Ishikawa iteration; see, e.g., [8, 14, 15, 28]. If k = 3 and T1 = T2 = T3, the
iterative scheme (9) is the three-step iteration, i.e., the modified Mann and Ishikawa
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iteration introduced by Xu and Noor [29]; see, e.g., [19, 27]. It is worthy of note
that the three-step iteration was extended to the k-step iteration, where k ≥ 4, and
many nice results have been established; see, e.g., [2, 3, 13, 20]. On the other
hand, the implicit iterative scheme is another new iteration introduced by Xu and
Ori [30] for a finite family of nonexpansive mappings; also see, e.g., [5, 23, 24].
In [6], Deng and Liu gave a new iterative process, the modified Ishikawa iteration
with finite steps, and established the strong convergence theorems for two nonself
generalized asymptotically quasi-nonexpansive mappings.

In this paper, a necessary and sufficient condition for {xn} generated by each of
iterations (9) and (10) to converge to a common fixed point of {Ti}k

i=1 is obtained.
Not only the strong convergence theorems of {xn} in uniformly convex Banach
spaces, but also the weak convergence theorems in uniformly convex Banach spaces
which satisfies the Opial property, or whose dual space has the Kadec-Klee property
are established as well. In fact, a dual space of a reflexive Banach space with
a Fréchet differentiable norm or the Opial property also satisfies the Kadec-Klee
property [7]. There exist uniformly convex Banach spaces which have neither a
Fréchet differentiable norm nor the Opial property, but their dual spaces do have
the Kadec-Klee property; see [9]. Therefore the Opial property is independent of
uniform convexity. To a certain extent, a part of this work based on (9) can be
viewed as an extension of the results in the literature; see, e.g., [13, 19, 20, 28].

2. PRELIMINARIES

Suppose that X is a real Banach space and C is a subset of X . Then X is said
to be uniformly convex [1] if for each ε > 0 there exists δ(ε) > 0 such that for
x, y ∈ X with ‖x‖ ≤ 1 and ‖y‖ ≤ 1,∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− δ(ε), whenever ‖x− y‖ ≥ ε.

A mapping T : C → X is semicompact (or hemicompact) [26] if for any sequence
{xn} in C with limn→∞ ‖xn − Txn‖ = 0, there exists a subsequence of {xn}
which converges strongly to a point of C.

A family {Ti : C → X}k
i=1 of nonself mappings with F =

⋂k
i=1 F (Ti) 	= ∅ is

said to satisfy Condition (A) with respect to E [5, 6], where E ⊂ C, if there is a
nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all
r ∈ (0,∞) such that

max
1≤i≤k

{‖x− Tix‖} ≥ f(d(x, F )), ∀x ∈ E,

where d(x, F ) = inf{‖x − y‖ : y ∈ F}. When k = 1 and T1 is a self-mapping of
C, Condition (A) reduces to the one discussed in [16, 22, 25].
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A Banach space X is said to satisfy the Opial property [10] if whenever
a sequence {xn} in X converges weakly to x, then lim supn→∞ ‖xn − x‖ <
lim supn→∞ ‖xn − y‖, for y 	= x. We say that X has the Kadec-Klee property if,
for any sequence {xn} in E which converges weakly to x ∈ X and ‖xn‖ → ‖x‖,
we have {xn} converges strongly to x. Every locally uniformly convex normed
space, for instance, Lp spaces, 1 < p < ∞, has this property. We also remark that
Lp spaces, 1 < p < ∞ and p 	= 2, do not satisfy the Opial property, but their dual
spaces have the Kadec-Klee property.

The lemmas stated in this section will be required in the sequel.

Lemma 2.1. [15]. Let {an}, {εn} and {δn} be sequences of nonnegative real
numbers satisfying the following condition:

an+1 ≤ (1 + εn)an + δn.

If
∑∞

n=1 εn < ∞ and
∑∞

n=1 δn < ∞, then limn→∞ an exists. In particular, if {an}
has a subsequence converging to 0, then limn→∞ an = 0.

Lemma 2.2. (Schu’s lemma [21]). Let X be a uniformly convex Banach space.
Suppose that 0 < a ≤ tn ≤ b < 1 for all n ∈ N. Let {xn} and {yn} be sequences
in X such that lim supn→∞ ‖xn‖ ≤ c, lim supn→∞ ‖yn‖ ≤ c and limn→∞ ‖tnxn+
(1 − tn)yn‖ = c, for some number c ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Recall that a mapping T : C → X is demiclosed at y ∈ X if, for any sequence
{xn} in C, the conditions xn → x ∈ C weakly and T (xn) → y strongly together
imply T (x) = y.

Lemma 2.3. (Demiclosed principle for nonself mappings [4]). Let X be a
uniformly convex Banach space, C a nonempty closed convex subset of X and
T : C → X an asymptotically nonexpansive mapping. Then I − T is demiclosed
at zero.

The following result enables us to establish the weak convergence theorems of
iterative schemes in a uniformly convex Banach space whose dual space has the
Kadec-Klee property. We will denote ωw{xn} the set of the weak subsequential
limits of {xn}, i.e., the set of all limits of all weakly convergent subsequences.

Lemma 2.4. [9]. Let X be a uniformly convex Banach space such that its
dual X ∗ has the Kadec-Klee property. Let {xn} be a bounded sequence in X . If
limn→∞ ‖txn + (1 − t)p − q‖ exists, for all t ∈ [0, 1] and p, q ∈ ωw{xn}, then
p = q.
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Lemma 2.5. [9, 18]. Let X be a uniformly convex Banach space, C a bounded
closed convex subset of X and T : C → C an L-Lipschitz mapping. Then there
exists a strictly increasing continuous convex function φ : [0,∞) → [0,∞) with
φ(0) = 0 such that

‖λTx + (1− λ)Ty − T (λx + (1− λ)y)‖ ≤ Lφ−1

(
‖x − y‖ − 1

L
‖Tx− Ty‖

)
,

for all x, y ∈ C and λ ∈ (0, 1).

3. A NECESSARY AND SUFFICIENT CONDITION

Theorem 3.1. Let X be a real Banach space, C a closed convex subset of
X , {uin}∞n=1, i = 1, . . . , k, bounded sequences in X , R : X → C a nonexpan-
sive retraction, and {Ti : C → X}k

i=1 a family of nonself generalized asymp-
totically quasi-nonexpansive mappings with respect to {r in} and {sin} such that
F =

⋂k
i=1 F (Ti) 	= ∅ is closed. Suppose that

(i)
∑∞

n=1 rin < ∞ and
∑∞

n=1 sin < ∞, for i = 1, . . . , k;
(ii)

∑∞
n=1 βin < ∞, for i = 1, . . . , k.

Then the sequence {xn} defined by (9) converges strongly to a common fixed point
of {Ti}k

i=1 if and only if lim infn→∞ d(xn, F ) = 0.

Proof. Since the necessity is clear, we only prove the sufficiency. It may be
assumed that sin < 1, for 1 ≤ i ≤ k and n ∈ N. Let rn = max{rin : i = 1, . . . , k},
sn = max{sin : i = 1, . . . , k} so that

∑∞
n=1 rn < ∞ and

∑∞
n=1 sn < ∞ which is

equivalent to the condition that
∞∑

n=1

rn + 2sn

1 − sn
< ∞.

Let λn = (rn + 2sn)/(1 − sn) and τn = 1 + λn = (1 + rn + sn)/(1 − sn) for
n ∈ N. Then

∑∞
n=1 λn < ∞ and limn→∞ τn = 1. Fix any p ∈ F and set

Mp = sup{‖uin − p‖ : 1 ≤ i ≤ k, n ∈ N} < ∞ (depending on p). For any x ∈ C,
1 ≤ i ≤ k and n ∈ N, we have

‖x − Ti(RTi)n−1x‖ ≤ ‖x − p‖+ ‖Ti(RTi)n−1x − p‖
≤ (2 + rin)‖x − p‖ + sin‖x − Ti(RTi)n−1x‖
≤ (2 + rn)‖x − p‖ + sn‖x − Ti(RTi)n−1x‖

which implies that

‖x− Ti(RTi)n−1x‖ ≤ 2 + rn

1 − sn
‖x − p‖.
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It follows that for all x ∈ C, 1 ≤ i ≤ k and n ∈ N,

(11)

‖Ti(RTi)n−1x − p‖ ≤ (1 + rin)‖x − p‖ + sin‖x − Ti(RTi)n−1x‖

≤
[
1 + rn +

sn(2 + rn)
1− sn

]
‖x − p‖

= τn‖x− p‖.

This asserts that

(12)

‖y1n−p‖ = ‖R((1−α1n−β1n)xn+α1nT1(RT1)n−1xn+β1nu1n)−R(p)‖
≤ ‖(1− α1n − β1n)xn + α1nT1(RT1)n−1xn + β1nu1n − p‖
≤ (1 − α1n − β1n)‖xn − p‖ + α1n‖T1(RT1)n−1xn − p‖

+β1n‖u1n − p‖,
≤ (1 − α1n − β1n + α1nτn)‖xn − p‖ + β1n‖u1n − p‖
≤ τn‖xn − p‖ + β1nτn‖u1n − p‖.

Therefore (11) and (12) imply that

‖y2n − p‖ ≤ (1 − α2n − β2n)‖xn − p‖ + α2n‖T2(RT2)n−1y1n − p‖
+ β2n‖u2n − p‖

≤ (1 − α2n − β2n)‖xn − p‖ + α2nτn‖y1n − p‖ + β2n‖u2n − p‖
≤ (1 − α2n − β2n + α2nτ2

n)‖xn − p‖+ α2nβ1nτ2
n‖u1n − p‖

+ β2n‖u2n − p‖
≤ τ2

n‖xn − p‖+ τ2
n[β1n‖u1n − p‖ + β2n‖u2n − p‖].

Now repeat this step inductively to get

(13)

‖yin−p‖ ≤ (1−αin−βin)‖xn − p‖+αin‖Ti(RTi)n−1y(i−1)n−p‖
+βin‖uin − p‖

≤ (1−αin−βin)‖xn − p‖+αinτn‖y(i−1)n−p‖+βin‖uin−p‖
≤ (1− αin − βin + αinτ i

n)‖xn − p‖ + τ i
n[β1n‖u1n − p‖+ · · ·

+β(i−1)n‖u(i−1)n − p‖] + βin‖uin − p‖
≤ τ i

n‖xn − p‖+ τ i
n

∑i
j=1 βjn‖ujn − p‖,
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for i = 1, . . . , k, where y0n = xn. In particular,

(14)

‖xn+1 − p‖ = ‖ykn − p‖

≤ τk
n‖xn − p‖ + τk

n

k∑
j=1

βjn‖uin − p‖

≤ (1 + λn)k‖xn − p‖ + τk
nMp

k∑
j=1

βin

=


1 + λn

k−1∑
j=0

(1 + λn)j


 ‖xn − p‖ + τk

nMp

k∑
j=1

βin

≤ (1 + εn)‖xn − p‖ + Mpδn,

where σ = sup{τn : n ∈ N}, εn = λn
∑k−1

j=0 (1 + λn)j and δn = σk
∑k

j=1 βjn.
Note that by hypotheses,

∞∑
n=1

εn < ∞,

∞∑
n=1

δn < ∞.(15)

Now we claim that {xn} is a Cauchy sequence in X . To see this, applying the
inequality 1 + t ≤ et for all t ≥ 0, we derive from (14) that

‖xn+1 − p‖≤ (1 + λn)k‖xn − p‖+ Mpδn

≤ ekλn‖xn − p‖ + Mpδn,

which shows that for m, n ≥ 1,

(16)

‖xn+m−p‖ ≤ ekλn+m−1‖xn+m−1 − p‖ + Mpδn+m−1

≤ ek(λn+m−1+λn+m−2)‖xn+m−2 − p‖+ekλn+m−1Mpδn+m−2

+Mpδn+m−1

≤ ek(λn+m−1+λn+m−2)‖xn+m−2 − p‖
+ek(λn+m−1+λn+m−2)Mp(δn+m−2 + δn+m−1)

≤ · · ·

≤ ek
∑∞

i=1 λi‖xn − p‖ + ek
∑∞

i=1 λiMp

n+m−1∑
i=n

δi.

Set ek
∑∞

i=1 λi = L. Given ε > 0, it follows from lim infn→∞ d(xn, F ) = 0 and
(15) that there exist a positive integer n0 and a point q ∈ F such that
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‖xn0 − q‖ < ε,

n0+m−1∑
i=n0

δi < ε.(17)

Therefore, according to (16) and (17), for all m ≥ 1,

‖xn0+m − xn0‖ ≤ ‖xn0+m − q‖ + ‖xn0 − q‖

≤ L‖xn0 − q‖+ LMq

n0+m−1∑
i=n0

δi + ε

< (L + LMq + 1)ε ;

hence {xn} is a Cauchy sequence in X . The completeness of X assures that
{xn} converges strongly to a point, say x∗. Also, there is a subsequence {xnj} of
{xn} such that limj→∞ d(xnj , F ) = 0, since lim infn→∞ d(xn, F ) = 0. Therefore
the continuity of the mapping z �→ d(z, F ) and the closedness of F imply that
d(x∗, F ) = 0 and so x∗ ∈ F , as required.

As shown in the preceding proof, the property needed to assure that x∗ ∈ F

is exactly the following one. Given any sequence {an} of real numbers there is a
subsequence {anj} of {an} such that limj→∞ anj = lim infn→∞ an. In general, if
{amj} is a convergent subsequence of {an}, then lim infn→∞ an ≤ limj→∞ amj .
This immediately yields the following result.

Corollary 3.2. Let X be a real Banach space, C a closed convex subset of
X , {uin}∞n=1, i = 1, . . . , k, bounded sequences in X , R : X → C a nonexpan-
sive retraction, and {Ti : C → X}k

i=1 a family of nonself generalized asymp-
totically quasi-nonexpansive mappings with respect to {r in} and {sin} such that
F =

⋂k
i=1 F (Ti) 	= ∅ is closed. Suppose that

(i)
∑∞

n=1 rin < ∞ and
∑∞

n=1 sin < ∞, for i = 1, . . . , k;
(ii)

∑∞
n=1 βin < ∞, for i = 1, . . . , k.

Then the sequence {xn} defined by (9) converges strongly to a point p ∈ F if and
only if there is a subsequence {xnj} of {xn} converging strongly to p.

We now consider the iteration generated by (10) and obtain a necessary and suf-
ficient condition for the sequence {xn} to converge strongly to a common fixed point
of finitely many nonself generalized asymptotically quasi-nonexpansive mappings.

Theorem 3.3. Let X be a real Banach space, C a closed convex subset of
X , {uin}∞n=1, i = 1, . . . , k, bounded sequences in X , R : X → C a nonexpan-
sive retraction, and {Ti : C → X}k

i=1 a family of nonself generalized asymp-
totically quasi-nonexpansive mappings with respect to {r in} and {sin} such that
F =

⋂k
i=1 F (Ti) 	= ∅ is closed. Suppose that
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(i)
∑∞

n=1 rin < ∞ and
∑∞

n=1 sin < ∞, for i = 1, . . . , k;
(ii)

∑∞
n=1 βin < ∞, for i = 1, . . . , k.

Then the sequence {xn} defined by (10) converges strongly to a common fixed point
of {Ti}k

i=1 if and only if lim infn→∞ d(xn, F ) = 0.

Proof. We use the same arguments and notation rn, sn, λn and τn as in the
proof of Theorem 3.1. Fix any p ∈ F and set Mp = sup{‖uin − p‖ : 1 ≤ i ≤
k, n ∈ N}. It follows from (11) and (12) that

‖y2n − p‖ ≤ (1 − α2n − β2n)‖y01 − p‖+ α2n‖T2(RT2)n−1y1n − p‖
+ β2n‖u2n − p‖

≤ (1 − α2n − β2n)‖xn − p‖ + α2nτn‖y1n − p‖+ β2n‖u2n − p‖
≤ τ2

n‖xn − p‖ + τ2
n[β1n‖u1n − p‖+ β2n‖u2n − p‖].

Therefore we derive inductively to get

(18)

‖yin−p‖ ≤ (1−αin−βin)‖y(i−2)n − p‖ + αin‖Ti(RTi)n−1y(i−1)n − p‖
+βin‖uin − p‖

≤ (1−αin−βin)‖y(i−2)n−p‖+αinτn‖y(i−1)n−p‖+βin‖uin−p‖

≤ (1 − αin − βin)τ i−2
n


‖xn − p‖ +

i−2∑
j=1

βjn‖ujn − p‖



+αinτ i
n


‖xn − p‖+

i−1∑
j=1

βjn‖ujn − p‖

 + βin‖uin − p‖

≤ τ i
n‖xn − p‖ + τ i

n

i∑
j=1

βjn‖ujn − p‖,

for i = 1, . . . , k. In particular,

(19)
‖xn+1 − p‖ ≤ τk

n‖xn − p‖+ τk
n

k∑
j=1

βjn‖ujn − p‖

≤ (1 + εn)‖xn − p‖ + Mpδn,

where σ = sup{τn : n ∈ N}, εn = λn
∑k−1

j=0 (1 + λn)j and δn = σk
∑k

j=1 βjn.
Observe that

∞∑
n=1

εn < ∞,
∞∑

n=1

δn < ∞.(20)
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Therefore the rest of the proof is the same as that of Theorem 3.1.
As mentioned before Corollary 3.2, the following result is an immediate conse-

quence of Theorem 3.3.

Corollary 3.4. Let X be a real Banach space, C a closed convex subset of
X , {uin}∞n=1, i = 1, . . . , k, bounded sequences in X , R : X → C a nonexpan-
sive retraction, and {Ti : C → X}k

i=1 a family of nonself generalized asymp-
totically quasi-nonexpansive mappings with respect to {r in} and {sin} such that
F =

⋂k
i=1 F (Ti) 	= ∅ is closed. Suppose that

(i)
∑∞

n=1 rin < ∞ and
∑∞

n=1 sin < ∞, for i = 1, . . . , k;
(ii)

∑∞
n=1 βin < ∞, for i = 1, . . . , k.

Then the sequence {xn} defined by (10) converges strongly to a point p ∈ F if and
only if there is a subsequence {xnj} of {xn} converging to p.

4. APPLICATIONS TO UNIFORMLY CONVEX BANACH SPACES

In this section, we will apply the previous results in Section 3 to present the
strong and weak convergence theorems in uniformly convex Banach spaces.

Theorem 4.1. Let X be a uniformly convex Banach space, C a closed convex
subset of X , {uin}∞n=1, i = 1, . . . , k, bounded sequences in X , R : X → C

a nonexpansive retraction, and {T i : C → X}k
i=1 a family of nonself uniformly

L-Lipschitzian and generalized asymptotically quasi-nonexpansive mappings with
respect to {rin} and {sin} such that F =

⋂k
i=1 F (Ti) 	= ∅. Let the sequence {xn}

be defined by (9). Suppose that

(i)
∑∞

n=1 rin < ∞ and
∑∞

n=1 sin < ∞, for i = 1, . . . , k;
(ii) 0 < lim infn→∞ αin ≤ lim supn→∞ αin < 1 and

∑∞
n=1 βin < ∞, for i =

1, . . . , k;
(iii) the family {Ti}k

i=1 satisfies Condition (A) with respect to {x n}, or
Ti0(RTi0)

m−1 is semicompact, for some 1 ≤ i0 ≤ k and for some m ≥ 1.

Then {xn} converges strongly to a common fixed point of {T i}k
i=1.

Proof. Note that F is closed because the fixed point set of a Lipschitzian
mapping is closed. Let p ∈ F . By Lemma 2.1, (14) and (15) in the proof of
Theorem 3.1 show that limn→∞ ‖xn − p‖ exists and hence {xn} is bounded. Set
limn→∞ ‖xn − p‖ = c, or equivalently,

lim
n→∞ ‖R((1− αkn − βkn)xn + αknTk(RTk)n−1y(k−1)n + βknukn) − R(p)‖ = c,
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which means that

(21)
c ≤ lim inf

n→∞ ‖αkn[Tk(RTk)n−1y(k−1)n − p + βkn(ukn − xn)]

+(1− αkn)[xn − p + βkn(ukn − xn))]‖,
because R is nonexpansive. The inequality (13) and assumption (ii) imply that

lim sup
n→∞

‖yin − p‖ ≤ c, i = 1, . . . , k.(22)

By (11),

‖Tk(RTk)n−1y(k−1)n − p + βkn(ukn − xn)‖ ≤ τn‖y(k−1)n − p‖ + βkn‖ukn − xn‖
which shows that

lim sup
n→∞

‖Tk(RTk)n−1y(k−1)n − p + βkn(ukn − xn)‖ ≤ c.(23)

Also, since ‖xn − p + βkn(ukn − xn)]‖ ≤ ‖xn − p‖+ βkn‖ukn − xn‖, we have

lim sup
n→∞

‖xn − p + βkn(ukn − xn)‖ ≤ c.(24)

Combining (23) with (24) yields that

(25)
c ≥ lim sup

n→∞
‖αkn[Tk(RTk)n−1y(k−1)n − p + βkn(ukn − xn)]

+(1 − αkn)[xn − p + βkn(ukn − xn))]‖.
Therefore (21) and (25) assert that

(26)
lim

n→∞ ‖αkn[Tk(RTk)n−1y(k−1)n − p + βkn(ukn − xn)]

+(1 − αkn)[xn − p + βkn(ukn − xn))]‖ = c.

According to Lemma 2.2 together with (23), (24) and (26), we obtain that

lim
n→∞ ‖xn − Tk(RTk)n−1y(k−1)n‖ = 0.

Since

‖xn − p‖ ≤ ‖xn − Tk(RTk)n−1y(k−1)n‖ + ‖Tk(RTk)n−1y(k−1)n − p‖

≤ ‖xn − Tk(RTk)n−1y(k−1)n‖ + τn‖y(k−1)n − p‖,
we have

c ≤ lim inf
n→∞ ‖y(k−1)n − p‖.(27)
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By (22) and (27), limn→∞ ‖y(k−1)n − p‖ = c. That is,

lim
n→∞ ‖R((1− α(k−1)n − β(k−1)n)xn + α(k−1)nTk−1(RTk−1)n−1y(k−2)n

+ β(k−1)n(u(k−1)n) − R(p)‖ = c.

As shown in (21)-(26), since

lim sup
n→∞

‖Tk−1(RTk−1)n−1y(k−2)n − p + β(k−1)n(u(k−1)n − xn)‖ ≤ c

and
lim sup

n→∞
‖xn − p + β(k−1)n(u(k−1)n − xn)‖ ≤ c,

we see that

lim
n→∞ ‖α(k−1)n[Tk−1(RTk−1)n−1y(k−2)n − p + β(k−1)n(u(k−1)n − xn)]

+ (1− α(k−1)n)[xn − p + β(k−1)n(u(k−1)n − xn)]‖ = c;

hence
lim

n→∞ ‖xn − Tk−1(RTk−1)n−1y(k−2)n‖ = 0.

Continuously proceed this process k times to conclude that

lim
n→∞ ‖xn − Ti(RTi)n−1y(i−1)n‖ = 0, i = 1, . . . , k,

where y0n = xn, from which it follows that

(28)

‖xn − xn+1‖
= ‖R(xn)−xn+1‖
≤ αkn‖Tk(RTk)n−1y(k−1)n−xn‖+βkn‖ukn−xn‖→0 as n→∞,

and

(29)

‖xn − Ti(RTi)n−1xn‖ ≤ ‖xn − Ti(RTi)n−1y(i−1)n‖
+‖Ti(RTi)n−1y(i−1)n − Ti(RTi)n−1xn‖

≤ ‖xn − Ti(RTi)n−1y(i−1)n‖ + L‖y(i−1)n − xn‖
≤ ‖xn − Ti(RTi)n−1y(i−1)n‖

+Lα(i−1)n‖Ti−1(RTi−1)n−1y(i−2)n − xn‖
+Lβ(i−1)n‖u(i−1)n − xn‖ → 0 as n → ∞,
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for i = 1, . . . , k. Since

‖xn − Tixn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Ti(RTi)nxn+1‖
+ ‖Ti(RTi)nxn+1 − Ti(RTi)nxn‖ + ‖Ti(RTi)nxn − (TiR)xn‖

≤ (1 + L)‖xn − xn+1‖ + ‖xn+1 − Ti(RTi)nxn+1‖

+ L‖Ti(RTi)n−1xn − xn‖,

we use (28) and (29) to get

lim
n→∞ ‖xn − Tixn‖ = 0, i = 1, . . . , k.(30)

To verify the strong convergence of {xn} to a point of F , we need to discuss two
cases. First, suppose that {Ti}k

i=1 satisfies Condition (A) with respect to {xn}. Let
f be the corresponding nondecreasing function for {Ti}k

i=1 which satisfy Condition
(A) with respect to {xn}. According to (30),

f(d(xn, F )) ≤ max
i≤i≤k

‖xn − Tixn‖ → 0 as n → ∞,

and hence lim infn→∞ d(xn, F ) = 0. Theorem 3.1 assures that {xn} converges
strongly to a point of F .

Second, if Tm
i0

is semicompact, for some 1 ≤ i0 ≤ k and for some m ≥ 1, it
follows from (30) that

‖xn − Ti0(RTi0)
m−1xn‖ ≤ ‖xn − Ti0xn‖ + ‖Ti0xn − Ti0(RTi0)xn‖ + · · ·

+ ‖Ti0(RTi0)
m−2xn − Ti0(RTi0)

m−1xn‖
≤ ‖xn − Ti0xn‖ + (m − 1)L‖Rxn − RTi0xn‖
≤ [1 + (m− 1)L]‖xn − Ti0xn‖ → 0 as n → ∞,

and thus there is a subsequence {xnj} of {xn} which converges strongly to x∗ ∈
C. Using (30), we have Tix

∗ = x∗, i = 1, . . . , k, and so x∗ ∈ F . Therefore
lim infn→∞ d(xn, F ) = 0. By Theorem 3.1, {xn} converges strongly to x∗.

The following two results are the weak convergence theorems in a uniformly
convex Banach space such that either it satisfies the Opial property or its dual space
has the Kadec-Klee property.

Theorem 4.2. Let X be a uniformly convex Banach space satisfying the Opial
property, C a closed convex subset of X , {u in}∞n=1, i = 1, . . . , k, bounded se-
quences in X , R : X → C a nonexpansive retraction, and {T i : C → X}k

i=1 a
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family of nonself uniformly L-Lipschitzian and generalized asymptotically quasi-
nonexpansive mappings with respect to {r in} and {sin} such that F =

⋂k
i=1 F (Ti) 	=

∅. Suppose that

(i)
∑∞

n=1 rin < ∞ and
∑∞

n=1 sin < ∞, for i = 1, . . . , k;
(ii) 0 < lim infn→∞ αin ≤ lim supn→∞ αin < 1 and

∑∞
n=1 βin < ∞, for i =

1, . . . , k;
(iii) I − Ti, i = 1, . . . , k, is demiclosed at 0, for i = 1, . . . , k.

Then the sequence {xn} defined by (9) converges weakly to a common fixed point
of {Ti}k

i=1.

Proof. Since a uniformly convex Banach space is reflexive, the bounded se-
quence {xn} has a subsequence {xnj} which converges weakly to a point x∗ of C.
The demiclosedness of each I−Ti and (30) imply that Tix

∗ = x∗, i = 1, . . . , k, i.e.,
x∗ ∈ F . To prove that {xn} converges weakly to x∗, let {xmj} be any subsequence
of {xn} which converges weakly to a point x̄ so that x̄ ∈ F . Assume that x∗ 	= x̄.
Then it follows from the Opial property that

lim
j→∞

‖xmj − x∗‖ = lim
n→∞ ‖xn − x∗‖ = lim

j→∞
‖xnj − x∗‖

< lim
j→∞

‖xnj − x̄‖ = lim
n→∞ ‖xn − x̄‖ = lim

j→∞
‖xmj − x̄‖,

which is a contradiction. Consequently, any subsequence of {xn} has a weakly
convergent subsequence with limit x∗, and hence {xn} converges weakly to x∗.

We consider an iteration defined by (9) for nonself asymptotically nonexpansive
mappings, where βin = 0, for all 1 ≤ i ≤ k and n ∈ N. That is, choose x1

arbitrarily in C. Define an iterative sequence as follows:

y1n = R((1− α1n)xn + α1nT1(RT1)n−1xn),

yin = R((1− αin)xn + αinTi(RTi)n−1y(i−1)n), 2 ≤ i ≤ k − 1,

xn+1 = ykn = R((1− αkn)xn + αknTk(RTk)n−1y(k−1)n), n ∈ N.

(31)

Theorem 4.3. Let X be a uniformly convex Banach space whose dual X ∗

has the Kadec-Klee property, C a closed convex subset of X , R : X → C a
nonexpansive retraction, and {T i : C → X}k

i=1 a family of nonself asymptotically
nonexpansive mappings with respect to {r in} such that F =

⋂k
i=1 F (Ti) 	= ∅.

Suppose that

(i)
∑∞

n=1 rin < ∞, for i = 1, . . . , k;
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(ii) 0 < lim infn→∞ αin ≤ lim supn→∞ αin < 1, for i = 1, . . . , k;

Then the sequence {xn} defined by (31) converges weakly to a common fixed point
of {Ti}k

i=1.

Proof. The idea of proof was referred to that of Lemma 3.8 in [2]. As
discussed in Theorem 3.1, the sequence {xn} is bounded and hence there exists
a closed ball B with F ∩ B 	= ∅ such that {xn} ⊂ K = B ∩ C. Then K is a
closed bounded convex subset of C. Let rn = max{rin : i = 1, . . . , k} so that∑∞

n=1 rn < ∞. Let p, q ∈ F ∩ K. For each n ∈ N, define a function

an(t) = ‖txn + (1 − t)p − q‖, where t ∈ [0, 1].

Then limn→∞ an(0) = limn→∞ ‖p − q‖ and limn→∞ an(1) = limn→∞ ‖xn − q‖
exist. To prove that limn→∞ an(t) exists, for t ∈ (0, 1), define a mapping Sn :
K → K by

Snv = R((1− αkn)v + αknTk(RTk)n−1v(k−1)n), v ∈ K,

where

v1n = R((1− α1n)v + α1nT1(RT1)n−1v),

vin = R((1− αin)v + αinTi(RTi)n−1v(i−1)n, 2 ≤ i ≤ k − 1.

Observe that if v = xn and vin = yin, for 1 ≤ i ≤ k − 1 and n ∈ N, then
Snxn = xn+1. Also, F ∩ K ⊂ F (Sn), n ∈ N. For any v, w ∈ K , we have

‖v1n − w1n‖ ≤ (1 − α1n)‖v − w‖ + α1n(1 + rn)‖v − w‖
≤ (1 + rn)‖v − w‖

and then

‖v2n − w2n‖ ≤ (1− α2n)‖v − w‖ + α2n(1 + rn)‖v1n − w1n‖
≤ (1 + rn)2‖v − w‖.

We repeat this process inductively to obtain that

‖vin − win‖ ≤ (1− αin)‖v − w‖+ αin(1 + rn)‖v(i−1)n − w(i−1)n‖

≤ (1− αin)‖v − w‖+ αin(1 + rn)i‖v − w‖

≤ (1 + rn)i‖v − w‖,
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for i = 1, . . . , k − 1. Therefore

(32)

‖Snv − Snw‖ ≤ (1− αkn)‖v − w‖ + αkn(1 + rn)‖v(k−1)n − w(k−1)n‖
≤ [(1− αkn) + αkn(1 + rn)k]‖v − w‖
≤ (1 + rn)k‖v − w‖

=


1 + rn

k−1∑
j=0

(1 + rn)j


 ‖v − w‖

= (1 + εn)‖v − w‖,

where εn = rn
∑k−1

j=0 (1 + rn)j . Note that by hypothesis,

∞∑
n=1

εn < ∞.(33)

For m ∈ N, define a mapping Qnm : K → K by

Qnm = Sn+mSn+m−1 · · ·Sn

and
bnm = ‖Qnm(txn + (1− t)p)− [tQnmxn + (1 − t)p]‖.

By (32), for v, w ∈ K,

‖Qnmv − Qnmw‖ ≤ (1 + εn+m)(1 + εn+m−1) · · · (1 + εn)‖v − w‖
= δnm‖v − w‖,

where

δnm = (1 + εn+m)(1 + εn+m−1) · · · (1 + εn), for n, m ∈ N,

so that limn,m→∞ δnm = 1 by (33). According to Lemma 2.5, there is a strictly
increasing, continuous and convex function φ : [0,∞) → [0,∞) with φ(0) = 0
such that

bnm ≤ δnmφ−1

(
‖xn − p‖ − 1

δnm
‖Qnmxn − Qnmp‖

)

= δnmφ−1

(
‖xn − p‖ − 1

δnm
‖xn+m+1 − p‖

)
,

since Qnmxn = xn+m+1 and F ∩ K ⊂ F (Qnm). Therefore limn,m→∞ bnm = 0.
Now from



Nonself Generalized Asymptotically Quasi-Nonexpansive Mappings 763

an+m+1(t) = ‖tQnmxn + (1− t)p − q‖
≤ ‖[tQnmxn + (1− t)p] − Qnm(txn + (1 − t)p)‖

+ ‖Qnm(txn + (1− t)p) − Qnmq‖
= bnm + δnman(t),

we take the limit superior as m → ∞ and then the limit inferior as n → ∞ to
obtain

lim sup
n→∞

an(t) ≤ lim inf
n→∞ an(t).

Consequently, limn→∞ an(t) exists.
The reflexivity of X implies that the bounded sequence {xn} has a subsequence

{xnj} which converges weakly to some point x∗ ∈ K because K is closed and
convex. Lemma 2.3 asserts that Tix

∗ = x∗, for 1 ≤ i ≤ k, and so x∗ ∈ F ∩ K .
We can see at once that ωw{xn} ⊂ F ∩ K. To prove that {xn} converges weakly
to x∗, let {xmj} be any subsequence of {xn} which converges weakly to a point
x̄ so that x̄ ∈ F ∩ K. Since x∗, x̄ ∈ ωw{xn} and limn→∞ ‖txn + (1 − t)p − q‖
exists, for all t ∈ [0, 1] and p, q ∈ F ∩ K , it follows from Lemma 2.4 that x∗ = x̄.
We conclude that any subsequence of {xn} has a weakly convergent subsequence
with limit x∗, and hence {xn} converges weakly to x∗, as assured.

The following three theorems are analogs of the preceding results for the iteration
defined by (10).

Theorem 4.4. Let X be a uniformly convex Banach space, C a closed convex
subset of X , {uin}∞n=1, i = 1, . . . , k, bounded sequences in X , R : X → C

a nonexpansive retraction, and {T i : C → X}k
i=1 a family of nonself uniformly

L-Lipschitzian and generalized asymptotically quasi-nonexpansive mappings with
respect to {rin} and {sin} such that F =

⋂k
i=1 F (Ti) 	= ∅. Let the sequence {xn}

be defined by (10). Suppose that

(i)
∑∞

n=1 rin < ∞ and
∑∞

n=1 sin < ∞, for i = 1, . . . , k;
(ii) 0 < lim infn→∞ αin ≤ lim supn→∞ αin < 1 and

∑∞
n=1 βin < ∞, for i =

1, . . . , k;
(iii) the family {Ti}k

i=1 satisfies Condition (A) with respect to {x n}, or Ti0(RTi0)
m−1

is semicompact, for some 1 ≤ i0 ≤ k and for some m ≥ 1.

Then {xn} converges strongly to a common fixed point of {T i}k
i=1.

Proof. We may assume by hypothesis that ρ ≤ αin ≤ 1 − ρ, for some ρ > 0,
where i = 1, . . . , k, and n ∈ N. Let p ∈ F . It follows from (19) and (20) in the
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proof of Theorem 3.3 that limn→∞ ‖xn−p‖ exists and hence {xn} is bounded. Set
limn→∞ ‖xn − p‖ = c which can be written as

lim
n→∞ ‖R((1−αkn−βkn)y(k−2)n +αknTk(RTk)n−1y(k−1)n+βknukn)−R(p)‖ = c.

So

(34)
c ≤ lim inf

n→∞ ‖αkn[Tk(RTk)n−1y(k−1)n − p + βkn(ukn − y(k−2)n)]

+(1 − αkn)[y(k−2)n − p + βkn(ukn − y(k−2)n)]‖.

From the inequality (18) and assumption (ii) we obtain that

lim sup
n→∞

‖yin − p‖ ≤ c, i = 1, . . . , k ;(35)

so the sequence {yin} is bounded, for i = 1, . . . , k. By (11),

‖Tk(RTk)n−1y(k−1)n − p + βkn(ukn − y(k−2)n)‖
≤τn‖y(k−1)n − p‖ + βkn‖ukn − y(k−2)n‖

which shows that

lim sup
n→∞

‖Tk(RTk)n−1y(k−1)n − p + βkn(ukn − y(k−2)n))‖ ≤ c.(36)

Since ‖y(k−2)n)−p+βkn(ukn−y(k−2)n)]‖ ≤ ‖y(k−2)n−p‖+βkn‖ukn −y(k−2)n‖,
we have

lim sup
n→∞

‖y(k−2)n − p + βkn(ukn − y(k−2)n)‖ ≤ c.(37)

We obtain from (34), (36) and (37) that

lim
n→∞ ‖αkn[Tk(RTk)n−1y(k−1)n − p + βkn(ukn − y(k−2)n)]

+ (1− αkn)[y(k−2)n − p + βkn(ukn − y(k−2)n)]‖ = c.

According to Lemma 2.2,

lim
n→∞ ‖y(k−2)n − Tk(RTk)n−1y(k−1)n‖ = 0.

On the other hand, from (18) we have
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‖xn+1 − p‖ ≤ (1− αkn − βkn)‖y(k−2)n − p‖ + αknτn‖y(k−1)n − p‖
+ βkn‖ukn − p‖

≤ (1− αkn)τk
n‖xn − p‖ + τk

n [β1n‖u1n − p‖+ β2n‖u2n − p‖
+ · · ·+ β(k−2)n‖u(k−2)n − p‖] + αknτk

n‖y(k−1)n − p‖
+ βknτk

n‖ukn − p‖

≤ (1−αkn)τk
n‖xn−p‖+τk

n

k∑
j=1

βjn‖ujn−p‖+αknτk
n‖y(k−1)n−p‖;

hence

‖xn − p‖ ≤ 1
αknτk

n


τk

n‖xn − p‖ − ‖xn+1 − p‖ + τk
n

k∑
j=1

βjn‖ujn − p‖



+ ‖y(k−1)n − p‖

≤ 1
ρτk

n


τk

n‖xn − p‖ − ‖xn+1 − p‖ + τk
n

k∑
j=1

βjn‖ujn − p‖



+ ‖y(k−1)n − p‖,

because (19) implies that the expression in the square bracket is nonnegative. This
asserts that c ≤ lim infn→∞ ‖y(k−1)n − p‖ and so by (35),

lim
n→∞ ‖y(k−1)n − p‖ = c.

Therefore

lim
n→∞ ‖R((1−α(k−1)n − β(k−1)n)y(k−3)n + α(k−1)nTk−1(RTk−1)n−1y(k−2)n

+ β(k−1)nu(k−1)n) − R(p)‖ = c.

Again, since

lim sup
n→∞

‖Tk−1(RTk)n−1y(k−2)n − p + β(k−1)n(u(k−1)n − y(k−3)n)‖ ≤ c

and
lim sup

n→∞
‖y(k−3)n − p + β(k−1)n(u(k−1)n − y(k−3)n)‖ ≤ c,

we see that
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lim
n→∞ ‖α(k−1)n[Tk−1(RTk)n−1y(k−2)n − p + β(k−1)n(u(k−1)n − y(k−3)n)]

+ (1− α(k−1)n)[y(k−3)n − p + β(k−1)n(u(k−1)n − y(k−3)n)]‖ = c,

and so
lim

n→∞ ‖y(k−3)n − Tk−1(RTk)n−1y(k−2)n‖ = 0.

Furthermore,

‖y(k−1)n − p‖ ≤ (1 − α(k−1)n − β(k−1)n)‖y(k−3)n − p‖+ α(k−1)nτn‖y(k−2)n − p‖
+ β(k−1)n‖u(k−1)n − p‖

≤ (1 − α(k−1)n)τk−1
n ‖xn − p‖ + τk−1

n

k−1∑
j=1

βjn‖ujn − p‖

+ α(k−1)nτk−1
n ‖y(k−2)n − p‖

and hence

‖xn−p‖ ≤ 1
α(k−1)nτk−1

n


τk−1

n ‖xn−p‖−‖y(k−1)n−p‖+τk−1
n

k−1∑
j=1

βjn‖ujn−p‖



+ ‖y(k−2)n − p‖

≤ 1
ρτk−1

n


τk−1

n ‖xn − p‖ − ‖y(k−1)n − p‖ + τk−1
n

k−1∑
j=1

βjn‖ujn − p‖



+ ‖y(k−2)n − p‖.
Thus

lim
n→∞ ‖y(k−2)n − p‖ = c.

Repeat this process inductively k times to conclude that

lim
n→∞ ‖xn − T1(RT1)n−1xn‖ = 0

and

lim
n→∞ ‖y(i−2)n − Ti(RTi)n−1y(i−1)n‖ = 0, i = 2, . . . , k,(38)

from which it follows that

lim
n→∞ ‖xn − y1n‖ = 0(39)
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and for i = 2, . . . , k,

(40)
‖yin − y(i−2)n‖ ≤ αin‖Ti(RTi)n−1y(i−1)n − y(i−2)n‖

+βin‖uin − y(i−2)n‖ → 0 as n → ∞.

If i is an even integer, then

‖xn − yin‖ ≤ ‖y0n − y2n‖ + ‖y2n − y4n‖ + · · ·+ ‖y(i−2)n − yin‖;
if i is an odd integer, then

‖xn − yin‖ ≤ ‖y0n − y1n‖ + ‖y1n − y3n‖ + · · ·+ ‖y(i−2)n − yin‖.
Consequently, by (39) and (40),

lim
n→∞ ‖xn − yin‖ = 0, i = 1, . . . , k.(41)

In particular, since xn+1 = ykn,

lim
n→∞ ‖xn − xn+1‖ = 0.(42)

Also note that from (38) and (41),

(43)

‖xn−Ti(RTi)n−1xn‖ ≤ ‖xn−y(i−2)n‖+‖y(i−2)n−Ti(RTi)n−1y(i−1)n‖
+‖Ti(RTi)n−1y(i−1)n − Ti(RTi)n−1xn‖

≤ ‖xn−y(i−2)n‖+‖y(i−2)n−Ti(RTi)n−1y(i−1)n‖
+L‖y(i−1)n − xn‖ → 0 as n → ∞.

From

‖xn − Tixn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Ti(RTi)nxn+1‖

+ ‖Ti(RTi)nxn+1−Ti(RTi)nxn‖+‖(TiR)Ti(RTi)n−1xn−(TiR)xn‖
≤ (1 + L)‖xn − xn+1‖ + ‖xn+1 − Ti(RTi)nxn+1‖
+ L‖Ti(RTi)n−1xn − xn‖,

(42) and (43) imply that

lim
n→∞ ‖xn − Tixn‖ = 0, i = 1, . . . , k.

Using the same argument as in the last part of the proof of Theorem 4.1, we can
assure that {xn} converges strongly to a point of F .
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Theorem 4.5. Let X be a uniformly convex Banach space satisfying the Opial
property, C a closed convex subset of X , {u in}∞n=1, i = 1, . . . , k, bounded se-
quences in X , R : X → C a nonexpansive retraction, and {T i : C → X}k

i=1 a
family of nonself uniformly L-Lipschitzian and generalized asymptotically quasi-
nonexpansive mappings with respect to {r in} and {sin} such that F =

⋂k
i=1 F (Ti) 	=

∅. Suppose that

(i)
∑∞

n=1 rin < ∞ and
∑∞

n=1 sin < ∞, for i = 1, . . . , k;
(ii) 0 < lim infn→∞ αin ≤ lim supn→∞ αin < 1 and

∑∞
n=1 βin < ∞, for i =

1, . . . , k;
(iii) I − Ti, i = 1, . . . , k, is demiclosed at 0, for i = 1, . . . , k.

Then the sequence {xn} defined by (10) converges weakly to a common fixed point
of {Ti}k

i=1.

Proof. The proof is the same as that of Theorem 4.2 and so is omitted.

Setting βin = 0 for the iteration defined by (10), for all 1 ≤ i ≤ k and n ∈ N,
we obtain a sequence {xn} as follows: choose x1 arbitrarily in C,

y1n = R((1− α1n)xn + α1nT1(RT1)n−1xn),

yin = R((1− αin)y(i−2)n + αinTi(RTi)n−1y(i−1)n), 2 ≤ i ≤ k − 1,

xn+1 = ykn = R((1− αkn)y(k−2)n + αknTk(RTk)n−1y(k−1)n), n ∈ N,

(44)

where y0n = xn.

Theorem 4.6. Let X be a uniformly convex Banach space whose dual X ∗

has the Kadec-Klee property, C a closed convex subset of X , R : X → C a
nonexpansive retraction, and {T i : C → X}k

i=1 a family of nonself asymptotically
nonexpansive mappings with respect to {r in} such that F =

⋂k
i=1 F (Ti) 	= ∅.

Suppose that

(i)
∑∞

n=1 rin < ∞, for i = 1, . . . , k;
(ii) 0 < lim infn→∞ αin ≤ lim supn→∞ αin < 1, for i = 1, . . . , k;

Then the sequence {xn} defined by (44) converges weakly to a common fixed point
of {Ti}k

i=1.

Proof. It follows from (19) and (20) in Theorem 3.3 that limn→∞ ‖xn − p‖
exists for all p ∈ F and so the sequence {xn} is bounded. Hence there exists
a closed ball B with F ∩ B 	= ∅ such that {xn} ⊂ K = B ∩ C. So K is a
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closed bounded convex subset of C. Let rn = max{rin : i = 1, . . . , k} so that∑∞
n=1 rn < ∞. Let p, q ∈ F ∩ K. For each n ∈ N, define a function

an(t) = ‖txn + (1 − t)p − q‖, where t ∈ [0, 1].

Then limn→∞ an(0) = limn→∞ ‖p − q‖ and limn→∞ an(1) = limn→∞ ‖xn − q‖
exist. To prove that limn→∞ an(t) exists, for t ∈ (0, 1), define a mapping Sn :
K → K by

Snv = R((1− αkn)v(k−2)n + αknTk(RTk)n−1v(k−1)n), v ∈ K,

where

v0n = v,

v1n = R((1− α1n)v + α1nT1(RT1)n−1v),

vin = R((1− αin)v(i−2)n + αinTi(RTi)n−1v(i−1)n), 2 ≤ i ≤ k − 1.

If vin = yin, for 0 ≤ i ≤ k − 1 and n ∈ N, then Snxn = ykn = xn+1. Moreover,
F ∩ K ⊂ F (Sn), n ∈ N. For any v, w ∈ K , we have

‖v1n − w1n‖ ≤ (1 − α1n)‖v − w‖ + α1n(1 + rn)‖v − w‖
≤ (1 + rn)‖v − w‖

and so

‖v2n − w2n‖ ≤ (1− α2n)‖v0n − w0n‖ + α2n(1 + rn)‖v1n − w1n‖

≤ (1 + rn)2‖v − w‖.
Inductively continuing this process, we obtain

‖vin − win‖ ≤ (1 − αin)‖v(i−2)n − w(i−2)n‖ + αin(1 + rn)‖v(i−1)n − w(i−1)n‖

≤ (1 − αin)(1 + rn)i−2‖v − w‖ + αin(1 + rn)i‖v − w‖

≤ (1 + rn)i‖v − w‖,
for i = 1, . . . , k − 1. In particular,

(45)

‖Snv−Snw‖
≤ (1−αkn)‖v(k−2)n−w(k−2)n‖+αkn(1 + rn)‖v(k−1)n−w(k−1)n‖
≤ (1 + rn)k‖v − w‖
= (1 + εn)‖v − w‖,
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where εn = rn
∑k−1

j=0 (1 + rn)j . By hypotheses,

∞∑
n=1

εn < ∞.(46)

For m ∈ N, define a mapping Qnm : K → K by

Qnm = Sn+mSn+m−1 · · ·Sn

and
bnm = ‖Qnm(txn + (1− t)p)− [tQnmxn + (1 − t)p]‖.

By (45), for v, w ∈ K,

‖Qnmv − Qnmw‖ ≤ (1 + εn+m)(1 + εn+m−1) · · · (1 + εn)‖v − w‖
= δnm‖v − w‖,

where

δnm = (1 + εn+m)(1 + εn+m−1) · · · (1 + εn), for n, m ∈ N,

so that by (46), limn,m→∞ δnm = 1.
It remains to show that limn→∞ an(t) exists, for t ∈ [0, 1], and hence {xn}

converges weakly to a point of F ∩ K . The argument of this part is the same as
that in Theorem 4.3 and so is omitted.
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