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NEW ITERATIVE ALGORITHM FOR SOLVING A SYSTEM OF
GENERALIZED MIXED IMPLICIT EQUILIBRIUM PROBLEMS IN
BANACH SPACES

Xie-Ping Ding and Juei-Ling Ho*

Abstract. A new system of generalized mixed implicity equilibrium problems
is introduced and studied in real Banach spaces. The notion of the Yosida
approximation introduced by Moudafi in Hilbert spaces is first generalized to
reflexive Banach spaces. By using the notion of the Yosida approximation,
a system of generalized equation problems is considered and its equivalence
with the system of generalized mixed implicity equilibrium problems is also
proved. By using the system of generalized equation problems, a new iterative
algorithm for solving the system of generalized mixed implicity equilibrium
problems is suggested and analyzed. The strong convergence of the iterative
sequences generated by the algorithm is proved under suitable conditions.
These results are new and unify and generalize some recent results in this
field.

1. INTRODUCTION

It is well known that equilibrium problem includes variational inequality, opti-
mization problem, problems of Nash equilibria, saddle point problems, fixed point
problems and complementarity problems as special cases, for example, see [1-5] and
the references therein. In the theory of variational inequalities, variational inclusions
and equilibrium problems, the development of an efficient and implementable itera-
tive algorithm is interesting and important. Various kinds of iterative algorithms to
solve the equilibrium problems have been developed by many authors. For details,
we can refer to [3, 6-25, 35-51] and the references therein. By using the viscosity
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approximation method and its variants, many authors studied the iterative algorithms
for finding a common element of the solution set of (mixed) equilibrium problems
and the fixed point set of nonexpansive mappings in Hilbert spaces, for example, see
[12-21]. By using the auxiliary principle technique, Ding [9], Ding et al. [10], and
Xia and Ding [11] studied the approximation solvability of some mixed equilibrium
problems in Hilbert spaces. Recently, By using Yosida approximation and Wiener-
Hopf equation technique, Moudafi [3] and Huang et al. [22] studied the sensitivity
analysis of solutions for generalized mixed implicit equilibrium problems in Hilbert
spaces. Kazmi and Khan [23] studied the approximation solvability of generalized
mixed equilibrium problems in Hilbert spaces. As pointed out by Moudafi [3],
”But up to now no sensitivity analysis and only few iterative methods to solve such
problems have been done. It is worth mentioning that the new algorithm developed
here can be applied to solve the system of generalized mixed equilibrium problems™”.

Inspired and motivated by the recent works [3, 13, 14, 22, 23], in this paper,
we introduce and study a new system of generalized mixed implicit equilibrium
problems involving non-monotone set-valued mappings with non-compact values
in real reflexive Banach spaces, which includes the system of generalized implicit
variational inequalities, the system of generalized implicit variational inclusions as
special cases. We first generalize the notion of the Yosida approximation introduced
by Moudafi [3] in Hilbert spaces to reflexive Banach spaces. By using the notion of
the Yosida approximation, we consider a system of generalized equations problems
and show its equivalence with the system of generalized mixed implicit equilibrium
problems. Using the system of generalized equations problems, we construct a new
iterative algorithm for solving the system of generalized mixed implicit equilibrium
problems. Furthermore, we prove the existence of solutions and the convergence
of the iterative sequences generated by the algorithm. These results generalize and
improve the corresponding results in [3, 13, 14, 22, 23].

2. PRELIMINARIES

Let B be a real Banach space with norm || - ||, B* be its dual space and
R = (—o0, +00). Let (x,¢) denote the duality pairing between B and B*, where
x € B and ¢ € B*. Let K be a nonempty, closed and convex subset of B and let
CB(B) be the family of all nonempty, closed and bounded subsets of B.

Definition 2.1. Let K be a closed convex subset of a Hausdorff topological
vector space E. A real valued bifunction F': K x K — (—o0,00) is said to be

(i) monotone if
Fa,y)+ Fly,z) <0, Va, y € K;
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(i) strictly monotone if
F(z,y)+ F(y,z) <0, Yz, y € K with x # y;
(iii) a-strongly monotone if there exists a « > 0 such that
F(r,y)+ Fy,z) < —allz —yl, Yz, y € K;
(iv) upper-hemicontinuous if
lim sup,_,oF(tz + (1 = t)z,y) < F(z,y), Vx,y,2 € K, t €0, 1].

Remark 2.1. Clearly the strong monotonicity of F' implies the strict monotonic-
ity of F.

Definition 2.2. A mapping n : B x B — B* is said to be
(i) monotone if

<x_y777($7y)> > 07 vay € B7
(i) strictly monotone if
(x —y,m(z,y) >0, Vr, ye K with x #y;
(iii) o-strongly monotone if there exists a 6 > 0 such that
(@ —y,n(z.y) = |z —y|? Va,ye B;
(iv) affine in second argument if

Ny, B+ (1= 0)z) = By, =)+ (1= B)n(y, 2), VB €[0,1], 2,9,z € K.
(v) 7-Lipschitz continuous if there exists a constant 7 > 0 such that

ln(z, Il <7llz—yl, VzyeB.

Remark 2.2. If B = H is a Hilbert space, then the concepts (i),(iii) and (v)
reduces to the corresponding concepts in [22, 23].

Definition 2.3. The bifunction ¢ : B x B — (—o0, +0o0] is said to be skew-
symmetric if
o(u,u) — o(u,v) — p(v,u) + g(v,v) >0, YV u,v € B.
The skew-symmetric bifunctions have the properties which can be considered
an analogs of monotonicity of gradient and nonnegativity of a second derivative

for the convex function. For the properties and applications of the skew-symmetric
bifunction, the reader may consult Antipin [24].

The following result is a special case of Theorem 3.9.3 of Chang [25].

Lemma 2.1. Let K be a closed convex subset of a Hausdorff topological vector
space F, F': K x K — R be a bifunction. If the following conditions hold:



676 Xie-Ping Ding and Juei-Ling Ho

(i) F(z,z) >0, Vz €K,
(ii) F' is monotone and for each y € K, x — F(x,y) is upper hemicontinuous;
(iii) for each z € K, y — F(z,y) is convex and lower-semicontinuous;

)

(iv) there exist a compact subset D of E and yo € K () D such that F'(x, yo) < 0
foreach z € K'\ D.

Then the solution set of the following equilibrium problem (EP): find & € K such
that

F(%,y)>0,VyeK,

is nonempty, convex and compact.

Lemma 2.2. Let K be a closed convex subset of a reflexive Banach space B.
Let F: K x K — Rand ¢ : B x B — R be two bifunctions, n : B x B — B* be
a mapping and p > 0 be a positive number. Suppose the following conditions are
satisfied:

(i) F satisfies the conditions (i)-(iii) in Lemma 2.1;
(ii) n be monotone with n(z,y) +n(y,z) =0, V z,y € B;

(iii) n is affine in second argument and continuous from weak topology in B to
weak* topology in B* in first argument,

(iv) ¢ is skew symmetric and weakly continuous, and ¢ is convex in first argu-
ment.

(v) for each x € B there exist a compact subset D, of B and yo € K (D,
such that F(z,yo) + ¢ (0. 2) — ¢(2,2)) + (z — x,7(y0. z)) < 0 for each
x € K\ Dy.

Then for each x € B, there exists a point z,, € K such that

(2.1)  p(F(z2,y) + 0y, 22) — (22, 22)) + (22 — 2,0(y, 22)) > 0, Vy € K.

Proof. For each fixed = € B, define ¢ : K x K — R by

P(zy) = p(F(z,9) + 9y, 2) —9(2,2)) + (z —2,n(y, 2)), V 2,y € K.

Since n(z,y) + n(y,z) =0, V 2,y € B, we have n(z,z) =0 for all z € B and
hence

V(z,2) = pF(z,2)+ (z —x,n(z,2)) >0, Vz € K.
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The condition (i) of Lemma 2.1 is satisfied. Since n is monotone, ¢ is skew
symmetric and 7(z, y) + n(y, z) = 0, then for each (z,y) € K x K, we have

V(z,y) +9(y,2) = p(F(z,9)+F(y, 2)) +p(p(y, 2) —p(2, 2) +0(2,9) =y, y))
+z—z,n(y,2)) + (y — 2, n(2,y))

< p(F(z,y) + F(y,2)) = (2 —y,n(2,9)) <0,

i.e., ¢ is monotone. Since 7 is affine in second argument and ¢ is weakly continuous,
by the condition (ii) in Lemma 2.1, we have that for each u,y, z € K,

limsup ¢ (tu + (1 —t)z,y)
t—0

< limsup pF(((tu+ (1 — t)2), y)

t—0
+lim§3}0)p(<p(tu +(1—-1t)z,y) —ptu+ (1 —t)z, tu+ (1 —t)z))
+lim§210)<t(u —x2)+ (1 —=t)(z—2),n(y, tu+ (1 —1t)z))

S p(F(Zv y) + LP(Z, y) - LP(Z, Z))

Hlimsup|{t(u — o) + (1 = )(z = ), tn(y, w) + (1 = t)n(y, 2))]

S p(F(Zv y) + LP(Z, y) - LP(Z, Z))

+hm§3}0)[t2<u -, 77(217 ’LL)> + t(l - t)<z - T, 77(2/7 ’LL)>

+t(1 - t)<u -, 77(217 z)> + (1 - t)2<z -, 77(2/7 Z)>]
< p(F(Zv y) + LP(Z, y) - LP(Z, Z)) + <Z -, 77(2/7 Z)> = w(zv y)

Therefore ¢ is upper hemicontinuous in first argument, the condition (ii) of Lemma
2.1 is satisfied. Since for each z € K, y — F(z,y) is convex and lower semi-
continuous, ¢ is weakly continuous and convex in first argument, and 7 is affine
in second argument and continuous from weak topology in B to weak* topology in
B* in first argument, It is easy to see that for each z € K, y — 9 (z,y) is convex
and lower semicontinuous, the condition (iii) of Lemma 2.1 is satisfied. Clearly
the condition (v) implies that ¢ also satisfies the condition (iv) of Lemma 2.1. By
Lemma 2.1, for each x € B, there exists a point z, € K such that

P(zz,y) >0, Vy e K.

By the definition of ¢, we obtain that for each x € B, there exists a point z, € K
such that

p(F(zm,y) + (P(yv zl‘) - (P(ZJH ZJ;)) + <sz - 95777(217 zl‘)> > 07 v Y€ K.
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Remark 2.3. If F or 7 is strictly monotone, then the solution of the MEP (2.1)
in Lemma 2.2 is unique, i.e., for each x € B, there exists unique a point z, € K
such that the inequality (2.1) holds.

Remark 2.4. By Lemma 2.2 and Remark 2.3, we obtain that for each z € B,
there exists a unique z, = J; ¥ (x) € K such that

P(E(J, 2 (2),y) + (y, Iy (@) — (I, (), I, (x)))

22) PP @) =y, T} P(@) 2 0. Yy € K,

and hence Jf’“" : X — K is a well-defined single-valued mapping.

Theorem 2.1. Let K be a closed convex subset of a reflexive Banach space B
and p > 0 be a positive number. Let ' : K x K — R, ¢ : Bx B — R and
n: B x B — B* satisfy the following conditions:

(i) Fis a-strongly monotone and satisfy the conditions (i)-(iii) of Lemma 2.1;

(ii) n is é-strongly monotone and 7-Lipschitz continuous with n(x, y) +n(y, ) =
0, Va,y € B;

(iii) n is affine in second argument and continuous from weak topology in B to
weak* topology in B* in first argument.

(iv) o is skew symmetric and weakly continuous, and ¢ is convex in first argu-
ment.

(v) for each x € B there exist a compact subset D, of B and yo € K (D,
such that F(z,y0) + ¢(yo,2) — ©(2,2)) + (z — z,n(yo, z)) < 0 for each
x € K\ Dy.

Then the mapping J,f’“" is 6+Tpa-Lipschitz continuous.

Proof. By Lemma 2.2, we have
p(F(J; (), ;2 (y) + (I, 2 (), Iy 4 (@) = o(J, (), I, (x)))
(I (@) = 2, 0(J; 4 (y), I, 9(x))) 2 0, ¥ 2,y € B,
p(F (52 (y), J5# () + o(J5% (), 52 (y) — 0TS 7 (y), I ()

I P (y) =y, (I % (@), T, 9 (y))) = 0, ¥V x,y € B.
Note that o is skew symmetric, by adding the above two inequalities, we have
p(F(J)#(x), I 9 (y)) + F (I, (y), I, ¢ ()

(I () = 2,0 ( Ty (), I, ()
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+(I0P () =y (I # (@), I (y)))
> plp(J5P(x), J5? () — o(J1 4 (y), J2 ¥ ()
—p(JF2 (), J52(y) + (I (y), TF#(y))] > 0.

By using a-strongly monotonicity of F and n(x,y)+ n(y,x) =0, ¥V z,y € B, we
have

—pal| 5 (@) = L2 () |1? + (x — y, (I (2), T2 ()
> (JF2(x) — TP (y), n(T ¥ (), T2 (y))).

Since n is a-strongly monotone and 7-Lipschitz continuous, it follows from the
above inequality that

—pal| I, ()= T3 () [P+ lla—yll| T, (2) =T 2 ()| = 6]1T5 () =5 ()|

Hence, we have

.
0 + pa

17,79 (x) = T ()l < [z =yl v,y € B.

Remark 2.5. Theorem 2.1 generalizes Theorem 3.1 of Kazmi and Khan [23]
in following way: (1) from Hilbert spaces to reflexive Banach spaces; (2) the MEP
(2.1) is more general than the model of MEP (3.2) in Definition 3.1 of Kazmi and
Khan [23].

3. SysTEM oF GENERALIZED MIXED IMPLICIT EQUILIBRIUM PROBLEMS

For each i € {1, 2}, let B; be a real reflexive Banach space with the dual space
By and (-, -); be the dual pair between B; and B;. We denote the norm of B; and
B by |- |- Let K; be a nonempty closed convex subset of B;, and C'B(B;) denote
the family of all nonempty bounded closed subsets of B;. For each i € {1, 2}, Let
ﬁi(-, -) be the Hausdorff metric on C'B(B;) defined by

H;(A, B) = max{sup,c 4 di(a, B);sup,cp di(A,b)},V A, B € CB(B;),
where d;(a, B) = infyeplla — b||; and d;( A4, b) = inf,calla — bl];.

For each ¢ € {1,2}, let ; : B; x B; — R and F; : K; x K; — R be two
bifunctions, gi - Kj - K;, n; : B; x B; — Bz* and N;, G; : By Xx By — B;
be single-valued mappings, and 7; : By — CB(B;) and S; : By — CB(B,)
be set-valued mappings. We consider the following system of generalized mixed
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implicit equilibrium problems (SGMIEP): find (x1,z2) € K1 x Ka, uy € T1(x1),
ug € To(x2), v1 € Si(x2) and vy € Sy(x2) such that
Fi(gi(z1), 1) + e1(y1, 91(21)) — @1(g1(21), 91(21))
3.1) +(G1(21, 2) + N1(u1,v1), m(y1, 91(x1))) >0, Vy1 € Ky,
I5(g2(22), y2) + @2(y2, 92(22)) — ¢1(92(22), g2(2))
+(Ga(w1, 2) + No(uz,v2), m2(y2, g2(22))) > 0, V 32 € Ko.

Special cases:

() If for ¢ = 1,2, let G; = 0, then the SGMIEP (3.1) reduces to the fol-
lowing system of generalized mixed implicit equilibrium problems problems: find
(1‘1,%‘2) < K1 X KQ, up € Tl(xl), Uy € Tg(w‘g), S 51(1‘2) and Vo € 52(1‘2)
such that
e1(91(21), g1(z1))

0, Vy € Ky,

Fi(g1(21), y1) + 1(y1, 91(21

)
+(N1(u1, v1), m(y1, g1(z1))

(3.2)
)

@1(92(962)792(962))
0, A Y2 € K.

) —
) >
Fy(ga(r2), y2) + @2(y2, g2(x2)) —
) >

+(Na(uz, v2), n2(y2, go(w2)

The SGMIEP (3.2) is new and includes many known models of the system
of generalized mixed equilibrium problems and the system of generalized mixed
variational-like inequality problems as special cases.

(I If fori=1,2, let F; = 0 and G; = 0, then the SGMIEP (3.1) reduces to
the system of generalized mixed variational-like inequality problems (SGMVLIP):
Find (.Tl,wg) € K1 x Ky, uy € Tl(xl), Ug € Tg(w‘g), V1 € 51(1‘2) and V9 € 52(1‘2)
such that

(N1(u1,v1), m(y1, g1(21))) + @1(y1, 91(21))
—1(g1(21), 91(21)) > 0, ¥V y1 € Ki,

(N2(u2,v2), m2(y2, g2(22))) + @2(y2, g2(22))
—01(g2(w2), g2(w2)) > 0, V yo € Ko.

The SGMVLIP (3.3) is also new and different from that in the known litera-
ture. If for i = 1,2, B; = H; is Hilbert space, then the SGMVLIP (3.3) includes
many known models of the system of generalized mixed variational-like inequality
problems in known literature as special cases.

(3.3)
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(am iffori=1,2,let B=B, K;=K G;=0, F;=F, ¢, = ¢, N;j= N,
T,=T,S5;,=S5, K; = K, n;,=nand g; = g then the SGMIEP (3.1) reduce to the
generalized mixed implicit equilibrium problem (GMIEP): Find z € K, u € T(z)
and v € S(x) such that

(34) F(g(x),y)+e(y, 9(x))—p(9(x), g(z))+(N(u,v),n(y, g(z))) >0, V y € K.

The GMIEP (3.4) with B = H being a Hilbert space and ¢ = 0 is called the
generalized mixed equilibrium problem (GMEP) by Kazmi and Khan [23].

(IV) If F = 0, thenthe GMIEP (3.4) reduces to the generalized mixed variational-
like problems (GMVLIP): Find z € K, u € T(z) and v € S(x) such that

(3.5) (N (u,v),n(y,9(x))) + (v, 9(x)) — p(9(z),9(x)) > 0, Vy € K,

Some similar problems have introduced and studied by many author in Hilbert spaces
and Banach spaces, see [25-27].

(V) If for N = 0, then the GMIEP (3.4) reduces to the following general mixed
equilibrium problem (GMEP): Find = € K such that

(3.6) F(g(z),y)+ ¢y, 9(x)) — ¢(g(z), 9(x)) >0, Vy € K.

The GMEP (3.6) is also new.

(VI) If let o(x,y) = f(x) for all (z,y) € K x K, then the GMEP (3.7) reduces
the following mixed equilibrium problem MEP: Find = € K such that

(3.7) F(g(z),y)+ f(y) — flg(z)) >0, Vy e K.

The MEP (3.7) have been introduced and studied in Hilbert spaces or Banach spaces
by many authors in [3, 13, 14, 22, 23].

Now, related to SGMIEP (3.1), we consider the following system of generalized
equation problems (SGEP): Find (x1,x2) € K1 X Ko, uy € T1(21), v1 € S1(z2),
ug € To(x1) and vy € Sy(x2) such that

(3.8) { g1(z1) = Jp P (g1 (z1) — p1(Ga(xr, w2) + Ni(u,v1))),

g2(@2) = 52 (ga(2) — p2(Galw1, 2) + Na(ug, v2))),

where, for each i = 1, 2, J,i“"i : B; — K; is the single-valued mapping defined in
Remark 2.4.
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Related to the GMEP (3.6), we consider the following generalized equation
problem (GEP): Find x € K such that

(3.9) { 9t) = 5% (g(a)),
where, Jf’“" : B — K is the single-valued mapping defined in Remark 2.4.

Lemma 3.1. (a:l,xg,ul,vl,ug,vg) with (1'1,1‘2) € K1 x Ky, u; € Tl(xl),
v1 € S1(x2), ug € To(x1) and vy € Sy(x2) is a solution of the SGEP (3.8) if and
only if (xl,xg,ul,vl,ug,vg) with (1'1,1‘2) € K1 x K9, uy € Tl(xl), V1 € 51(1‘2),
ug € To(x1) and vy € Sy(x2) is a solution of the SGMIEP (3.1).

Proof. If (xl,xg,ul,vl,ug,vg) with (1'1,1‘2) € K1 x K9, uj € Tl(xl), V1 €
S1(z2), ug € To(x1) and vy € Sa(xs) is a solution of the SGEP (3.8), then we
have

{ g1(z1) = T (g1(21) — pr(Galw, w2) + Ni(ur, v1))),
g2(x2) = Jp2 2 (ga(2) — pa(Galw, x2) + No(ugz, v2))).

Let z1 = g1(21) — p1(G1 (21, T2) + N1(u1,v1)) and 29 = ga(w2) — p2(Ga(w1, 12) +
No(ug,v3)), then gy (z1) = Jo1¥" (z1) and ga(z2) = J42'¥*(2). By the definition
of JE#1 and JZ2¥* in Remark 2.4, we obtain
pL(FL(Jp 7 (21), 1)

+o1(y1, Toi (1)) — o1(Jp P (21), T P (1))

(T (21) = z1,m(ys, Tp (1)) 2 0, Vo € K,
pa(Fa(JE2(2),40)  + 2 (ya, T ¥ (22))

—2(Jps 2 (22), T3 ¥ (22)))

()2 (22) = 22,n(y2, Jp2(22))) 2 0, ¥ 2 € Ko, .

(3.10)

It follows from z = g1(z1) — p1(Gi(z1,22) + Ni(ui,v1)), 2o = go(x2) —
p2(Ga(1, T2) + No(ug, va)), g1(x1) = Jo ¥ (1) and go(a2) = J42%2(2y) that

Fi(g1(z1), y1) +91(y1, g1(21)) — w1(g1(21

+(G1(21, 22) + Ni(u1, v1),n(y1, 91(71))

Fy(ga(x2), y2) + p2(y2, g2(22)) — w2(ga(22

+(Ga(x1, x2) + No(uz, v2), n(y2, g2(2))

(3.11)
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Hence (xl,xg,ul,vl,ug,vg) with (1'1,1‘2) € K1 x Ky, u € Tl(xl), V1 € 51(1‘2),
ug € To(x1) and vy € Sy(x2) is a solution of the SGMIEP (3.1).

Conversely, if (xl,xg,ul,vl,ug,vg) with (1'1,1‘2) € K1 x Ky, uj € Tl(xl),
v € S1(x2), ug € To(x1) and vy € Sa(x2) is a solution of the SGMIEP (3.1), then
the system of inequalities (3.11) holds. For pq, po > 0, it follows from (3.11) that

p1(Fi(g1(21), 1) + w1(y1, 91(21)) — w1(g1(21), g1(21)))
+{g1(21) — (91(21) — p1(G1(w1, 22)
+N1(u1,v1))), 0y, 91(21))) 2 0, Vyr € Ky,
p2(Fa(g2(22), y2) + w2 (2, g2(w2)) — w2(g2(w2), ga(x2)))
+{g2(w2) — (g2(w2) — p2(G2(w1, 2)
+N2(uz, v2))), n(y2, g2(22))) = 0, V y2 € Ko,

(3.12)

Let z; = gl(xl) —pl(Gl(xl, 1‘2) +N1(’U,1, ’Ul)) € B; and 2o = gg(w‘g) —pg(Gg(w‘l,

1‘2) + NQ(UQ,'UQ)) € Bs, then we have

p1(F1((g1(z1), y1) +@1(y1, 91(21)) — 1(g1(z1), g1(21)))
+{g1(z1) — 21,m(y1, 91(21))) = 0, V y1 € K,

p2(F2(g2(22), y2) + ©2(y2, g2(72)) — p2(g2(22), g2(22)))

(3.13) -
+(92(w2) — 22,n(y2, g2(22)))) > 0, ¥V y2 € Ko,

But, by Lemma 2.2 and Remark 2.4, we have

pr(Fy (% (1), 1)
+01(y1, Jp P (21)) — 1(Jp P (1), Jp ¥ (1))
Hyn, Jot P (21)), Jp (1) = 21) > 0, V1 € K,
pa(Fa(J57 S02( 2), Y2)
+0a(y2, Jpi P2 (22)) — @a(Jp P (22), Jp ¥ (22)))
+(n(y2, JF2 #2(2)), Jpi ¥ (22) = 22) 20, ¥ yp € K

(3.14)

By Remark 2.4, the solution of the SGMIEP (3.14) is unique. Hence we must have
gi(z1) = JEVP(21) and go(aa) = JL2¥2(25). It follows that

{ g1(z1) = T (g1(21) — pr(Galw, w2) + Ni(ur, v1))),
g2(x2) = Jp2 2 (ga(2) — pa(Galw, x2) + No(uz, v2))),
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i.e., ($1,$2,’LL1,’U1,’LL2,’U2) with (l‘l,wg) € K1 x Ky, uj € Tl(xl), V1 € 51(1‘2),
ug € To(z1) and ve € Sy(x2) is a solution of the SGEP (3.8). This completes the
proof.

Remark 3.1. Lemma 3.1 generalizes Lemma 2.3 of Huang et al. [22] and
Lemma 3.1 of Kazmi and Khan [23] in the following ways: (1) from Hilbert spaces
to Reflexive Banach spaces; (2) from a generalized mixed equilibrium problem to
the more general system of generalized mixed implicit equilibrium problems.

By using similar argument as in the proof of Lemma 3.1, we can prove the
following.

Lemma 3.2. € K is a solution of the GEP (3.9) if and only if x is a solution
of the GMEP (3.6).

By using Lemma 3.1 and Nadler’s theorem [32], we can construct the following
iterative algorithm for solving the SGMIEP (3.1).

Algorithm 3.1. Suppose that for i = 1,2, g;(K;) = K;. For given (29, 29) €
K1 x Ks and constants p1, po > 0, take uf € T1(29), v € S1(29), u§ € Ty(2?),
vy € Sy(3). Then g1(a9) — p1(Gi(af,23) + Ni(u},0?)) € By and ga(a3) —
p2(Ga(29,29) + No(ud, v9)) € B,. By Lemma 2.2, we have J5 ' (g1 (29) —
p1(Gr(a, 29)+N1(uf, of))) € Ky and o7 7 (ga(w8) — pa(Gia(af, )+ No(u, v9)))
€ K,. Note that g;(K;) = K;, i = 1,2, there exist 1 € K and 21 € K, such
that

gi(x1) = Jp1¥ (g1(2]) — pr(Ga(af, 3) + Ni(uf, 7)),
g2(x3) = J57 %2 (ga(a3) — pa(Ga(a?, 43) + Na(u3, v3))).

By Nadler’s theorem [32], there exist ui € Ty(x1), vi € Si(z), ul € Ta(x}),
vy € Sa(z3) such that

Jul = wflly < (14 1) Hy(Ti(21), T1(2?)),

o] —vfll2 < (1 + 1) Ha(S1(23), S1(29)),
(3.15) ~

Jug — uffly < (14 1)Hi(To(x]), To(2?)),

v — v3]l2 < (14 1)Ha(Sa(x}), Sa(9)),

By induction, we can define the iterative sequences {z7 }, {z5}, {u'}, {v]}, {ub}, {05}
as follows:
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g (@) = Tt ¥ (g1 (@]) = pi(Ga(af, ) + Ni(uf, of))),

g2(25™) = 152 (ga(x

uy € Th(at),

[ui* =l < (L4 (n+ 1)) Hi(Ta (27, Tu(2])),
v} € Bi(a3),

o7 = oplla < (14 (n+ 1)) Ha(S1 (25™), Si(23)),
uy € To(a7), [

lus ™ —ug < (14 (n+ 1)) Hi(Ta(27™), Ta(a7)),

N3
S~—
|

>
[\
—~
D)
[\
—~
8
=3
8
N3
S~—
_|_
g
—~
£
N3
<
N3
S~—
S~—
S~—

(3.16)

vy € Ba(r3), ||2

gt —of < (14 (n+1)"1) Ha(S2(a5™), Sa(25)), n > 0.

By using Lemma 3.2 and Nadler’s theorem [32], we can construct the following
iterative algorithm for solving the GMEP (3.6).

Algorithm 3.2. Suppose that ¢(K) = K. For given zy € K, we have g(zg) €
K C B. By Lemma 2.2 and Remark 2.4, there exist Jf’“"(g(xo)) € K and hence
there exists z; € K such that

g(x1) = ;¥ (g(0))-
By induction, we can define the iterative sequences {z,,} as follows:
(3.17) 9(@ns1) = J, 4 (g(2n)), ¥V 1 2 0.

Definition 3.1. For ¢ = 1,2, N; : By x By — B; is said to be (o, £;)-mixed
Lipschitz continuous, if there exist constants o;, e; > 0 such that

| Ni(u1, v1) — Ni(ug, v2)|li < oiflur — uz|l1 + €illvr — v2l|2,

Y (ul,vl), (’LLQ,’UQ) < B1 X BQ;

Definition 3.2. For i € {1,2}, T; : B, — CB(B) is said to be Hj-j;-
Lipschitz continuous, if there exists a constant ; > 0 such that
Hy(Ty(21), Ty(71)) < pillwy — 211, ¥V 21,71 € By.

Similarly, we can define the Lipschitz continuity of the mappings S;.

Definition 3.3. For i € {1, 2}, a mapping ¢; : K; — K; is said to be ~;-strongly
accretive if, for any z,y € Kj, there exist j;(x — y) € J;(z — y) and a constant
~; > 0 such that
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(9i(x) — gi(y), Ji(z — y))s > 7illz — yll7,

where J; : B; — 25¢ is the normalized duality mapping defined by

Ji(x) ={f € By : (z, f)i = |[flli - l<lli | £lli = [llli}, V@ € Bi.

Theorem 3.1. For each i € {1,2}, let F; : K; x K; — R, ¢; : B; X B; — R,
and n; : B; x B; — B; satisfy the conditions (i)-(v) of Theorem 2.1 where F; is «;-
strongly monotone, and 7; is d;-strongly monotone and 7;-Lipschitz continuous. Let
G; : By x By — B; be (m;, n;)-mixed Lipschitz continuousand N; : By x By — B;
be (o;,e;)-mixed Lipschitz continuous, T; : By — CB(Bj) be Hi-p;-Lipschitz
continuous, S; : By — CB(B2) be H>-s;-Lipschitz continuous and ¢; : K; — K;
satisfy ¢g;(K;) = K; and be ~;-strongly accretive and 3;-lipschitz continuous. If the
following conditions hold for p 1, po > 0:

71
Y1 (01 +piar)
T1p1
Y1 (01 +piar)

-
(51+P1(m1+01u1))+ 202 )(nl +02M2)<1,

Y2(02 4 pacea
(3.18) (

72

mo+e181)+——"—
(matersy) Yo (d2+ paaa)

(Ba+p2(ng + e2s2)) <1.

Then the sequences {z7}, {«5}, {u}}, {v]'}, {u4} and {v5} generated by Algo-
rithm 3.1 strongly converge to 1 € Kij,z9 € Ko, uy € Ti(x1), v1 € Si(x2),
ug € To(x1) and vy € So(x2) respectively, and (x1, x9, ug, v1, ug, v2) is a solution
of SGMIEP (3.1).

Proof. Fori = 1,2, since g; is 7;-strongly accretive, there exists ji(x?+1—x?) €
Ji (2 — 27)) such that

K
lgi(2fth) = gia) sl ™ — 2 l;
> (gi(a?™) = gi@), gi(al™ = af))i > il — a2,

This implies that

1
(3.19) e = afll; < ;ng‘(ﬁﬂ) — gi(zi) -
(2

It follows from Algorithm 3.1 and Theorem 2.1 that
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2 1
Hxn+ n+ Hl

( n+2) ( n+1)

< o g1(@7)h
-

1 n n n n
:w,?’*’l(gl( 2Tt — pr(Gr (a2l )+ (N (uf o))

= [J5 (g1(a]) = pr(Gi (2T, 25) + Ni(uf, v])))] |1

= m!lm( D—gi(@?) —p1 (G (a2l ™) — Gy (2, 23))

— pl(Nl( n+l 'U{H—l)) - Nl(u?vv?)))ul

[llg1(27™) = g1 (@) o1 | Ga(ep™, 25™) = Ga(at, ) |y

(3.20)

el

T1
S - -
1 (614 p1001)

+ prl| Ny (o) = Ny(uf, o) 4]

Since g; is (1-Lipschitz continuous, we have

(3.21) lg1(27+Y) = gr(@D)lh < Bl =27l
Since G is (mq,ny)-mixed Lipschitz continuous, we have
(3:22) [|Ga(aft 2y ™h) = Ga(af, 2 [l < ma et — 2l + nalaf ™t — 25fo.

Since Ny is~ (01, e1)-mixed Lipschitz continuous, T is ﬁl-ul-Lipschitz continuous
and S; is Hy-s1-Lipschitz continuous, by Algorithm 3.1, we have

N1 (W op ) = Niuf, of) 1 <o fluf = a1 erl[of ! —of |2
1 _ 5
323) <+ =@ (Ti(ay™), Ti(a1)) + &1 Ha(S1(257), Si(33)))

n+1

1
< (1+ ——=)(oyulla™ = 2ty + ersallah™ — B ]l2).

n+1
By (3.20))-(3.23), we have

22 — 27y

T1 1 .
< oGt pilma + 1+ ——))) ||t — 2
< 6+ prayy P el Foun L+ S Iy
(3.24)
T1pP1

1
—— (ny +e151(1 4+ —— x”“—x”
71(51—1—/)1041)( ! 151 —1—1))H 22

<T7l27 ™ — il + 07|25 — a2,
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where )
T1
IMN=—7——"—0Gi+p(mi+o1(1+—-=))),
1 ’)’1((51+p10&1)( 1 p( M( n+1)))
1
» L(nl—i—elsl(l—i——)).

r v1(81 + pra) n+1

Similarly, we can obtain

32— 2

273 5 5 )2

1

< —llga(25™7) — ga(a5
72
1

< 1 oa(w3 ) = palGalat 3 ) + Na(ug 0 )

o JngQ (92(1-721) _ p2(G2($?,$g) + Ng(ug,'l)g)))’h
c_ T
- ’)/2((52 + p2062)

— (92(22) — p2(Ga(at, 23) + Na(uz, v3))) |2

72

lg2(25™1) = pa(Ga(ay ™, 25 ™) + Na(ug ™, vy ™)

< - 9 xn—f—l —g9 P o+p2 G2 xn+17xn+1 _G2 (L‘n,(L'n
s ot (el ol ol 2 )Gl )]

(3.25) —_—
+ p2l| No(up ™, 05 ™) — No(ug, vf) 2]

.
2 )[52!!963“—963H2+P2(m2Hx’f+1—x’le+n2H$3+1—$3H2)

S -«
Yo (datpacn

1
+ p2(1+ n—H)(U2M2H$’f+1 — 2|1 + e2s2 |2y — 232)]

T202 1 n+1 n
_—m2+U2M21+— xz — T
P (14 =)t =]

72

1 1
4+ ——————(Bo + pa(ng + g289(1 + —)))||z5t — 272
B ol a1 e

+1
< T3ll27 ™ — a2l + ©2lay ™ — af 2,

where

T202 1
——————(ma + oop2(1 + ——)),
Y2(02 +p2a2)( ( n—i—l))

Ty 1
= m(ﬁ2 + pa(ng + e282(1 + ——))).

n+1
It follows from (3.24) and (3.25) that

Iy =

©;



Generalized Mixed Implicit Equilibrium Problems 689
2772 = 2P+ |+ [y — a2

(3.26) < (TF +TH) 2™ — 2l + (OF + 05)||la5 ™ — 232

< An(lla™ = ol + 5™ = afl2), V=12,

where A,, = max{I'} + '}, O} + ©5}.

Let
1 T202
N =————@i+pi(mi+o yTo=—F—————(ma+o
! ’)’1((51 +p101) (ﬁl /)1( ! 1M1)) 2 ’)’2((52 + p20¢2)< 2 212)
T T
0, = 1AL (n1 +e181), O2 = 2 (B2 + p2(ng + £252))

m(01 + prov) v2(d2 + pace2)
and A = max{I'; + 'z, ©,0,}.

Then, we have I'f — I'1, I'y — I'y, OF — ©1, ©F — ©2and A,, — Aasn — oo.
Now, define a norm || - ||« on B; x By by

(@1, 22) [« = [lzalls + ll2ll2, V (21, 22) € B1 x B.
Then (By x Ba, || - ||«) is a Banach space. It follows from (3.26) that
B27) |27, 257) — (@ a3 < Apll(af T 25T = (2, 2B)].

By the condition (3.18), we know that 0 < A < 1. Hence there exist Ay € (0,1)
and ng > 0 such that A,, < Aq for all n > ng. Therefore, it follows from (3.27)
that

(3.28) [|(2772, a5 ™®) = (217, 23" L < Aol (27T, 25 ™) = (), ) [+ Y= no.

This implies that {(z7,z%)} is a Cauchy sequence in By x By. Thus, there exist
(z1,x9) € By x By such that (z7, 25) — (x1,x2) as n — oo. Since Ky x Ky is
closed, we have (x1, z2) € K1 x Ko. By Algorithm 3.1 and the Lipschitz continuity
of T3, Ts, Sp, and Ss, we get

™ =il < (14 (n+ 1)) Hy(Ty(27 ™), Ta(a]))

< ||ttt — a2ty
[Pt —oPlly < (14 (n+ 1)) Hy(S1(25H), Si(ah))
< syflay Tt — b,

(3.29) i
lus™ =gl < (1+ (n+ 1)) Hi(To(27H), Ta(}))

< paflaytt =2ty

log*t = uglla < (14 (n+1)"") Ha(Sa(a5 ™), Sa(a))
n+1

< sol|lxh™ — x5 |2.
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It follows that {u]}, {v]}, {u5} and {v%} are all Cauchy sequences. Thus, there
exist uy,up € By and vy, vy € By such that u} — wu, v{ — v1, u§ — ug and
vl — vy, @S n — oco. Now, we show that u; € T7(z1). Noting u} € Ty (z}), we
have

d(u1, T1(21)) < |lug — uf |1 + d(uf, T'(x1))
< |luy — uf' |y + Hi(Ty(27), To(z1))
< lur —uflls + pallef —21lli =0 (n — o0).

Since Ty (x1) is closed, it implies u; € Ty (z1). Similarly, one can show that v; €
Bi(z2), ug € To(z1) and ve € By(z2). By Algorithm 3.1, we have

{ 9@y = P (g(a]) — pr(Ga(af, 28) + Ni(uf, vf))),
g(ah ™y = T2 %2 (g(x}) — pa(Galaf, x) + No(ul, vp)

It follows from the continuity of g;, J7*", Gy, Ny, T; and S; that (1, 22, w1, vy, ug, va)
satisfies the following relation,

(3.30) { g1(z1) = Jp P (gr(@1) — pa(Gr(@1, 72) + Ny (ug,v1))),

ga(w2) = 32, (92(22) — pa(Ga(w1, xa) + Na(uz,v2))),

By Lemma 3.1, (x1,x2,u1,v1, us,v2) is a solution of the SGMIEP (3.1). This
completes the proof.

Theorem3.2. Let F': KxK — R, ¢: BxB — R,andn : BxB — B* satisfy
the conditions (i)-(v) of Theorem 2.1 where F' is a-strongly monotone, and 7 is -
strongly monotone and 7-Lipschitz continuous. Let g : K — K satisfy g(K) = K
and be ~-strongly accretive and S-Lipschitz continuous. If the following conditions
hold for p > 0:

3

— 7 <1
v(6 + pa)

(3.31)

Then the sequences {z,,} generated by Algorithm 3.2 strongly converge to z* € K
and z* is a solution of GMEP (3.6).

Proof. Since g is «y-strongly accretive, there exists j(xp+1 — ) € J(Tpt1 —
Z,)) such that

lg(zns1) =g (@n) l|zns1—2all = (9(@nr1)=9(xn), j(Zns1=2n)) 2 V| Tnp1—2nll*.
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This implies that

1
(3.32) l#nt1 = @nll < Zllg(@nir) = g(@n)]l

It follows from Algorithm 3.2, Theorem 2.1 and S-Lipschitz continuity of ¢ that

1
[Zn+2 = Tnp1 ]| < ;Hg(ﬂcn+2) — g(zn41)||

_ %yu,fwg(xnm) — JE#(g(za))]
(3.33) .
S m”g(xn—kl)_g(xn)”
T3
< WH%H — Tn .

By the condition (3.31) and (3.33), {x,} is a Cauchy sequence in K. Note that K
is closed, there exists z* € K such that x,, — 2* as n — cc.
By Algorithm 3.2, we have

9(@ni1) = J27 (g(zn)).
It follows from the continuity of ¢ and J.*¢ that,
g(a*) = J5#(g(a")).

Hence, =* is a solution of GEP (3.9). By Lemma 3.2, «* is also a solution of the
GMEP (3.6).

Remark 3.2. Theorem 3.2 is a new existence result for mixed equilibrium prob-
lem which is different from that in [3, 13, 14, 22, 23].
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