TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 2, pp. 745-772, April 2011 This paper is available online at http://www.tjm.nsysu.edu.tw/

COMMON FIXED POINTS OF A FINITE FAMILY OF NONSELF GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

Shuechin Huang

Abstract. Suppose that C is a nonempty subset of a real Banach space X. In this article, we construct two types of iterative schemes with errors for a finite family $\{T_i\}_{i=1}^k$ of nonself generalized asymptotically quasi-nonexpansive mappings of C into X. Furthermore, not only a necessary and sufficient condition for $\{x_n\}$ generated by each of those iterations to converge to a common fixed point of $\{T_i\}_{i=1}^k$ is obtained, but also the weak and strong convergence theorems of $\{x_n\}$ in uniformly convex Banach spaces are established as well.

1. INTRODUCTION

Let X be a real Banach space and let C be a nonempty subset of X. Suppose that $T: C \to X$ is a mapping and denote the fixed point set of T by F(T). We recall the following definition, when T is a self-mapping of C.

Definition 1.1. A mapping $T: C \to C$ is said to be

(i) uniformly λ -Lipschitzian if there exists $\lambda > 0$ such that

(1)
$$||T^n x - T^n y|| \le \lambda ||x - y||, \quad \forall x, y \in C, \ n \in \mathbf{N};$$

(ii) nonexpansive if

$$|Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C, \ n \in \mathbf{N};$$

(iii) quasi-nonexpansive if

Received June 1, 2009, accepted November 5, 2009.

Communicated by J. C. Yao.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47H10, 54H25.

Key words and phrases: Nonself generalized asymptotically quasi-nonexpansive mapping, Lipschitzian mapping, Retract, Retraction, Opial property, Kadec-Klee property, Demiclosedness, Semicompactness, Condition (A).

This research was partially supported by a grant from the National Science Council.

$$||Tx - p|| \le ||x - p||, \quad \forall x \in C, \ p \in F(T), \ n \in \mathbf{N};$$

(iv) asymptotically nonexpansive if there exists a sequence $\{r_n\}$ in [0,1] with $\lim_{n\to\infty} r_n = 0$ such that

(2)
$$||T^n x - T^n y|| \le (1 + r_n) ||x - y||, \quad \forall x, y \in C, n \in \mathbf{N};$$

(v) asymptotically quasi-nonexpansive if there exists a sequence $\{r_n\}$ in [0,1] with $\lim_{n\to\infty} r_n = 0$ such that

(3)
$$||T^n x - p|| \le (1 + r_n) ||x - p||, \quad \forall x \in C, \ p \in F(T), \ n \in \mathbf{N};$$

(vi) generalized asymptotically quasi-nonexpansive if there exist two sequences $\{r_n\}$ and $\{s_n\}$ in [0,1] with $\lim_{n\to\infty} r_n = 0$ and $\lim_{n\to\infty} s_n = 0$ such that

(4)
$$||T^n x - p|| \le (1 + r_n) ||x - p|| + s_n ||x - T^n x||, \ \forall x \in C, \ p \in F(T), \ n \in \mathbf{N}.$$

Suppose that C is a convex subset of a real Banach space X. There are three classical iterations used to approximate a fixed point of a nonexpansive mapping $T: C \to C$. That is,

(i) *Halpern* iteration [11]: Choose $u, x_1 \in C$ and define

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) T x_n, \quad n \in \mathbf{N},$$

where $\{\alpha_n\} \subset [0,1]$.

(ii) Mann iteration [17]: Choose
$$x_1 \in C$$
 and define
 $x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \quad n \in \mathbf{N},$

where $\{\alpha_n\} \subset [0,1]$.

(iii) *Ishikawa* iteration [12]: Choose $x_1 \in C$ and define

$$y_n = \alpha_n x_n + (1 - \alpha_n) T x_n,$$

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) T y_n, \quad n \in \mathbf{N},$$

where $\{\alpha_n\}, \{\beta_n\} \subset [0, 1].$

If T is yet a mapping from C into X, the preceding iterations may not be well defined. A motivation of this paper was to construct an iterative scheme with errors for a finite family of nonself mappings and generate a sequence to approximate a common fixed point of them.

In 2003, Chidume, Ofoedu and Zegeye [4] introduced the notion of nonself asymptotically nonexpansive mappings as an important generalization of asymptotically nonexpansive self-mappings.

Definition 1.2. A subset A of a topological space X is said to be a retract of X if there exists a continuous mapping $R : X \to A$ (called a retraction) such that R(a) = a, for all $a \in A$. If, in addition, R is nonexpansive, then A is said to be a nonexpansive retract of X.

If $R : X \to A$ is a retraction, then $R^2 = R$. A retract of a Hausdorff space must be a closed subset. Every closed convex subset of a uniformly convex Banach space is a retract.

Definition 1.3. Let C be a nonempty subset of a real Banach space X and let $R : X \to C$ be a nonexpansive retraction of X onto C. A nonself mapping $T : C \to X$ is said to be

(i) uniformly λ -Lipschitzian if there exists $\lambda > 0$ such that

(5)
$$||T(RT)^{n-1}x - T(RT)^{n-1}y|| \le \lambda ||x - y||, \quad \forall x, y \in C, \ n \in \mathbf{N};$$

(ii) asymptotically nonexpansive if there exists a sequence $\{r_n\}$ in [0,1] with $\lim_{n\to\infty} r_n = 0$ such that

(6)
$$||T(RT)^{n-1}x - T(RT)^{n-1}y|| \le (1+r_n)||x-y||, \quad \forall x, y \in C, n \in \mathbf{N};$$

(iii) asymptotically quasi-nonexpansive if there exists a sequence $\{r_n\}$ in [0,1] with $\lim_{n\to\infty} r_n = 0$ such that

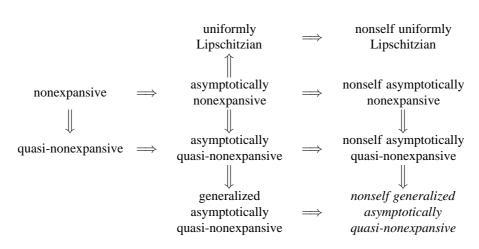
(7)
$$||T(RT)^{n-1}x - p|| \le (1 + r_n)||x - p||, \quad \forall x \in C, \ p \in F(T), \ n \in \mathbf{N};$$

(iv) generalized asymptotically quasi-nonexpansive if there exist two sequences $\{r_n\}$ and $\{s_n\}$ in [0,1] with $\lim_{n\to\infty} r_n = 0$ and $\lim_{n\to\infty} s_n = 0$ such that

(8)
$$||T(RT)^{n-1}x - p|| \le (1+r_n)||x - p|| + s_n ||x - T(RT)^{n-1}x||,$$

for all $x \in C$, $p \in F(T)$, $n \in \mathbb{N}$.

If T is a self-mapping of C in Definition 1.3, then (5)-(8) in which R becomes the identity mapping are exactly the cases (1)-(4) respectively. Suppose that $T : C \to X$ is generalized asymptotically quasi-nonexpansive with respective to $\{r_n\}$ and $\{s_n\}$. If $s_1 < 1$, then using (8) with n = 1, we see that F(T) is closed. Also, we have the following implications from this definition:



Let X be a real Banach space and let C be a nonempty subset of X and let $\{T_i : C \to X\}_{i=1}^k$ be a family of (not necessarily distinct) nonself generalized asymptotically quasi-nonexpansive mappings with respect to $\{r_{in}\}$ and $\{s_{in}\}$. Suppose that, for $i = 1, \ldots, k$, $\{u_{in}\}_{n=1}^{\infty} \subset X$ and $\{\alpha_{in}\}_{n=1}^{\infty}, \{\beta_{in}\}_{n=1}^{\infty} \subset [0, 1]$ such that $\alpha_{in} + \beta_{in} \leq 1$. Let $R : X \to C$ be a nonexpansive retraction. This work is devoted to study the following two types of iterative schemes with errors for $\{T_i\}_{i=1}^k$:

I. Choose x_1 arbitrarily in C. Define an iterative sequence by

$$y_{1n} = R((1 - \alpha_{1n} - \beta_{1n})x_n + \alpha_{1n}T_1(RT_1)^{n-1}x_n + \beta_{1n}u_{1n}),$$

(9)
$$y_{in} = R((1 - \alpha_{in} - \beta_{in})x_n + \alpha_{in}T_i(RT_i)^{n-1}y_{(i-1)n} + \beta_{in}u_{in}), \quad 2 \le i \le k-1,$$
$$x_{n+1} = y_{kn} = R((1 - \alpha_{kn} - \beta_{kn})x_n + \alpha_{kn}T_k(RT_k)^{n-1}y_{(k-1)n} + \beta_{kn}u_{kn}), \quad n \in \mathbb{N}.$$

II. Choose x_1 arbitrarily in C. Define an iterative sequence by

 $y_{1n} = R((1 - \alpha_{1n} - \beta_{1n})x_n + \alpha_{1n}T_1(RT_1)^{n-1}x_n + \beta_{1n}u_{1n}),$

(10)
$$y_{in} = R((1 - \alpha_{in} - \beta_{in})y_{(i-2)n} + \alpha_{in}T_i(RT_i)^{n-1}y_{(i-1)n} + \beta_{in}u_{in}), \ 2 \le i \le k-1,$$
$$x_{n+1} = y_{kn} = R((1 - \alpha_{kn} - \beta_{kn})y_{(k-2)n} + \alpha_{kn}T_k(RT_k)^{n-1}y_{(k-1)n} + \beta_{kn}u_{kn}), \ n \in \mathbf{N},$$

where $y_{0n} = x_n$.

The algorithm (9) is the generalized process of the classical finite-step iterations, while the algorithm (10) is a new iterative scheme. In fact, the problem of the convergence of $\{x_n\}$ generated by (9) to a fixed point of (generalized) asymptotically quasi-nonexpansive self-mappings has been tremendously studied. In particular, if k = 1, the iteration (9) is precisely the Mann iteration. When k = 2 and T_1 and T_2 are (possibly the same) self-mappings of C, the iterative scheme (9) is reduced to the Ishikawa iteration; see, e.g., [8, 14, 15, 28]. If k = 3 and $T_1 = T_2 = T_3$, the iterative scheme (9) is the three-step iteration, i.e., the modified Mann and Ishikawa

iteration introduced by Xu and Noor [29]; see, e.g., [19, 27]. It is worthy of note that the three-step iteration was extended to the k-step iteration, where $k \ge 4$, and many nice results have been established; see, e.g., [2, 3, 13, 20]. On the other hand, the implicit iterative scheme is another new iteration introduced by Xu and Ori [30] for a finite family of nonexpansive mappings; also see, e.g., [5, 23, 24]. In [6], Deng and Liu gave a new iterative process, the modified Ishikawa iteration with finite steps, and established the strong convergence theorems for two nonself generalized asymptotically quasi-nonexpansive mappings.

In this paper, a necessary and sufficient condition for $\{x_n\}$ generated by each of iterations (9) and (10) to converge to a common fixed point of $\{T_i\}_{i=1}^k$ is obtained. Not only the strong convergence theorems of $\{x_n\}$ in uniformly convex Banach spaces, but also the weak convergence theorems in uniformly convex Banach spaces which satisfies the Opial property, or whose dual space has the Kadec-Klee property are established as well. In fact, a dual space of a reflexive Banach space with a Fréchet differentiable norm or the Opial property also satisfies the Kadec-Klee property [7]. There exist uniformly convex Banach spaces which have neither a Fréchet differentiable norm nor the Opial property, but their dual spaces do have the Kadec-Klee property; see [9]. Therefore the Opial property is independent of uniform convexity. To a certain extent, a part of this work based on (9) can be viewed as an extension of the results in the literature; see, e.g., [13, 19, 20, 28].

2. Preliminaries

Suppose that X is a real Banach space and C is a subset of X. Then X is said to be *uniformly convex* [1] if for each $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that for $x, y \in X$ with $||x|| \le 1$ and $||y|| \le 1$,

$$\left\|\frac{x+y}{2}\right\| \le 1-\delta(\epsilon), \text{ whenever } \|x-y\| \ge \epsilon.$$

A mapping $T: C \to X$ is *semicompact* (or *hemicompact*) [26] if for any sequence $\{x_n\}$ in C with $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$, there exists a subsequence of $\{x_n\}$ which converges strongly to a point of C.

A family $\{T_i: C \to X\}_{i=1}^k$ of nonself mappings with $F = \bigcap_{i=1}^k F(T_i) \neq \emptyset$ is said to satisfy *Condition* (A) with respect to E [5, 6], where $E \subset C$, if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0 for all $r \in (0, \infty)$ such that

$$\max_{1 \le i \le k} \{ \|x - T_i x\| \} \ge f(d(x, F)), \quad \forall x \in E,$$

where $d(x, F) = \inf\{||x - y|| : y \in F\}$. When k = 1 and T_1 is a self-mapping of C, Condition (A) reduces to the one discussed in [16, 22, 25].

A Banach space X is said to satisfy the *Opial property* [10] if whenever a sequence $\{x_n\}$ in X converges weakly to x, then $\limsup_{n\to\infty} \|x_n - x\| < \limsup_{n\to\infty} \|x_n - y\|$, for $y \neq x$. We say that X has the Kadec-Klee property if, for any sequence $\{x_n\}$ in E which converges weakly to $x \in X$ and $\|x_n\| \to \|x\|$, we have $\{x_n\}$ converges strongly to x. Every locally uniformly convex normed space, for instance, L_p spaces, 1 , has this property. We also remark that $<math>L_p$ spaces, $1 and <math>p \neq 2$, do not satisfy the Opial property, but their dual spaces have the Kadec-Klee property.

The lemmas stated in this section will be required in the sequel.

Lemma 2.1. [15]. Let $\{a_n\}$, $\{\epsilon_n\}$ and $\{\delta_n\}$ be sequences of nonnegative real numbers satisfying the following condition:

$$a_{n+1} \le (1+\epsilon_n)a_n + \delta_n.$$

If $\sum_{n=1}^{\infty} \epsilon_n < \infty$ and $\sum_{n=1}^{\infty} \delta_n < \infty$, then $\lim_{n\to\infty} a_n$ exists. In particular, if $\{a_n\}$ has a subsequence converging to 0, then $\lim_{n\to\infty} a_n = 0$.

Lemma 2.2. (Schu's lemma [21]). Let X be a uniformly convex Banach space. Suppose that $0 < a \le t_n \le b < 1$ for all $n \in \mathbb{N}$. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X such that $\limsup_{n\to\infty} ||x_n|| \le c$, $\limsup_{n\to\infty} ||y_n|| \le c$ and $\lim_{n\to\infty} ||t_nx_n + (1-t_n)y_n|| = c$, for some number $c \ge 0$. Then $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

Recall that a mapping $T: C \to X$ is *demiclosed* at $y \in X$ if, for any sequence $\{x_n\}$ in C, the conditions $x_n \to x \in C$ weakly and $T(x_n) \to y$ strongly together imply T(x) = y.

Lemma 2.3. (Demiclosed principle for nonself mappings [4]). Let X be a uniformly convex Banach space, C a nonempty closed convex subset of X and $T: C \to X$ an asymptotically nonexpansive mapping. Then I - T is demiclosed at zero.

The following result enables us to establish the weak convergence theorems of iterative schemes in a uniformly convex Banach space whose dual space has the Kadec-Klee property. We will denote $\omega_w\{x_n\}$ the set of the weak subsequential limits of $\{x_n\}$, i.e., the set of all limits of all weakly convergent subsequences.

Lemma 2.4. [9]. Let X be a uniformly convex Banach space such that its dual X^* has the Kadec-Klee property. Let $\{x_n\}$ be a bounded sequence in X. If $\lim_{n\to\infty} ||tx_n + (1-t)p - q||$ exists, for all $t \in [0,1]$ and $p, q \in \omega_w\{x_n\}$, then p = q.

Lemma 2.5. [9, 18]. Let X be a uniformly convex Banach space, C a bounded closed convex subset of X and $T: C \to C$ an L-Lipschitz mapping. Then there exists a strictly increasing continuous convex function $\phi: [0,\infty) \to [0,\infty)$ with $\phi(0) = 0$ such that

$$\|\lambda Tx + (1-\lambda)Ty - T(\lambda x + (1-\lambda)y)\| \le L\phi^{-1}\left(\|x-y\| - \frac{1}{L}\|Tx - Ty\|\right),$$

for all $x, y \in C$ and $\lambda \in (0, 1).$

3. A NECESSARY AND SUFFICIENT CONDITION

Theorem 3.1. Let X be a real Banach space, C a closed convex subset of X, $\{u_{in}\}_{n=1}^{\infty}$, $i = 1, \ldots, k$, bounded sequences in X, $R: X \to C$ a nonexpansive retraction, and $\{T_i: C \to X\}_{i=1}^k$ a family of nonself generalized asymptotically quasi-nonexpansive mappings with respect to $\{r_{in}\}$ and $\{s_{in}\}$ such that $F = \bigcap_{i=1}^{k} F(T_i) \neq \emptyset$ is closed. Suppose that

- (i) $\sum_{n=1}^{\infty} r_{in} < \infty$ and $\sum_{n=1}^{\infty} s_{in} < \infty$, for $i = 1, \dots, k$; (ii) $\sum_{n=1}^{\infty} \beta_{in} < \infty$, for $i = 1, \dots, k$.

Then the sequence $\{x_n\}$ defined by (9) converges strongly to a common fixed point of $\{T_i\}_{i=1}^k$ if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.

Since the necessity is clear, we only prove the sufficiency. It may be Proof. assumed that $s_{in} < 1$, for $1 \le i \le k$ and $n \in \mathbb{N}$. Let $r_n = \max\{r_{in} : i = 1, \dots, k\}$, $s_n = \max\{s_{in} : i = 1, \dots, k\}$ so that $\sum_{n=1}^{\infty} r_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$ which is equivalent to the condition that

$$\sum_{n=1}^{\infty} \frac{r_n + 2s_n}{1 - s_n} < \infty$$

Let $\lambda_n = (r_n + 2s_n)/(1 - s_n)$ and $\tau_n = 1 + \lambda_n = (1 + r_n + s_n)/(1 - s_n)$ for $n \in \mathbf{N}$. Then $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $\lim_{n \to \infty} \tau_n = 1$. Fix any $p \in F$ and set $M_p = \sup\{||u_{in} - p|| : 1 \le i \le k, n \in \mathbb{N}\} < \infty$ (depending on p). For any $x \in C$, $1 \leq i \leq k$ and $n \in \mathbf{N}$, we have

$$||x - T_i(RT_i)^{n-1}x|| \le ||x - p|| + ||T_i(RT_i)^{n-1}x - p||$$

$$\le (2 + r_{in})||x - p|| + s_{in}||x - T_i(RT_i)^{n-1}x||$$

$$\le (2 + r_n)||x - p|| + s_n||x - T_i(RT_i)^{n-1}x||$$

which implies that

$$||x - T_i(RT_i)^{n-1}x|| \le \frac{2+r_n}{1-s_n}||x-p||.$$

It follows that for all $x \in C$, $1 \le i \le k$ and $n \in \mathbf{N}$,

(11)
$$\|T_i(RT_i)^{n-1}x - p\| \le (1+r_{in})\|x - p\| + s_{in}\|x - T_i(RT_i)^{n-1}x\| \le \left[1 + r_n + \frac{s_n(2+r_n)}{1-s_n}\right]\|x - p\| = \tau_n \|x - p\|.$$

This asserts that

(12)

$$\|y_{1n} - p\| = \|R((1 - \alpha_{1n} - \beta_{1n})x_n + \alpha_{1n}T_1(RT_1)^{n-1}x_n + \beta_{1n}u_{1n}) - R(p)\|$$

$$\leq \|(1 - \alpha_{1n} - \beta_{1n})x_n + \alpha_{1n}T_1(RT_1)^{n-1}x_n + \beta_{1n}u_{1n} - p\|$$

$$\leq (1 - \alpha_{1n} - \beta_{1n})\|x_n - p\| + \alpha_{1n}\|T_1(RT_1)^{n-1}x_n - p\|$$

$$+ \beta_{1n}\|u_{1n} - p\|,$$

$$\leq (1 - \alpha_{1n} - \beta_{1n} + \alpha_{1n}\tau_n)\|x_n - p\| + \beta_{1n}\|u_{1n} - p\|$$

$$\leq \tau_n \|x_n - p\| + \beta_{1n}\tau_n\|u_{1n} - p\|.$$

Therefore (11) and (12) imply that

$$\begin{aligned} \|y_{2n} - p\| &\leq (1 - \alpha_{2n} - \beta_{2n}) \|x_n - p\| + \alpha_{2n} \|T_2 (RT_2)^{n-1} y_{1n} - p\| \\ &+ \beta_{2n} \|u_{2n} - p\| \\ &\leq (1 - \alpha_{2n} - \beta_{2n}) \|x_n - p\| + \alpha_{2n} \tau_n \|y_{1n} - p\| + \beta_{2n} \|u_{2n} - p\| \\ &\leq (1 - \alpha_{2n} - \beta_{2n} + \alpha_{2n} \tau_n^2) \|x_n - p\| + \alpha_{2n} \beta_{1n} \tau_n^2 \|u_{1n} - p\| \\ &+ \beta_{2n} \|u_{2n} - p\| \\ &\leq \tau_n^2 \|x_n - p\| + \tau_n^2 [\beta_{1n} \|u_{1n} - p\| + \beta_{2n} \|u_{2n} - p\|]. \end{aligned}$$

Now repeat this step inductively to get

(13)

$$\|y_{in}-p\| \leq (1-\alpha_{in}-\beta_{in})\|x_n-p\|+\alpha_{in}\|T_i(RT_i)^{n-1}y_{(i-1)n}-p\| + \beta_{in}\|u_{in}-p\| \leq (1-\alpha_{in}-\beta_{in})\|x_n-p\|+\alpha_{in}\tau_n\|y_{(i-1)n}-p\|+\beta_{in}\|u_{in}-p\| \leq (1-\alpha_{in}-\beta_{in}+\alpha_{in}\tau_n^i)\|x_n-p\|+\tau_n^i[\beta_{1n}\|u_{1n}-p\|+\cdots + \beta_{(i-1)n}\|u_{(i-1)n}-p\|]+\beta_{in}\|u_{in}-p\| \leq \tau_n^i\|x_n-p\|+\tau_n^i\sum_{j=1}^i\beta_{jn}\|u_{jn}-p\|,$$

for $i = 1, \ldots, k$, where $y_{0n} = x_n$. In particular,

$$\|x_{n+1} - p\| = \|y_{kn} - p\|$$

$$\leq \tau_n^k \|x_n - p\| + \tau_n^k \sum_{j=1}^k \beta_{jn} \|u_{in} - p\|$$
(14)
$$\leq (1 + \lambda_n)^k \|x_n - p\| + \tau_n^k M_p \sum_{j=1}^k \beta_{in}$$

$$= \left[1 + \lambda_n \sum_{j=0}^{k-1} (1 + \lambda_n)^j \right] \|x_n - p\| + \tau_n^k M_p \sum_{j=1}^k \beta_{in}$$

$$\leq (1 + \epsilon_n) \|x_n - p\| + M_p \delta_n,$$

where $\sigma = \sup\{\tau_n : n \in \mathbf{N}\}$, $\epsilon_n = \lambda_n \sum_{j=0}^{k-1} (1 + \lambda_n)^j$ and $\delta_n = \sigma^k \sum_{j=1}^k \beta_{jn}$. Note that by hypotheses,

(15)
$$\sum_{n=1}^{\infty} \epsilon_n < \infty, \quad \sum_{n=1}^{\infty} \delta_n < \infty.$$

Now we claim that $\{x_n\}$ is a Cauchy sequence in X. To see this, applying the inequality $1 + t \le e^t$ for all $t \ge 0$, we derive from (14) that

$$\begin{aligned} \|x_{n+1} - p\| &\leq (1+\lambda_n)^k \|x_n - p\| + M_p \delta_n \\ &\leq e^{k\lambda_n} \|x_n - p\| + M_p \delta_n, \end{aligned}$$

which shows that for $m, n \ge 1$,

$$||x_{n+m}-p|| \leq e^{k\lambda_{n+m-1}} ||x_{n+m-1}-p|| + M_p\delta_{n+m-1}$$

$$\leq e^{k(\lambda_{n+m-1}+\lambda_{n+m-2})} ||x_{n+m-2}-p|| + e^{k\lambda_{n+m-1}} M_p\delta_{n+m-2}$$

$$+ M_p\delta_{n+m-1}$$

$$\leq e^{k(\lambda_{n+m-1}+\lambda_{n+m-2})} ||x_{n+m-2}-p||$$

$$+ e^{k(\lambda_{n+m-1}+\lambda_{n+m-2})} M_p(\delta_{n+m-2}+\delta_{n+m-1})$$

$$\leq \cdots$$

$$\leq e^{k\sum_{i=1}^{\infty}\lambda_i} ||x_n-p|| + e^{k\sum_{i=1}^{\infty}\lambda_i} M_p \sum_{i=n}^{n+m-1} \delta_i.$$

Set $e^{k\sum_{i=1}^{\infty}\lambda_i} = L$. Given $\epsilon > 0$, it follows from $\liminf_{n\to\infty} d(x_n, F) = 0$ and (15) that there exist a positive integer n_0 and a point $q \in F$ such that

(17)
$$||x_{n_0} - q|| < \epsilon, \quad \sum_{i=n_0}^{n_0+m-1} \delta_i < \epsilon.$$

Therefore, according to (16) and (17), for all $m \ge 1$,

$$||x_{n_0+m} - x_{n_0}|| \le ||x_{n_0+m} - q|| + ||x_{n_0} - q||$$

$$\le L||x_{n_0} - q|| + LM_q \sum_{i=n_0}^{n_0+m-1} \delta_i + \epsilon$$

$$< (L + LM_q + 1)\epsilon;$$

hence $\{x_n\}$ is a Cauchy sequence in X. The completeness of X assures that $\{x_n\}$ converges strongly to a point, say x^* . Also, there is a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $\lim_{j\to\infty} d(x_{n_j}, F) = 0$, since $\liminf_{n\to\infty} d(x_n, F) = 0$. Therefore the continuity of the mapping $z \mapsto d(z, F)$ and the closedness of F imply that $d(x^*, F) = 0$ and so $x^* \in F$, as required.

As shown in the preceding proof, the property needed to assure that $x^* \in F$ is exactly the following one. Given any sequence $\{a_n\}$ of real numbers there is a subsequence $\{a_{n_j}\}$ of $\{a_n\}$ such that $\lim_{j\to\infty} a_{n_j} = \liminf_{n\to\infty} a_n$. In general, if $\{a_{m_j}\}$ is a convergent subsequence of $\{a_n\}$, then $\liminf_{n\to\infty} a_n \leq \lim_{j\to\infty} a_{m_j}$. This immediately yields the following result.

Corollary 3.2. Let X be a real Banach space, C a closed convex subset of X, $\{u_{in}\}_{n=1}^{\infty}$, i = 1, ..., k, bounded sequences in X, $R : X \to C$ a nonexpansive retraction, and $\{T_i : C \to X\}_{i=1}^k$ a family of nonself generalized asymptotically quasi-nonexpansive mappings with respect to $\{r_{in}\}$ and $\{s_{in}\}$ such that $F = \bigcap_{i=1}^k F(T_i) \neq \emptyset$ is closed. Suppose that

- (i) $\sum_{n=1}^{\infty} r_{in} < \infty$ and $\sum_{n=1}^{\infty} s_{in} < \infty$, for $i = 1, \dots, k$;
- (*ii*) $\sum_{n=1}^{\infty} \beta_{in} < \infty$, for i = 1, ..., k.

Then the sequence $\{x_n\}$ defined by (9) converges strongly to a point $p \in F$ if and only if there is a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converging strongly to p.

We now consider the iteration generated by (10) and obtain a necessary and sufficient condition for the sequence $\{x_n\}$ to converge strongly to a common fixed point of finitely many nonself generalized asymptotically quasi-nonexpansive mappings.

Theorem 3.3. Let X be a real Banach space, C a closed convex subset of X, $\{u_{in}\}_{n=1}^{\infty}$, i = 1, ..., k, bounded sequences in X, $R : X \to C$ a nonexpansive retraction, and $\{T_i : C \to X\}_{i=1}^k$ a family of nonself generalized asymptotically quasi-nonexpansive mappings with respect to $\{r_{in}\}$ and $\{s_{in}\}$ such that $F = \bigcap_{i=1}^k F(T_i) \neq \emptyset$ is closed. Suppose that

(i)
$$\sum_{n=1}^{\infty} r_{in} < \infty$$
 and $\sum_{n=1}^{\infty} s_{in} < \infty$, for $i = 1, \dots, k$;
(ii) $\sum_{n=1}^{\infty} \beta_{in} < \infty$, for $i = 1, \dots, k$.

Then the sequence $\{x_n\}$ defined by (10) converges strongly to a common fixed point of $\{T_i\}_{i=1}^k$ if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.

Proof. We use the same arguments and notation r_n , s_n , λ_n and τ_n as in the proof of Theorem 3.1. Fix any $p \in F$ and set $M_p = \sup\{||u_{in} - p|| : 1 \leq i \leq k, n \in \mathbb{N}\}$. It follows from (11) and (12) that

-1

$$||y_{2n} - p|| \le (1 - \alpha_{2n} - \beta_{2n}) ||y_{01} - p|| + \alpha_{2n} ||T_2(RT_2)^{n-1}y_{1n} - p|| + \beta_{2n} ||u_{2n} - p|| \le (1 - \alpha_{2n} - \beta_{2n}) ||x_n - p|| + \alpha_{2n}\tau_n ||y_{1n} - p|| + \beta_{2n} ||u_{2n} - p|| \le \tau_n^2 ||x_n - p|| + \tau_n^2 [\beta_{1n} ||u_{1n} - p|| + \beta_{2n} ||u_{2n} - p||].$$

Therefore we derive inductively to get

$$||y_{in}-p|| \leq (1-\alpha_{in}-\beta_{in})||y_{(i-2)n}-p|| + \alpha_{in}||T_{i}(RT_{i})^{n-1}y_{(i-1)n}-p|| + \beta_{in}||u_{in}-p|| \\\leq (1-\alpha_{in}-\beta_{in})||y_{(i-2)n}-p|| + \alpha_{in}\tau_{n}||y_{(i-1)n}-p|| + \beta_{in}||u_{in}-p|| \\\leq (1-\alpha_{in}-\beta_{in})\tau_{n}^{i-2} \left(||x_{n}-p|| + \sum_{j=1}^{i-2}\beta_{jn}||u_{jn}-p||\right) + \alpha_{in}\tau_{n}^{i} \left(||x_{n}-p|| + \sum_{j=1}^{i-1}\beta_{jn}||u_{jn}-p||\right) + \beta_{in}||u_{in}-p|| \\\leq \tau_{n}^{i}||x_{n}-p|| + \tau_{n}^{i}\sum_{j=1}^{i}\beta_{jn}||u_{jn}-p||,$$

for $i = 1, \ldots, k$. In particular,

(19)
$$\|x_{n+1} - p\| \leq \tau_n^k \|x_n - p\| + \tau_n^k \sum_{j=1}^k \beta_{jn} \|u_{jn} - p\| \\ \leq (1 + \epsilon_n) \|x_n - p\| + M_p \delta_n,$$

where $\sigma = \sup\{\tau_n : n \in \mathbf{N}\}$, $\epsilon_n = \lambda_n \sum_{j=0}^{k-1} (1 + \lambda_n)^j$ and $\delta_n = \sigma^k \sum_{j=1}^k \beta_{jn}$. Observe that

(20)
$$\sum_{n=1}^{\infty} \epsilon_n < \infty, \quad \sum_{n=1}^{\infty} \delta_n < \infty.$$

Therefore the rest of the proof is the same as that of Theorem 3.1.

As mentioned before Corollary 3.2, the following result is an immediate consequence of Theorem 3.3.

Corollary 3.4. Let X be a real Banach space, C a closed convex subset of X, $\{u_{in}\}_{n=1}^{\infty}$, i = 1, ..., k, bounded sequences in X, $R : X \to C$ a nonexpansive retraction, and $\{T_i : C \to X\}_{i=1}^k$ a family of nonself generalized asymptotically quasi-nonexpansive mappings with respect to $\{r_{in}\}$ and $\{s_{in}\}$ such that $F = \bigcap_{i=1}^k F(T_i) \neq \emptyset$ is closed. Suppose that

- (i) $\sum_{n=1}^{\infty} r_{in} < \infty$ and $\sum_{n=1}^{\infty} s_{in} < \infty$, for $i = 1, \dots, k$;
- (*ii*) $\sum_{n=1}^{\infty} \beta_{in} < \infty$, for i = 1, ..., k.

Then the sequence $\{x_n\}$ defined by (10) converges strongly to a point $p \in F$ if and only if there is a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converging to p.

4. APPLICATIONS TO UNIFORMLY CONVEX BANACH SPACES

In this section, we will apply the previous results in Section 3 to present the strong and weak convergence theorems in uniformly convex Banach spaces.

Theorem 4.1. Let X be a uniformly convex Banach space, C a closed convex subset of X, $\{u_{in}\}_{n=1}^{\infty}$, i = 1, ..., k, bounded sequences in X, $R : X \to C$ a nonexpansive retraction, and $\{T_i : C \to X\}_{i=1}^k$ a family of nonself uniformly L-Lipschitzian and generalized asymptotically quasi-nonexpansive mappings with respect to $\{r_{in}\}$ and $\{s_{in}\}$ such that $F = \bigcap_{i=1}^k F(T_i) \neq \emptyset$. Let the sequence $\{x_n\}$ be defined by (9). Suppose that

- (i) $\sum_{n=1}^{\infty} r_{in} < \infty$ and $\sum_{n=1}^{\infty} s_{in} < \infty$, for $i = 1, \dots, k$;
- (ii) $0 < \liminf_{n \to \infty} \alpha_{in} \leq \limsup_{n \to \infty} \alpha_{in} < 1$ and $\sum_{n=1}^{\infty} \beta_{in} < \infty$, for $i = 1, \ldots, k$;
- (iii) the family $\{T_i\}_{i=1}^k$ satisfies Condition (A) with respect to $\{x_n\}$, or $T_{i_0}(RT_{i_0})^{m-1}$ is semicompact, for some $1 \le i_0 \le k$ and for some $m \ge 1$.

Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_i\}_{i=1}^k$.

Proof. Note that F is closed because the fixed point set of a Lipschitzian mapping is closed. Let $p \in F$. By Lemma 2.1, (14) and (15) in the proof of Theorem 3.1 show that $\lim_{n\to\infty} ||x_n - p||$ exists and hence $\{x_n\}$ is bounded. Set $\lim_{n\to\infty} ||x_n - p|| = c$, or equivalently,

$$\lim_{n \to \infty} \|R((1 - \alpha_{kn} - \beta_{kn})x_n + \alpha_{kn}T_k(RT_k)^{n-1}y_{(k-1)n} + \beta_{kn}u_{kn}) - R(p)\| = c,$$

which means that

(21)
$$c \leq \liminf_{n \to \infty} \|\alpha_{kn} [T_k (RT_k)^{n-1} y_{(k-1)n} - p + \beta_{kn} (u_{kn} - x_n)] + (1 - \alpha_{kn}) [x_n - p + \beta_{kn} (u_{kn} - x_n))] \|,$$

because R is nonexpansive. The inequality (13) and assumption (ii) imply that

(22)
$$\limsup_{n \to \infty} \|y_{in} - p\| \le c, \quad i = 1, \dots, k.$$

By (11),

$$||T_k(RT_k)^{n-1}y_{(k-1)n} - p + \beta_{kn}(u_{kn} - x_n)|| \le \tau_n ||y_{(k-1)n} - p|| + \beta_{kn} ||u_{kn} - x_n||$$

which shows that

(23)
$$\limsup_{n \to \infty} \|T_k (RT_k)^{n-1} y_{(k-1)n} - p + \beta_{kn} (u_{kn} - x_n)\| \le c$$

Also, since $||x_n - p + \beta_{kn}(u_{kn} - x_n)|| \le ||x_n - p|| + \beta_{kn}||u_{kn} - x_n||$, we have

(24)
$$\limsup_{n \to \infty} \|x_n - p + \beta_{kn}(u_{kn} - x_n)\| \le c$$

Combining (23) with (24) yields that

(25)
$$c \geq \limsup_{\substack{n \to \infty \\ +(1 - \alpha_{kn})[x_n - p + \beta_{kn}(u_{kn} - x_n)]} \|\alpha_{kn} [T_k (RT_k)^{n-1} y_{(k-1)n} - p + \beta_{kn}(u_{kn} - x_n)]\|.$$

Therefore (21) and (25) assert that

(26)
$$\lim_{n \to \infty} \|\alpha_{kn} [T_k (RT_k)^{n-1} y_{(k-1)n} - p + \beta_{kn} (u_{kn} - x_n)] + (1 - \alpha_{kn}) [x_n - p + \beta_{kn} (u_{kn} - x_n))] \| = c.$$

According to Lemma 2.2 together with (23), (24) and (26), we obtain that

$$\lim_{n \to \infty} \|x_n - T_k (RT_k)^{n-1} y_{(k-1)n}\| = 0.$$

Since

$$||x_n - p|| \le ||x_n - T_k(RT_k)^{n-1}y_{(k-1)n}|| + ||T_k(RT_k)^{n-1}y_{(k-1)n} - p||$$

$$\le ||x_n - T_k(RT_k)^{n-1}y_{(k-1)n}|| + \tau_n ||y_{(k-1)n} - p||,$$

we have

(27)
$$c \le \liminf_{n \to \infty} \|y_{(k-1)n} - p\|.$$

By (22) and (27), $\lim_{n\to\infty} ||y_{(k-1)n} - p|| = c$. That is,

$$\lim_{n \to \infty} \|R((1 - \alpha_{(k-1)n} - \beta_{(k-1)n})x_n + \alpha_{(k-1)n}T_{k-1}(RT_{k-1})^{n-1}y_{(k-2)n} + \beta_{(k-1)n}(u_{(k-1)n}) - R(p)\| = c.$$

As shown in (21)-(26), since

$$\limsup_{n \to \infty} \|T_{k-1} (RT_{k-1})^{n-1} y_{(k-2)n} - p + \beta_{(k-1)n} (u_{(k-1)n} - x_n)\| \le c$$

and

$$\limsup_{n \to \infty} \|x_n - p + \beta_{(k-1)n} (u_{(k-1)n} - x_n)\| \le c,$$

we see that

$$\lim_{n \to \infty} \|\alpha_{(k-1)n} [T_{k-1} (RT_{k-1})^{n-1} y_{(k-2)n} - p + \beta_{(k-1)n} (u_{(k-1)n} - x_n)] + (1 - \alpha_{(k-1)n}) [x_n - p + \beta_{(k-1)n} (u_{(k-1)n} - x_n)] \| = c;$$

hence

$$\lim_{n \to \infty} \|x_n - T_{k-1} (RT_{k-1})^{n-1} y_{(k-2)n}\| = 0.$$

Continuously proceed this process k times to conclude that

$$\lim_{n \to \infty} \|x_n - T_i (RT_i)^{n-1} y_{(i-1)n}\| = 0, \quad i = 1, \dots, k,$$

where $y_{0n} = x_n$, from which it follows that

(28)
$$\|x_n - x_{n+1}\|$$
$$= \|R(x_n) - x_{n+1}\|$$
$$\leq \alpha_{kn} \|T_k (RT_k)^{n-1} y_{(k-1)n} - x_n\| + \beta_{kn} \|u_{kn} - x_n\| \to 0 \text{ as } n \to \infty,$$

and

(29)

$$\begin{aligned} \|x_n - T_i(RT_i)^{n-1}x_n\| &\leq \|x_n - T_i(RT_i)^{n-1}y_{(i-1)n}\| \\ &+ \|T_i(RT_i)^{n-1}y_{(i-1)n} - T_i(RT_i)^{n-1}x_n\| \\ &\leq \|x_n - T_i(RT_i)^{n-1}y_{(i-1)n}\| + L\|y_{(i-1)n} - x_n\| \\ &\leq \|x_n - T_i(RT_i)^{n-1}y_{(i-1)n}\| \\ &+ L\alpha_{(i-1)n}\|T_{i-1}(RT_{i-1})^{n-1}y_{(i-2)n} - x_n\| \\ &+ L\beta_{(i-1)n}\|u_{(i-1)n} - x_n\| \to 0 \quad \text{as } n \to \infty, \end{aligned}$$

for $i = 1, \ldots, k$. Since

$$\begin{aligned} \|x_n - T_i x_n\| &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - T_i (RT_i)^n x_{n+1}\| \\ &+ \|T_i (RT_i)^n x_{n+1} - T_i (RT_i)^n x_n\| + \|T_i (RT_i)^n x_n - (T_i R) x_n\| \\ &\leq (1+L) \|x_n - x_{n+1}\| + \|x_{n+1} - T_i (RT_i)^n x_{n+1}\| \\ &+ L \|T_i (RT_i)^{n-1} x_n - x_n\|, \end{aligned}$$

we use (28) and (29) to get

(30)
$$\lim_{n \to \infty} \|x_n - T_i x_n\| = 0, \quad i = 1, \dots, k.$$

To verify the strong convergence of $\{x_n\}$ to a point of F, we need to discuss two cases. First, suppose that $\{T_i\}_{i=1}^k$ satisfies Condition (A) with respect to $\{x_n\}$. Let f be the corresponding nondecreasing function for $\{T_i\}_{i=1}^k$ which satisfy Condition (A) with respect to $\{x_n\}$. According to (30),

$$f(d(x_n, F)) \le \max_{i \le i \le k} ||x_n - T_i x_n|| \to 0 \text{ as } n \to \infty,$$

and hence $\liminf_{n\to\infty} d(x_n, F) = 0$. Theorem 3.1 assures that $\{x_n\}$ converges strongly to a point of F.

Second, if $T_{i_0}^m$ is semicompact, for some $1 \le i_0 \le k$ and for some $m \ge 1$, it follows from (30) that

$$\begin{aligned} \|x_n - T_{i_0}(RT_{i_0})^{m-1}x_n\| &\leq \|x_n - T_{i_0}x_n\| + \|T_{i_0}x_n - T_{i_0}(RT_{i_0})x_n\| + \cdots \\ &+ \|T_{i_0}(RT_{i_0})^{m-2}x_n - T_{i_0}(RT_{i_0})^{m-1}x_n\| \\ &\leq \|x_n - T_{i_0}x_n\| + (m-1)L\|Rx_n - RT_{i_0}x_n\| \\ &\leq [1 + (m-1)L]\|x_n - T_{i_0}x_n\| \to 0 \quad \text{as } n \to \infty, \end{aligned}$$

and thus there is a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ which converges strongly to $x^* \in C$. Using (30), we have $T_i x^* = x^*$, i = 1, ..., k, and so $x^* \in F$. Therefore $\liminf_{n\to\infty} d(x_n, F) = 0$. By Theorem 3.1, $\{x_n\}$ converges strongly to x^* .

The following two results are the weak convergence theorems in a uniformly convex Banach space such that either it satisfies the Opial property or its dual space has the Kadec-Klee property.

Theorem 4.2. Let X be a uniformly convex Banach space satisfying the Opial property, C a closed convex subset of X, $\{u_{in}\}_{n=1}^{\infty}$, i = 1, ..., k, bounded sequences in X, $R: X \to C$ a nonexpansive retraction, and $\{T_i: C \to X\}_{i=1}^k$ a

family of nonself uniformly L-Lipschitzian and generalized asymptotically quasinonexpansive mappings with respect to $\{r_{in}\}$ and $\{s_{in}\}$ such that $F = \bigcap_{i=1}^{k} F(T_i) \neq \emptyset$. Suppose that

- (i) $\sum_{n=1}^{\infty} r_{in} < \infty$ and $\sum_{n=1}^{\infty} s_{in} < \infty$, for $i = 1, \dots, k$;
- (ii) $0 < \liminf_{n \to \infty} \alpha_{in} \leq \limsup_{n \to \infty} \alpha_{in} < 1$ and $\sum_{n=1}^{\infty} \beta_{in} < \infty$, for $i = 1, \ldots, k$;
- (iii) $I T_i$, i = 1, ..., k, is demiclosed at 0, for i = 1, ..., k.

Then the sequence $\{x_n\}$ defined by (9) converges weakly to a common fixed point of $\{T_i\}_{i=1}^k$.

Proof. Since a uniformly convex Banach space is reflexive, the bounded sequence $\{x_n\}$ has a subsequence $\{x_{n_j}\}$ which converges weakly to a point x^* of C. The demiclosedness of each $I - T_i$ and (30) imply that $T_i x^* = x^*$, $i = 1, \ldots, k$, i.e., $x^* \in F$. To prove that $\{x_n\}$ converges weakly to x^* , let $\{x_{m_j}\}$ be any subsequence of $\{x_n\}$ which converges weakly to a point \bar{x} so that $\bar{x} \in F$. Assume that $x^* \neq \bar{x}$. Then it follows from the Opial property that

$$\lim_{j \to \infty} \|x_{m_j} - x^*\| = \lim_{n \to \infty} \|x_n - x^*\| = \lim_{j \to \infty} \|x_{n_j} - x^*\|$$
$$< \lim_{j \to \infty} \|x_{n_j} - \bar{x}\| = \lim_{n \to \infty} \|x_n - \bar{x}\| = \lim_{j \to \infty} \|x_{m_j} - \bar{x}\|,$$

which is a contradiction. Consequently, any subsequence of $\{x_n\}$ has a weakly convergent subsequence with limit x^* , and hence $\{x_n\}$ converges weakly to x^* .

We consider an iteration defined by (9) for nonself asymptotically nonexpansive mappings, where $\beta_{in} = 0$, for all $1 \le i \le k$ and $n \in \mathbb{N}$. That is, choose x_1 arbitrarily in C. Define an iterative sequence as follows:

(31)
$$y_{1n} = R((1 - \alpha_{1n})x_n + \alpha_{1n}T_1(RT_1)^{n-1}x_n),$$
$$y_{in} = R((1 - \alpha_{in})x_n + \alpha_{in}T_i(RT_i)^{n-1}y_{(i-1)n}), \quad 2 \le i \le k - 1,$$
$$x_{n+1} = y_{kn} = R((1 - \alpha_{kn})x_n + \alpha_{kn}T_k(RT_k)^{n-1}y_{(k-1)n}), \quad n \in \mathbf{N}$$

Theorem 4.3. Let X be a uniformly convex Banach space whose dual X^* has the Kadec-Klee property, C a closed convex subset of X, $R : X \to C$ a nonexpansive retraction, and $\{T_i : C \to X\}_{i=1}^k$ a family of nonself asymptotically nonexpansive mappings with respect to $\{r_{in}\}$ such that $F = \bigcap_{i=1}^k F(T_i) \neq \emptyset$. Suppose that

(i) $\sum_{n=1}^{\infty} r_{in} < \infty$, for i = 1, ..., k;

Nonself Generalized Asymptotically Quasi-Nonexpansive Mappings

(*ii*)
$$0 < \liminf_{n \to \infty} \alpha_{in} \leq \limsup_{n \to \infty} \alpha_{in} < 1$$
, for $i = 1, \ldots, k$;

Then the sequence $\{x_n\}$ defined by (31) converges weakly to a common fixed point of $\{T_i\}_{i=1}^k$.

Proof. The idea of proof was referred to that of Lemma 3.8 in [2]. As discussed in Theorem 3.1, the sequence $\{x_n\}$ is bounded and hence there exists a closed ball B with $F \cap B \neq \emptyset$ such that $\{x_n\} \subset K = B \cap C$. Then K is a closed bounded convex subset of C. Let $r_n = \max\{r_{in} : i = 1, \ldots, k\}$ so that $\sum_{n=1}^{\infty} r_n < \infty$. Let $p, q \in F \cap K$. For each $n \in \mathbb{N}$, define a function

$$a_n(t) = ||tx_n + (1-t)p - q||, \text{ where } t \in [0,1].$$

Then $\lim_{n\to\infty} a_n(0) = \lim_{n\to\infty} \|p-q\|$ and $\lim_{n\to\infty} a_n(1) = \lim_{n\to\infty} \|x_n-q\|$ exist. To prove that $\lim_{n\to\infty} a_n(t)$ exists, for $t \in (0,1)$, define a mapping $S_n : K \to K$ by

$$S_n v = R((1 - \alpha_{kn})v + \alpha_{kn}T_k(RT_k)^{n-1}v_{(k-1)n}), \quad v \in K,$$

where

$$v_{1n} = R((1 - \alpha_{1n})v + \alpha_{1n}T_1(RT_1)^{n-1}v),$$

$$v_{in} = R((1 - \alpha_{in})v + \alpha_{in}T_i(RT_i)^{n-1}v_{(i-1)n}, \quad 2 \le i \le k - 1.$$

Observe that if $v = x_n$ and $v_{in} = y_{in}$, for $1 \le i \le k - 1$ and $n \in \mathbb{N}$, then $S_n x_n = x_{n+1}$. Also, $F \cap K \subset F(S_n)$, $n \in \mathbb{N}$. For any $v, w \in K$, we have

$$||v_{1n} - w_{1n}|| \le (1 - \alpha_{1n}) ||v - w|| + \alpha_{1n} (1 + r_n) ||v - w||$$
$$\le (1 + r_n) ||v - w||$$

and then

$$||v_{2n} - w_{2n}|| \le (1 - \alpha_{2n})||v - w|| + \alpha_{2n}(1 + r_n)||v_{1n} - w_{1n}||$$
$$\le (1 + r_n)^2 ||v - w||.$$

We repeat this process inductively to obtain that

$$\begin{aligned} \|v_{in} - w_{in}\| &\leq (1 - \alpha_{in}) \|v - w\| + \alpha_{in} (1 + r_n) \|v_{(i-1)n} - w_{(i-1)n}\| \\ &\leq (1 - \alpha_{in}) \|v - w\| + \alpha_{in} (1 + r_n)^i \|v - w\| \\ &\leq (1 + r_n)^i \|v - w\|, \end{aligned}$$

for $i = 1, \ldots, k - 1$. Therefore

(32)
$$\|S_n v - S_n w\| \leq (1 - \alpha_{kn}) \|v - w\| + \alpha_{kn} (1 + r_n) \|v_{(k-1)n} - w_{(k-1)n}\|$$
$$\leq [(1 - \alpha_{kn}) + \alpha_{kn} (1 + r_n)^k] \|v - w\|$$
$$\leq (1 + r_n)^k \|v - w\|$$
$$= \left[1 + r_n \sum_{j=0}^{k-1} (1 + r_n)^j\right] \|v - w\|$$
$$= (1 + \epsilon_n) \|v - w\|,$$

where $\epsilon_n = r_n \sum_{j=0}^{k-1} (1+r_n)^j$. Note that by hypothesis,

(33)
$$\sum_{n=1}^{\infty} \epsilon_n < \infty.$$

For $m \in \mathbf{N}$, define a mapping $Q_{nm}: K \to K$ by

$$Q_{nm} = S_{n+m}S_{n+m-1}\cdots S_n$$

and

$$b_{nm} = \|Q_{nm}(tx_n + (1-t)p) - [tQ_{nm}x_n + (1-t)p]\|.$$

By (32), for $v, w \in K$,

$$||Q_{nm}v - Q_{nm}w|| \le (1 + \epsilon_{n+m})(1 + \epsilon_{n+m-1})\cdots(1 + \epsilon_n)||v - w||$$

= $\delta_{nm}||v - w||,$

where

$$\delta_{nm} = (1 + \epsilon_{n+m})(1 + \epsilon_{n+m-1}) \cdots (1 + \epsilon_n), \quad \text{for } n, m \in \mathbf{N},$$

so that $\lim_{n,m\to\infty} \delta_{nm} = 1$ by (33). According to Lemma 2.5, there is a strictly increasing, continuous and convex function $\phi : [0,\infty) \to [0,\infty)$ with $\phi(0) = 0$ such that

$$b_{nm} \leq \delta_{nm} \phi^{-1} \left(\|x_n - p\| - \frac{1}{\delta_{nm}} \|Q_{nm} x_n - Q_{nm} p\| \right)$$
$$= \delta_{nm} \phi^{-1} \left(\|x_n - p\| - \frac{1}{\delta_{nm}} \|x_{n+m+1} - p\| \right),$$

since $Q_{nm}x_n = x_{n+m+1}$ and $F \cap K \subset F(Q_{nm})$. Therefore $\lim_{n,m\to\infty} b_{nm} = 0$. Now from

$$a_{n+m+1}(t) = \|tQ_{nm}x_n + (1-t)p - q\|$$

$$\leq \|[tQ_{nm}x_n + (1-t)p] - Q_{nm}(tx_n + (1-t)p)\|$$

$$+ \|Q_{nm}(tx_n + (1-t)p) - Q_{nm}q\|$$

$$= b_{nm} + \delta_{nm}a_n(t),$$

we take the limit superior as $m \to \infty$ and then the limit inferior as $n \to \infty$ to obtain

$$\limsup_{n \to \infty} a_n(t) \le \liminf_{n \to \infty} a_n(t)$$

Consequently, $\lim_{n\to\infty} a_n(t)$ exists.

The reflexivity of X implies that the bounded sequence $\{x_n\}$ has a subsequence $\{x_{n_j}\}$ which converges weakly to some point $x^* \in K$ because K is closed and convex. Lemma 2.3 asserts that $T_ix^* = x^*$, for $1 \le i \le k$, and so $x^* \in F \cap K$. We can see at once that $\omega_w\{x_n\} \subset F \cap K$. To prove that $\{x_n\}$ converges weakly to x^* , let $\{x_{m_j}\}$ be any subsequence of $\{x_n\}$ which converges weakly to a point \bar{x} so that $\bar{x} \in F \cap K$. Since $x^*, \bar{x} \in \omega_w\{x_n\}$ and $\lim_{n\to\infty} ||tx_n + (1-t)p - q||$ exists, for all $t \in [0, 1]$ and $p, q \in F \cap K$, it follows from Lemma 2.4 that $x^* = \bar{x}$. We conclude that any subsequence of $\{x_n\}$ has a weakly convergent subsequence with limit x^* , and hence $\{x_n\}$ converges weakly to x^* , as assured.

The following three theorems are analogs of the preceding results for the iteration defined by (10).

Theorem 4.4. Let X be a uniformly convex Banach space, C a closed convex subset of X, $\{u_{in}\}_{n=1}^{\infty}$, i = 1, ..., k, bounded sequences in X, $R : X \to C$ a nonexpansive retraction, and $\{T_i : C \to X\}_{i=1}^k$ a family of nonself uniformly L-Lipschitzian and generalized asymptotically quasi-nonexpansive mappings with respect to $\{r_{in}\}$ and $\{s_{in}\}$ such that $F = \bigcap_{i=1}^k F(T_i) \neq \emptyset$. Let the sequence $\{x_n\}$ be defined by (10). Suppose that

- (i) $\sum_{n=1}^{\infty} r_{in} < \infty$ and $\sum_{n=1}^{\infty} s_{in} < \infty$, for $i = 1, \dots, k$;
- (ii) $0 < \liminf_{n \to \infty} \alpha_{in} \leq \limsup_{n \to \infty} \alpha_{in} < 1$ and $\sum_{n=1}^{\infty} \beta_{in} < \infty$, for $i = 1, \ldots, k$;
- (iii) the family $\{T_i\}_{i=1}^k$ satisfies Condition (A) with respect to $\{x_n\}$, or $T_{i_0}(RT_{i_0})^{m-1}$ is semicompact, for some $1 \le i_0 \le k$ and for some $m \ge 1$.

Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_i\}_{i=1}^k$.

Proof. We may assume by hypothesis that $\rho \le \alpha_{in} \le 1 - \rho$, for some $\rho > 0$, where i = 1, ..., k, and $n \in \mathbb{N}$. Let $p \in F$. It follows from (19) and (20) in the

proof of Theorem 3.3 that $\lim_{n\to\infty} ||x_n - p||$ exists and hence $\{x_n\}$ is bounded. Set $\lim_{n\to\infty} ||x_n - p|| = c$ which can be written as

$$\lim_{n \to \infty} \|R((1 - \alpha_{kn} - \beta_{kn})y_{(k-2)n} + \alpha_{kn}T_k(RT_k)^{n-1}y_{(k-1)n} + \beta_{kn}u_{kn}) - R(p)\| = c.$$

So

(34)
$$c \leq \liminf_{n \to \infty} \|\alpha_{kn} [T_k (RT_k)^{n-1} y_{(k-1)n} - p + \beta_{kn} (u_{kn} - y_{(k-2)n})] + (1 - \alpha_{kn}) [y_{(k-2)n} - p + \beta_{kn} (u_{kn} - y_{(k-2)n})] \|.$$

From the inequality (18) and assumption (ii) we obtain that

(35)
$$\limsup_{n \to \infty} \|y_{in} - p\| \le c, \quad i = 1, \dots, k;$$

so the sequence $\{y_{in}\}$ is bounded, for $i = 1, \ldots, k$. By (11),

$$\|T_k(RT_k)^{n-1}y_{(k-1)n} - p + \beta_{kn}(u_{kn} - y_{(k-2)n})\|$$

$$\leq \tau_n \|y_{(k-1)n} - p\| + \beta_{kn} \|u_{kn} - y_{(k-2)n}\|$$

which shows that

(36)
$$\limsup_{n \to \infty} \|T_k (RT_k)^{n-1} y_{(k-1)n} - p + \beta_{kn} (u_{kn} - y_{(k-2)n})\| \le c.$$

Since $||y_{(k-2)n} - p + \beta_{kn}(u_{kn} - y_{(k-2)n})|| \le ||y_{(k-2)n} - p|| + \beta_{kn}||u_{kn} - y_{(k-2)n}||$, we have

(37)
$$\limsup_{n \to \infty} \|y_{(k-2)n} - p + \beta_{kn} (u_{kn} - y_{(k-2)n})\| \le c.$$

We obtain from (34), (36) and (37) that

$$\lim_{n \to \infty} \|\alpha_{kn} [T_k (RT_k)^{n-1} y_{(k-1)n} - p + \beta_{kn} (u_{kn} - y_{(k-2)n})] + (1 - \alpha_{kn}) [y_{(k-2)n} - p + \beta_{kn} (u_{kn} - y_{(k-2)n})]\| = c.$$

According to Lemma 2.2,

$$\lim_{n \to \infty} \|y_{(k-2)n} - T_k (RT_k)^{n-1} y_{(k-1)n}\| = 0.$$

On the other hand, from (18) we have

$$\begin{aligned} \|x_{n+1} - p\| &\leq (1 - \alpha_{kn} - \beta_{kn}) \|y_{(k-2)n} - p\| + \alpha_{kn} \tau_n \|y_{(k-1)n} - p\| \\ &+ \beta_{kn} \|u_{kn} - p\| \\ &\leq (1 - \alpha_{kn}) \tau_n^k \|x_n - p\| + \tau_n^k [\beta_{1n} \|u_{1n} - p\| + \beta_{2n} \|u_{2n} - p\| \\ &+ \dots + \beta_{(k-2)n} \|u_{(k-2)n} - p\|] + \alpha_{kn} \tau_n^k \|y_{(k-1)n} - p\| \\ &+ \beta_{kn} \tau_n^k \|u_{kn} - p\| \\ &\leq (1 - \alpha_{kn}) \tau_n^k \|x_n - p\| + \tau_n^k \sum_{j=1}^k \beta_{jn} \|u_{jn} - p\| + \alpha_{kn} \tau_n^k \|y_{(k-1)n} - p\|; \end{aligned}$$

hence

$$||x_n - p|| \le \frac{1}{\alpha_{kn}\tau_n^k} \left(\tau_n^k ||x_n - p|| - ||x_{n+1} - p|| + \tau_n^k \sum_{j=1}^k \beta_{jn} ||u_{jn} - p|| \right) + ||y_{(k-1)n} - p|| \le \frac{1}{\rho\tau_n^k} \left(\tau_n^k ||x_n - p|| - ||x_{n+1} - p|| + \tau_n^k \sum_{j=1}^k \beta_{jn} ||u_{jn} - p|| \right) + ||y_{(k-1)n} - p||,$$

because (19) implies that the expression in the square bracket is nonnegative. This asserts that $c \leq \liminf_{n \to \infty} \|y_{(k-1)n} - p\|$ and so by (35),

$$\lim_{n \to \infty} \|y_{(k-1)n} - p\| = c.$$

Therefore

$$\lim_{n \to \infty} \|R((1 - \alpha_{(k-1)n} - \beta_{(k-1)n})y_{(k-3)n} + \alpha_{(k-1)n}T_{k-1}(RT_{k-1})^{n-1}y_{(k-2)n} + \beta_{(k-1)n}u_{(k-1)n}) - R(p)\| = c.$$

Again, since

$$\limsup_{n \to \infty} \|T_{k-1}(RT_k)^{n-1}y_{(k-2)n} - p + \beta_{(k-1)n}(u_{(k-1)n} - y_{(k-3)n})\| \le c$$

and

$$\limsup_{n \to \infty} \|y_{(k-3)n} - p + \beta_{(k-1)n} (u_{(k-1)n} - y_{(k-3)n})\| \le c,$$

we see that

$$\lim_{n \to \infty} \|\alpha_{(k-1)n} [T_{k-1} (RT_k)^{n-1} y_{(k-2)n} - p + \beta_{(k-1)n} (u_{(k-1)n} - y_{(k-3)n})] + (1 - \alpha_{(k-1)n}) [y_{(k-3)n} - p + \beta_{(k-1)n} (u_{(k-1)n} - y_{(k-3)n})]\| = c,$$

and so

$$\lim_{n \to \infty} \|y_{(k-3)n} - T_{k-1}(RT_k)^{n-1}y_{(k-2)n}\| = 0.$$

Furthermore,

$$\begin{split} \|y_{(k-1)n} - p\| &\leq (1 - \alpha_{(k-1)n} - \beta_{(k-1)n}) \|y_{(k-3)n} - p\| + \alpha_{(k-1)n} \tau_n \|y_{(k-2)n} - p\| \\ &+ \beta_{(k-1)n} \|u_{(k-1)n} - p\| \\ &\leq (1 - \alpha_{(k-1)n}) \tau_n^{k-1} \|x_n - p\| + \tau_n^{k-1} \sum_{j=1}^{k-1} \beta_{jn} \|u_{jn} - p\| \\ &+ \alpha_{(k-1)n} \tau_n^{k-1} \|y_{(k-2)n} - p\| \end{split}$$

and hence

$$\begin{aligned} \|x_n - p\| &\leq \frac{1}{\alpha_{(k-1)n} \tau_n^{k-1}} \left(\tau_n^{k-1} \|x_n - p\| - \|y_{(k-1)n} - p\| + \tau_n^{k-1} \sum_{j=1}^{k-1} \beta_{jn} \|u_{jn} - p\| \right) \\ &+ \|y_{(k-2)n} - p\| \\ &\leq \frac{1}{\rho \tau_n^{k-1}} \left(\tau_n^{k-1} \|x_n - p\| - \|y_{(k-1)n} - p\| + \tau_n^{k-1} \sum_{j=1}^{k-1} \beta_{jn} \|u_{jn} - p\| \right) \\ &+ \|y_{(k-2)n} - p\|. \end{aligned}$$

Thus

$$\lim_{n \to \infty} \|y_{(k-2)n} - p\| = c.$$

Repeat this process inductively \boldsymbol{k} times to conclude that

$$\lim_{n \to \infty} \|x_n - T_1 (RT_1)^{n-1} x_n\| = 0$$

and

(38)
$$\lim_{n \to \infty} \|y_{(i-2)n} - T_i (RT_i)^{n-1} y_{(i-1)n}\| = 0, \quad i = 2, \dots, k,$$

from which it follows that

(39)
$$\lim_{n \to \infty} \|x_n - y_{1n}\| = 0$$

and for i = 2, ..., k,

(40)
$$\|y_{in} - y_{(i-2)n}\| \le \alpha_{in} \|T_i (RT_i)^{n-1} y_{(i-1)n} - y_{(i-2)n}\| + \beta_{in} \|u_{in} - y_{(i-2)n}\| \to 0 \quad \text{as } n \to \infty$$

If i is an even integer, then

$$||x_n - y_{in}|| \le ||y_{0n} - y_{2n}|| + ||y_{2n} - y_{4n}|| + \dots + ||y_{(i-2)n} - y_{in}||$$

if i is an odd integer, then

$$||x_n - y_{in}|| \le ||y_{0n} - y_{1n}|| + ||y_{1n} - y_{3n}|| + \dots + ||y_{(i-2)n} - y_{in}||$$

Consequently, by (39) and (40),

(41)
$$\lim_{n \to \infty} \|x_n - y_{in}\| = 0, \quad i = 1, \dots, k.$$

In particular, since $x_{n+1} = y_{kn}$,

(42)
$$\lim_{n \to \infty} \|x_n - x_{n+1}\| = 0$$

Also note that from (38) and (41),

(43)
$$\begin{aligned} \|x_n - T_i(RT_i)^{n-1}x_n\| &\leq \|x_n - y_{(i-2)n}\| + \|y_{(i-2)n} - T_i(RT_i)^{n-1}y_{(i-1)n}\| \\ &+ \|T_i(RT_i)^{n-1}y_{(i-1)n} - T_i(RT_i)^{n-1}x_n\| \\ &\leq \|x_n - y_{(i-2)n}\| + \|y_{(i-2)n} - T_i(RT_i)^{n-1}y_{(i-1)n}\| \\ &+ L\|y_{(i-1)n} - x_n\| \to 0 \quad \text{as } n \to \infty. \end{aligned}$$

From

$$\begin{aligned} \|x_n - T_i x_n\| &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - T_i (RT_i)^n x_{n+1}\| \\ &+ \|T_i (RT_i)^n x_{n+1} - T_i (RT_i)^n x_n\| + \|(T_i R) T_i (RT_i)^{n-1} x_n - (T_i R) x_n\| \\ &\leq (1+L) \|x_n - x_{n+1}\| + \|x_{n+1} - T_i (RT_i)^n x_{n+1}\| \\ &+ L \|T_i (RT_i)^{n-1} x_n - x_n\|, \end{aligned}$$

(42) and (43) imply that

$$\lim_{n \to \infty} \|x_n - T_i x_n\| = 0, \quad i = 1, \dots, k.$$

Using the same argument as in the last part of the proof of Theorem 4.1, we can assure that $\{x_n\}$ converges strongly to a point of F.

Theorem 4.5. Let X be a uniformly convex Banach space satisfying the Opial property, C a closed convex subset of X, $\{u_{in}\}_{n=1}^{\infty}$, i = 1, ..., k, bounded sequences in X, $R : X \to C$ a nonexpansive retraction, and $\{T_i : C \to X\}_{i=1}^k$ a family of nonself uniformly L-Lipschitzian and generalized asymptotically quasinonexpansive mappings with respect to $\{r_{in}\}$ and $\{s_{in}\}$ such that $F = \bigcap_{i=1}^k F(T_i) \neq \emptyset$. Suppose that

- (i) $\sum_{n=1}^{\infty} r_{in} < \infty$ and $\sum_{n=1}^{\infty} s_{in} < \infty$, for $i = 1, \ldots, k$;
- (ii) $0 < \liminf_{n \to \infty} \alpha_{in} \leq \limsup_{n \to \infty} \alpha_{in} < 1$ and $\sum_{n=1}^{\infty} \beta_{in} < \infty$, for $i = 1, \ldots, k$;
- (iii) $I T_i$, i = 1, ..., k, is demiclosed at 0, for i = 1, ..., k.

Then the sequence $\{x_n\}$ defined by (10) converges weakly to a common fixed point of $\{T_i\}_{i=1}^k$.

Proof. The proof is the same as that of Theorem 4.2 and so is omitted.

Setting $\beta_{in} = 0$ for the iteration defined by (10), for all $1 \le i \le k$ and $n \in \mathbb{N}$, we obtain a sequence $\{x_n\}$ as follows: choose x_1 arbitrarily in C,

(44)
$$y_{1n} = R((1 - \alpha_{1n})x_n + \alpha_{1n}T_1(RT_1)^{n-1}x_n),$$
$$y_{in} = R((1 - \alpha_{in})y_{(i-2)n} + \alpha_{in}T_i(RT_i)^{n-1}y_{(i-1)n}), \quad 2 \le i \le k-1,$$
$$x_{n+1} = y_{kn} = R((1 - \alpha_{kn})y_{(k-2)n} + \alpha_{kn}T_k(RT_k)^{n-1}y_{(k-1)n}), \quad n \in \mathbf{N},$$

where $y_{0n} = x_n$.

Theorem 4.6. Let X be a uniformly convex Banach space whose dual X^* has the Kadec-Klee property, C a closed convex subset of X, $R : X \to C$ a nonexpansive retraction, and $\{T_i : C \to X\}_{i=1}^k$ a family of nonself asymptotically nonexpansive mappings with respect to $\{r_{in}\}$ such that $F = \bigcap_{i=1}^k F(T_i) \neq \emptyset$. Suppose that

- (*i*) $\sum_{n=1}^{\infty} r_{in} < \infty$, for i = 1, ..., k;
- (ii) $0 < \liminf_{n \to \infty} \alpha_{in} \leq \limsup_{n \to \infty} \alpha_{in} < 1$, for $i = 1, \ldots, k$;

Then the sequence $\{x_n\}$ defined by (44) converges weakly to a common fixed point of $\{T_i\}_{i=1}^k$.

Proof. It follows from (19) and (20) in Theorem 3.3 that $\lim_{n\to\infty} ||x_n - p||$ exists for all $p \in F$ and so the sequence $\{x_n\}$ is bounded. Hence there exists a closed ball B with $F \cap B \neq \emptyset$ such that $\{x_n\} \subset K = B \cap C$. So K is a

closed bounded convex subset of C. Let $r_n = \max\{r_{in} : i = 1, ..., k\}$ so that $\sum_{n=1}^{\infty} r_n < \infty$. Let $p, q \in F \cap K$. For each $n \in \mathbb{N}$, define a function

$$a_n(t) = ||tx_n + (1-t)p - q||, \text{ where } t \in [0,1].$$

Then $\lim_{n\to\infty} a_n(0) = \lim_{n\to\infty} \|p-q\|$ and $\lim_{n\to\infty} a_n(1) = \lim_{n\to\infty} \|x_n-q\|$ exist. To prove that $\lim_{n\to\infty} a_n(t)$ exists, for $t \in (0,1)$, define a mapping $S_n : K \to K$ by

$$S_n v = R((1 - \alpha_{kn})v_{(k-2)n} + \alpha_{kn}T_k(RT_k)^{n-1}v_{(k-1)n}), \quad v \in K,$$

where

$$v_{0n} = v,$$

$$v_{1n} = R((1 - \alpha_{1n})v + \alpha_{1n}T_1(RT_1)^{n-1}v),$$

$$v_{in} = R((1 - \alpha_{in})v_{(i-2)n} + \alpha_{in}T_i(RT_i)^{n-1}v_{(i-1)n}), \quad 2 \le i \le k-1.$$

If $v_{in} = y_{in}$, for $0 \le i \le k - 1$ and $n \in \mathbb{N}$, then $S_n x_n = y_{kn} = x_{n+1}$. Moreover, $F \cap K \subset F(S_n)$, $n \in \mathbb{N}$. For any $v, w \in K$, we have

$$||v_{1n} - w_{1n}|| \le (1 - \alpha_{1n}) ||v - w|| + \alpha_{1n} (1 + r_n) ||v - w||$$

$$\le (1 + r_n) ||v - w||$$

and so

$$\|v_{2n} - w_{2n}\| \le (1 - \alpha_{2n}) \|v_{0n} - w_{0n}\| + \alpha_{2n} (1 + r_n) \|v_{1n} - w_{1n}\|$$
$$\le (1 + r_n)^2 \|v - w\|.$$

Inductively continuing this process, we obtain

$$\begin{aligned} \|v_{in} - w_{in}\| &\leq (1 - \alpha_{in}) \|v_{(i-2)n} - w_{(i-2)n}\| + \alpha_{in}(1 + r_n) \|v_{(i-1)n} - w_{(i-1)n}\| \\ &\leq (1 - \alpha_{in})(1 + r_n)^{i-2} \|v - w\| + \alpha_{in}(1 + r_n)^i \|v - w\| \\ &\leq (1 + r_n)^i \|v - w\|, \end{aligned}$$

for $i = 1, \ldots, k - 1$. In particular,

(45)
$$\begin{aligned} \|S_n v - S_n w\| \\ &\leq (1 - \alpha_{kn}) \|v_{(k-2)n} - w_{(k-2)n}\| + \alpha_{kn} (1 + r_n) \|v_{(k-1)n} - w_{(k-1)n}\| \\ &\leq (1 + r_n)^k \|v - w\| \\ &= (1 + \epsilon_n) \|v - w\|, \end{aligned}$$

where $\epsilon_n = r_n \sum_{j=0}^{k-1} (1+r_n)^j$. By hypotheses,

(46)
$$\sum_{n=1}^{\infty} \epsilon_n < \infty.$$

For $m \in \mathbf{N}$, define a mapping $Q_{nm} : K \to K$ by

$$Q_{nm} = S_{n+m}S_{n+m-1}\cdots S_n$$

and

$$b_{nm} = \|Q_{nm}(tx_n + (1-t)p) - [tQ_{nm}x_n + (1-t)p]\|$$

By (45), for $v, w \in K$,

$$||Q_{nm}v - Q_{nm}w|| \le (1 + \epsilon_{n+m})(1 + \epsilon_{n+m-1})\cdots(1 + \epsilon_n)||v - w||$$

= $\delta_{nm}||v - w||,$

where

$$\delta_{nm} = (1 + \epsilon_{n+m})(1 + \epsilon_{n+m-1}) \cdots (1 + \epsilon_n), \text{ for } n, m \in \mathbb{N},$$

so that by (46), $\lim_{n,m\to\infty} \delta_{nm} = 1$.

It remains to show that $\lim_{n\to\infty} a_n(t)$ exists, for $t \in [0, 1]$, and hence $\{x_n\}$ converges weakly to a point of $F \cap K$. The argument of this part is the same as that in Theorem 4.3 and so is omitted.

REFERENCES

- 1. A. G. Aksoy and M. A. Khamsi, *Nonstandard Mathods in Fixed Point Theory*, Springer-Verlag, New York, 1990.
- C. E. Chidume and B. Ali, Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces, *J. Math. Anal. Appl.*, 330 (2007), 377-387.
- C. E. Chidume and B. Ali, Approximation of common fixed points for finite families of nonself asymptotically nonexpansive mappings in Banach spaces, *J. Math. Anal. Appl.*, **326** (2007), 960-973.
- 4. C. E. Chidume, E. U. Ofoedu and H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, *J. Math. Anal. Appl.*, **280** (2003), 364-374.
- 5. C. E. Chidume and N. Shahzad, Strong convergence of an implicit iteration process for finite family of nonexpansive mappings, *Nonlinear Anal.*, **62(6)** (2005), 1149-1156.

- L. Deng and Q. Liu, Iterative scheme for nonself generalized asymptotically quasinonexpansive mappings, *Applied Mathematics and Computation*, 205 (2008), 317-324.
- J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Mathematics, vol. 485, Springer, New York, 1975.
- H. Fukhar-ud-din and S. H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, *J. Math. Anal. Appl.*, 328 (2007), 821-829.
- J. Garcia Falset, W. Kaczor, T. Kuczumow and S. Reich, Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, *Nonlinear Anal.*, 43 (2001), 377-401.
- 10. K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, England, 1990.
- 11. B. Halpern, Fixed points of nonexpanding maps, *Bull. Amer. Math. Soc.*, **73(6)** (1967), 957-961.
- 12. S. Ishikawa, Fixed points by a new iteration method, *Proc. Amer. Math. Soc.*, 44 (1974), 147-150.
- A. R. Khan, A. A. Domlo and H. Fukhar-ud-din, Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces, *J. Math. Anal. Appl.*, **341** (2008), 1-11.
- 14. H. Y. Lan, Common fixedpoint iterative processes with errors for generalized asymptotically quasi-nonexpansive mappings, *Comput. Math. Appl.*, **52** (2006), 1403-1412.
- 15. Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mapping with error member, *J. Math Anal. Appl.*, **259** (2001), 18-24.
- 16. M. Maiti and B. Saha, Approximating fixed points of nonexpansive and generalized nonexpansive mappings, *Int. J. Math. Math. Sci.*, **16(1)** (1993), 81-86.
- 17. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
- 18. H. Oka, A nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach space, *Proc. Japan Acad. Ser. A*, **65** (1998), 284-287.
- 19. S. Plubtieng and R. Wangkeeree, Fixed point iteration for asymptotically quasinonexpansive mappings in Banach spaces, *International Journal of Mathematics and Mathematical Sciences*, **11** (2005), 1685-1692.
- J. Quan, S. S. Chang and X. J. Long, Approximation common fixed point of asymptotically quasi-nonexpansive-type mappings by the finite steps iterative sequences, *Fixed Point Theory and Applications*, 2006 (2006), 1-8.
- J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, *Bull. Austral. Math. Soc.*, 43 (1991), 153-159.

- 22. H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings, *Proc. Amer. Math. Soc.*, **44(2)** (1974), 375-380.
- 23. N. Shahzad and H. Zegeye, Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps, *Applied Mathematics and Computation*, **189** (2007), 1058-1065.
- 24. Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, *J. Math. Anal. Appl.*, **286** (2003), 351-358.
- 25. K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, *J. Math. Anal. Appl.*, **178** (1993), 301-308.
- 26. K. K. Tan and X. Z. Yuan, Random fixed point theorems and approximation in cone, *J. Math. Anal. Appl.*, **185** (1994), 378-390.
- 27. Y. X. Tian and C. D. Yang, Convergence theorems of three-step iterative scheme for a finite family of uniformly quasi-lipschitzian mappings in convex metric spaces, *Fixed Point Theory and Applications*, **2009** (2009), 1-12.
- 28. L. Wang, Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, *J. Math. Anal. Appl.*, **323** (2006), 550-557.
- 29. B. Xu and M. A. Noor, Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267(2) (2002), 444-453.
- 30. H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numer. *Funct. Anal. Optim.*, **22** (2001), 767-773.

Shuechin Huang Department of Applied Mathematics National Dong Hwa University Hualien 97401, Taiwan E-mail: shuang@mail.ndhu.edu.tw