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SEQUENTIAL PURITY AND INJECTIVITY OF ACTS OVER SOME
CLASSES OF SEMIGROUPS

Mojgan Mahmoudi and Gh. Moghaddasi

Abstract. The notion of sequential purity for acts over the monoid N∞, called
projection algebras, was introduced and studied by Mahmoudi and Ebrahimi.
This paper is devoted to the study of this notion and its relation to injectivity
of S-acts for a semigroup S. We prove that in general injectivity implies
absolute sequential purity and they are equivalent for acts over some classes
of semigroups.

1. INTRODUCTION

One of the very useful notions in many branches of mathematics as well as in
computer science is the action of a semigroup on a set. Purity of acts has been
studied by Gould, Normak, and others (see [4], [8], [6]). Sequential purity was
introduced and studied by Mahmoudi and Ebrahimi in [7]. In this paper we study
the injectivity of acts using sequential purity.

Recall that for a semigroup S, a (right) S-act is a set A together with a function
α : A × S → A, called the action of S (or the S-action) on A, such that for
x ∈ A and s, t ∈ S (denoting α(x, s) by xs), x(st) = (xs)t. A subact of an act
A is simply a subset B of A which is closed under the action. A homomorphism
f : A → B between S-acts A, B is a function such that for each x ∈ X , s ∈ S,
f(xs) = f(x)s. We denote the category of all S-acts and homomorphisms between
them by Act−S. An element a of an S-act A is called a fixed or a zero element if
as = a for all s ∈ S. The category Act−S is clearly a variety. So monomorphisms
are exactly one-one homomorphisms. Thus we can consider the monomorphisms in
this category as inclusions.
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Definition 1.1. An S-act B containing (an isomorphic copy of) an S-act A as
a subact is called an extension of A. The S-act A is said to be a retract of B if
there exists a homomorphism f : B → A such that f �A= idA, in which case f is
said to be a retraction.

A is called an absolute retract if it is a retract of each of its extensions. An
S-act A is said to be injective if for every monomorphism h : B → C and each
homomorphism f : B → A there exists a homomorphism g : C → A such that
gh = f . An S-act A is said to be S-injective if for every homomorphism f : S → A
there exists an element a ∈ A such that f = λa, where λa(s) = as for all s ∈ S

(this notion was first defined and applied in [5] and [7]). A minimal injective
extension of an S-act is called its injective hull.

Remark 1.2. Notice that, for any semigroup S, in the category Act−S, pushouts
transfer monomorphisms. To see this, let f : A → B and g : A → C be homomor-
phisms in this category. We know that the pushout of f and g is (B�C)/θ together
with k = πuB : B → (B�C)/θ, h = πuC : C → (B�C)/θ, where θ is the small-
est congruence generated by X = {(uBf(a), uCg(a)) : a ∈ A} and π : (B�C) →
(B �C)/θ is the natural homomorphism and uB, uC are injection homomorphisms
from B, C to (B � C), respectively (see also [2]). Let f be a monomorphism,
to show that h is also a monomorphism, let for c, c′ ∈ C, h(c) = h(c′). Then
(c, c′) ∈ θ, hence we have c = c′ or there exist a1, a2, ...an ∈ A, s1, s2, ..., sn ∈
S such that c = g(a1s1), f(a1s1) = f(a2s2), g(a2s2) = g(a3s3), f(a3s3) =
f(a4s4), ..., g(ansn) = c′. If c = c′ then the proof is complete. Otherwise, since f

is a monomorphism we can write a1s1 = a2s2, a3s3 = a4s4, ..., an−1sn−1 = ansn

and so g(a1s1) = g(a2s2), g(a3s3) = g(a4s4), ..., g(an−1sn−1) = g(ansn). Thus
c = g(a1s1) = g(a2s2) = g(a3s3) = g(a4s4) = ... = g(ansn) = c′.

Using the above lemma and the results of [1] we get the following theorem:

Theorem 1.3. The category Act−S has enough injectives, and A is injective
if and only if A is an absolute retract.

2. S-INJECTIVITY VERSUS SEQUENTIAL PURITY

In this section we show that absolute sequential purity is in fact equivalent to
S-injectivity.

Definition 2.1. Let A be a subact of an S-act B. Then A is said to be se-
quentially pure, or s-pure, in B if every “sequential” system xs = as, s ∈ S, of
equations over A is solvable in A whenever it is solvable in B. A is called an ab-
solute s-pure if it is s-pure in every extension of A. A homomorphism f : A → B

is called s-pure if f(A) is s-pure in B.
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Theorem 2.2. For an S-acts A, the following are equivalent:
(i) A is s-pure in its injective hull.
(ii) A is an absolute s-pure.
(iii) A is S-injective.

Proof. (i)⇔(ii): To prove the non clear direction, let B be an extension of
A and the sequential system xs = as, s ∈ S, of equations over A has a solution
b in B. Let E(A) be the injective hull of A. Then there exists a homomorphism
f : B → E(A) extending the inclusion map of A into E(A). We thus have
f(b)s = f(bs) = f(as) = as. That is, xs = as has a solution f(b) in E(A) and
so has a solution in A, by (i).

(ii)⇒(iii): Let f : S → A be a homomorphism. Consider the extension B =
A∪{b} of A with the action b.t = f(t)t ∈ S. Since A is an absolute s-pure and the
sequential system xs = f(s), s ∈ S, has a solution b in B, it must have a solution
in A, that is, there exists a ∈ A such that for all s ∈ S we have as = f(s), which
means that f = λa.

(iii)⇒(ii): Let B be an extension of A and the sequential system xs = as, s ∈ S,
has a solution b in B. Then we can easily see that f : S → A defined by f(s) = as,
s ∈ S, is a homomorphism. Now, since A is S-injective, f = λa for some a in A,
which is easily seen to be a solution of the given sequential system.

As a corollary of the last two parts of the above proof we have:

Corollary 2.3. The sequential system xs = as, s ∈ S, of equations over an
S-act A has a solution in some extension of A if and only if the corresponding map
f : S → A, f(s) = as, s ∈ S, is a homomorphism.

3. INJECTIVITY VERSUS SEQUENTIAL PURITY

In this section, we first show that if an act A is injective (equivalently, absolute
retract) then it is an absolute s-pure. Trying to answer the question about the
converse of this result and hence get a result similar to Theorem 2.2 we give a
counter example and show that the converse is true for acts over some special classes
of semigroups. Hence, for these classes of semigroups, the notion of injectivity can
be studied using sequential purity (compare with [4], [8], or [7]).

Lemma 3.1. If an S-act A is a retract of an S-act B then A is s-pure in B.

Proof. Let f : B → A be a homomorphism such that f �A= id, and the
sequential system xs = as, s ∈ S, have a solution b in B. Then f(b) belongs to A

and for all s ∈ S we have f(b)s=f(bs)=f(as)=as, that is A is s-pure in B.

The converse of the above lemma is not necessarily true:



740 Mojgan Mahmoudi and Gh. Moghaddasi

Example 3.2. Let S = {s, t} be a left zero semigroup (that is, xy = x, for
all x, y) and A = {a, b} be an S-act where a and b are zero elements, and B =
{a, b, c, d, e} be an extension of A where c is a zero element and ds = a, dt =
c, es = b, et = c. The S-act A is s-pure in B, since the only sequential systems
over A are (i) xs = a, xt = a, (ii) xs = a, xt = b, (iii) xs = b, xt = a, and (iv)
xs = b, xt = b, and none of them has a solution in B. Hence A is trivially s-pure in
B. But there is no retraction f : B → A, because if f(c) = a then the definition of
the action of S on the elements of B yields that f(d) = a = f(e) and so f(b) = a
which is impossible since f �A= id. Similarly the case f(c) = b is not possible.

Theorem 3.3. Every injective S-act is an absolute s-pure.

Proof. This is in fact a corollary of the above lemma.
The converse of the above theorem is also not true:

Example 3.4. Consider the semigroup S = (N, +) and the S-act A = {a, b}
with the action given by a(2n) = a, a(2n − 1) = b and b(2n) = b, b(2n− 1) = a

for n ∈ N. Now we see that there are exactly two homomorphisms f and g
from S to A, given by the sequences {a, b, a, b, ...} and {b, a, b, a, ...}, respectively.
This is because for a homomorphism h : N → A with h(n) = a (or b) we have
h(n + 1) = h(n).1 = b (or a). Now we have f = λb and g = λa. Therefore A

is S-injective and hence, by Theorem 2.2, is an absolute s-pure. But A having no
zero element is not injective.

The following example shows that there is an absolute s-pure act with a zero
element which is not injective.

Example 3.5. Consider the semigroup S = ({2, 3, 4, ...}, .) and S-act A =
{0, 1, 2, 3, ...} with product as its action. Then every homomorphism f : S → A,
f(s) = as, s ∈ S is of the form λm, for some m ≥ 0. This is because, for all
t, s ∈ S, at.s = ats = ast = as.t . So, a2 is even, for if a2 = 2k + 1 for some
k ≥ 0 then since a2.3 = a3.2 we have 3(2k + 1) = 2a3 which is impossible. Let
a2 = 2m, m ≥ 0. Then the equation a2.s = as.2 gives as = ms, for all s ∈ S, as
required. Therefore, A is S-injective, and hence is an absolute s-pure. But, A is not
injective, for if we consider the extension B of A consisting of all the elements of A
and all the multiples of 1.5, then there does not exist a homomorphism f : B → A

with f �A= id. This is because, if f is such a homomorphism and f(1.5) = n then
we must have 3 = f(3) = 2f(1.5) = 2n which is impossible.

We now present some classes of semigroups such that the converse of the above
theorem is true for the acts over them.

Theorem 3.6. Let S be a cyclic semigroup. Then every S-act A with a zero
element is an absolute s-pure if and only if it is injective.
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Proof. First recall that every infinite cyclic semigroup is isomorphic to (N, +)
(see [6]). Now, we prove the result for acts over S = (N, +). Let A be an absolute
s-pure S-act with a zero element a0. To prove that A is an absolute retract, let B

be an extension of A. For b ∈ B − A, take Sb
1 and Sb

2 to be the subsets of S with
bSb

1 ⊆ A, bSb
2 ⊆ B − A, and Sb

1 ∪ Sb
2 = S. The retraction map g : B → A is

defined on A as identity map, and for b ∈ B − A with bS ⊆ B − A is given by
g(b) = a0. To define g for the other elements b of B − A, first notice that Sb

2 is
finite whenever Sb

1 is nonempty. This is because, taking m ∈ Sb
1, we get that for

every l, l ≥ m, bl = b(m + (l − m)) ∈ A. In fact, if n is the least element of N
with bn ∈ A then S b

1 = {n, n + 1, n + 2, ...} and Sb
2 = {1, 2, ..., n− 1}. Therefore,

the subset of B −A consisting of the elements b with bS � B −A, is the union of
disjoint subsets Bn, n ≥ 0 of B − A, where Bn = {b ∈ B − A : card(Sb

2) = n}.
So we define maps gn : Bn → A, for n ≥ 0, and then the retraction map g on
the elements of B − A with bS � B − A is given by

⋃
n,n≥0 gn. The family

gn, n ≥ 0 is defined by induction on n as: First step: g0(b), since b ∈ B0 is a
solution of the sequential system xl = bl, l ≥ 1, and A is an absolute s-pure, the
sequential system has a solution in A, namely g0(b). Hence we have g0(b)l = bl for
all l ≥ 1. Induction step: Let g0, ..., gk−1 be defined, then define gk(b) for b ∈ Bk

as a solution of the sequential system

(∗)




xk = g0(bk)
...

x1 = gk−1(b1)
xs = bs (s ≥ k + 1)

Notice that using Corollary 2.3, the system (∗) over A has a solution in some
extension of A, and hence has a solution in A, since the map f : S → A corre-
sponding to the system is a homomorphism and A is an absolute s-pure. Now it
is enough to prove that the defined map g is an act map. Let b ∈ B and n ∈ N.
If b ∈ A then g(bn) = bn = g(b)n, if b ∈ B − A with bS ⊆ B − A then
g(bn) = a0 = a0n = g(b)n. So, let b ∈ Bk , for some k ≥ 0. If n ≤ k then
bn ∈ Bk−n so g(bn) = gk−n(bn), also g(b)n = gk(b)n where since gk(b) is a
solution of the system (∗) we have gk(b)n = gk−n(bn) as required. Finally, if
n > k then bn ∈ A so g(bn) = bn, and again since gk(b) is a solution of (∗) we
get g(b)n = gk(b)n = bn.

To prove the result for the case where S is finite, let S = <s0> = {s0, s
2
0, ..., s

m
0 ,

sm+1
0 , ..., sm+r−1

0 } where m is the index of s0 and r is the period of s0 see [6].
Continuation of the proof is similar to the above discussion, just replace all bl by
bsl

0, for 1 ≤ l ≤ m + r − 1.
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Theorem 3.7. Let S be a zero semigroup with s0 as the zero of S. Then every
S-act A with a zero element is an absolute s-pure if and only if it is injective.

Proof. Let A be an S-act with a zero element a0 which is an absolute s-pure.
First note that for every a ∈ A, as0 is a zero element, since for every s ∈ S we can
write (as0)s = a(s0s) = as0. To prove that A is an absolute retract, let B be an
extension of A. Note that for every b ∈ B − A we have bs0 ∈ B − A if and only
if bS ⊆ B − A, since if for an s ∈ S, bs ∈ A then bs0 = b(sso) = (bs)s0 ∈ A.
Define f : B → A such that f �A= id and for b ∈ B − A,

f(b) =




ab if bS � B − A, ∃t ∈ S, bt �= bs0

bs0 if bS � B − A, ∀t ∈ S, bt = bs0

a0 if bS ⊆ B − A

where ab is an element of A that obtains as follows: Let bS � B − A then there
exist nonempty subsets S1 and S2 of S such that S1 ∪ S2 = S and bS1 ⊆ A,
bS2 ⊆ B − A. Now consider the sequential system xs = as, s ∈ S, with as = bs,
for s ∈ S1, and as = bs0 for s ∈ S2. Take ab to be a solution of this system in A,
which exists by Corollary 2.3, since the map f : S → A, f(s) = as, s ∈ S, is a
homomorphism and A is an absolute s-pure.

Now to see that f is a homomorphism, let b ∈ B−A and s ∈ S. If bS ⊆ B−A

then bsS ⊆ B − A hence f(bs) = a0 = a0s = f(b)s. If bS � B − A and there
exists t ∈ S with bt �= bs0 then two cases may happen:

Case 1. s ∈ S1, then we have abs = bs and hence f(bs) = f(abs) = abs =
f(b)s.

Case 2. s ∈ S2, that is bs ∈ B − A, then for all t ∈ S, bst = bs0 hence we
can write f(bs) = bs0 = bs0s = f(b)s.

Finally, if bS � B−A and for all t ∈ S, bt = bs0 then we have bsS = {bs0} �
B − A, and for all t ∈ S have bst = bs0 hence f(bs) = bs0 = bs0s = f(b)s.

Theorem 3.8. Let S be left zero semigroup. Then every S-act A with a zero
element is an absolute s-pure if and only if it is injective.

Proof. Let A be an S-act with a zero element a0 which is an absolute s-
pure. To prove that A is an absolute retract, let B be an extension of A. Define
g : B → A by

g(b) =

{
a0 if bS ⊆ B − A

ab if bS � B − A

where ab is a solution of the sequential system{
xs = bs for s ∈ S with bs ∈ A

xs = a0 for s ∈ S with bs �∈ A
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in A which exists applying Corollary 2.3, since the map f : S → A corresponding
to the system is a homomorphism and A is an absolute s-pure.

To see that g is homomorphism, let b ∈ B − A and t ∈ S. If bt ∈ A then
g(bt) = bt = abt = g(b)t, and if bt �∈ A then btS = {bt} ⊆ B − A so g(bt) =
a0 = abt = g(b)t.

For the above theorem, one can also apply results of [3].

Theorem 3.9. Let S be in one of the above three classes of semigroups. Then
the following are equivalent for any S-act A:

(i) A is injective.
(ii) A is an absolute retract.
(iii) A is S-injective and has a zero element.
(iv) A is an absolute s-pure and has a zero element.

Proof. Equivalence of (i) and (ii) follows by Theorem 1.3, (iii) and (iv) are
equivalent by Theorem 2.2. Finally, (i) and (iv) are equivalent by the previous four
Theorems.
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