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NEW ITERATIVE ALGORITHM FOR SOLVING A SYSTEM OF
GENERALIZED MIXED IMPLICIT EQUILIBRIUM PROBLEMS IN

BANACH SPACES

Xie-Ping Ding and Juei-Ling Ho*

Abstract. A new system of generalized mixed implicity equilibrium problems
is introduced and studied in real Banach spaces. The notion of the Yosida
approximation introduced by Moudafi in Hilbert spaces is first generalized to
reflexive Banach spaces. By using the notion of the Yosida approximation,
a system of generalized equation problems is considered and its equivalence
with the system of generalized mixed implicity equilibrium problems is also
proved. By using the system of generalized equation problems, a new iterative
algorithm for solving the system of generalized mixed implicity equilibrium
problems is suggested and analyzed. The strong convergence of the iterative
sequences generated by the algorithm is proved under suitable conditions.
These results are new and unify and generalize some recent results in this
field.

1. INTRODUCTION

It is well known that equilibrium problem includes variational inequality, opti-
mization problem, problems of Nash equilibria, saddle point problems, fixed point
problems and complementarity problems as special cases, for example, see [1-5] and
the references therein. In the theory of variational inequalities, variational inclusions
and equilibrium problems, the development of an efficient and implementable itera-
tive algorithm is interesting and important. Various kinds of iterative algorithms to
solve the equilibrium problems have been developed by many authors. For details,
we can refer to [3, 6-25, 35-51] and the references therein. By using the viscosity
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approximation method and its variants, many authors studied the iterative algorithms
for finding a common element of the solution set of (mixed) equilibrium problems
and the fixed point set of nonexpansive mappings in Hilbert spaces, for example, see
[12-21]. By using the auxiliary principle technique, Ding [9], Ding et al. [10], and
Xia and Ding [11] studied the approximation solvability of some mixed equilibrium
problems in Hilbert spaces. Recently, By using Yosida approximation and Wiener-
Hopf equation technique, Moudafi [3] and Huang et al. [22] studied the sensitivity
analysis of solutions for generalized mixed implicit equilibrium problems in Hilbert
spaces. Kazmi and Khan [23] studied the approximation solvability of generalized
mixed equilibrium problems in Hilbert spaces. As pointed out by Moudafi [3],
”But up to now no sensitivity analysis and only few iterative methods to solve such
problems have been done. It is worth mentioning that the new algorithm developed
here can be applied to solve the system of generalized mixed equilibrium problems”.

Inspired and motivated by the recent works [3, 13, 14, 22, 23], in this paper,
we introduce and study a new system of generalized mixed implicit equilibrium
problems involving non-monotone set-valued mappings with non-compact values
in real reflexive Banach spaces, which includes the system of generalized implicit
variational inequalities, the system of generalized implicit variational inclusions as
special cases. We first generalize the notion of the Yosida approximation introduced
by Moudafi [3] in Hilbert spaces to reflexive Banach spaces. By using the notion of
the Yosida approximation, we consider a system of generalized equations problems
and show its equivalence with the system of generalized mixed implicit equilibrium
problems. Using the system of generalized equations problems, we construct a new
iterative algorithm for solving the system of generalized mixed implicit equilibrium
problems. Furthermore, we prove the existence of solutions and the convergence
of the iterative sequences generated by the algorithm. These results generalize and
improve the corresponding results in [3, 13, 14, 22, 23].

2. PRELIMINARIES

Let B be a real Banach space with norm ‖ · ‖, B∗ be its dual space and
R = (−∞,+∞). Let 〈x, ϕ〉 denote the duality pairing between B and B∗, where
x ∈ B and ϕ ∈ B∗. Let K be a nonempty, closed and convex subset of B and let
CB(B) be the family of all nonempty, closed and bounded subsets of B.

Definition 2.1. Let K be a closed convex subset of a Hausdorff topological
vector space E . A real valued bifunction F : K ×K → (−∞,∞) is said to be

(i) monotone if
F (x, y) + F (y, x) ≤ 0, ∀ x, y ∈ K;
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(ii) strictly monotone if

F (x, y) + F (y, x) < 0, ∀ x, y ∈ K with x 	= y;

(iii) α-strongly monotone if there exists a α > 0 such that

F (x, y) + F (y, x) ≤ −α‖x− y‖, ∀ x, y ∈ K;

(iv) upper-hemicontinuous if

lim supt→0F (tz + (1 − t)x, y) ≤ F (x, y), ∀ x, y, z ∈ K, t ∈ [0, 1].

Remark 2.1. Clearly the strong monotonicity of F implies the strict monotonic-
ity of F .

Definition 2.2. A mapping η : B × B → B∗ is said to be
(i) monotone if

〈x− y, η(x, y)〉 ≥ 0, ∀ x, y ∈ B;
(ii) strictly monotone if

〈x− y, η(x, y)〉> 0, ∀ x, y ∈ K with x 	= y;

(iii) δ-strongly monotone if there exists a δ > 0 such that

〈x− y, η(x, y)〉 ≥ δ‖x− y‖2, ∀ x, y ∈ B;

(iv) affine in second argument if

η(y, βx+ (1− β)z) = βη(y, x)+ (1− β)η(y, z), ∀ β ∈ [0, 1], x, y, z ∈ K.

(v) τ -Lipschitz continuous if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀ x, y ∈ B.

Remark 2.2. If B = H is a Hilbert space, then the concepts (i),(iii) and (v)
reduces to the corresponding concepts in [22, 23].

Definition 2.3. The bifunction ϕ : B × B → (−∞,+∞] is said to be skew-
symmetric if

ϕ(u, u)− ϕ(u, v)− ϕ(v, u) + ϕ(v, v) ≥ 0, ∀ u, v ∈ B.

The skew-symmetric bifunctions have the properties which can be considered
an analogs of monotonicity of gradient and nonnegativity of a second derivative
for the convex function. For the properties and applications of the skew-symmetric
bifunction, the reader may consult Antipin [24].

The following result is a special case of Theorem 3.9.3 of Chang [25].

Lemma 2.1. Let K be a closed convex subset of a Hausdorff topological vector
space E , F : K ×K → R be a bifunction. If the following conditions hold:
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(i) F (x, x) ≥ 0, ∀ x ∈ K,

(ii) F is monotone and for each y ∈ K , x �→ F (x, y) is upper hemicontinuous;

(iii) for each x ∈ K, y �→ F (x, y) is convex and lower-semicontinuous;

(iv) there exist a compact subset D of E and y 0 ∈ K
⋂
D such that F (x, y0) < 0

for each x ∈ K \D.

Then the solution set of the following equilibrium problem (EP): find x̂ ∈ K such
that

F (x̂, y) ≥ 0, ∀ y ∈ K,

is nonempty, convex and compact.

Lemma 2.2. Let K be a closed convex subset of a reflexive Banach space B.
Let F : K ×K → R and ϕ : B×B → R be two bifunctions, η : B×B → B∗ be
a mapping and ρ > 0 be a positive number. Suppose the following conditions are
satisfied:

(i) F satisfies the conditions (i)-(iii) in Lemma 2.1;

(ii) η be monotone with η(x, y) + η(y, x) = 0, ∀ x, y ∈ B;

(iii) η is affine in second argument and continuous from weak topology in B to
weak∗ topology in B∗ in first argument,

(iv) ϕ is skew symmetric and weakly continuous, and ϕ is convex in first argu-
ment.

(v) for each x ∈ B there exist a compact subset Dx of B and y0 ∈ K
⋂
Dx

such that F (z, y0) + ϕ(y0, z) − ϕ(z, z)) + 〈z − x, η(y0, z)〉 < 0 for each
x ∈ K \Dx.

Then for each x ∈ B, there exists a point zx ∈ K such that

(2.1) ρ(F (zx, y) + ϕ(y, zx) − ϕ(zx, zx)) + 〈zx − x, η(y, zx)〉 ≥ 0, ∀ y ∈ K.

Proof. For each fixed x ∈ B, define ψ : K ×K → R by

ψ(z, y) = ρ(F (z, y) + ϕ(y, z)− ϕ(z, z)) + 〈z − x, η(y, z)〉, ∀ z, y ∈ K.

Since η(x, y) + η(y, x) = 0, ∀ x, y ∈ B, we have η(z, z) = 0 for all z ∈ B and
hence

ψ(z, z) = ρF (z, z) + 〈z − x, η(z, z)〉 ≥ 0, ∀ z ∈ K.
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The condition (i) of Lemma 2.1 is satisfied. Since η is monotone, ϕ is skew
symmetric and η(z, y) + η(y, z) = 0, then for each (z, y) ∈ K ×K, we have

ψ(z, y) + ψ(y, z) = ρ(F (z, y)+F (y, z))+ρ(ϕ(y, z)−ϕ(z, z)+ϕ(z, y)−ϕ(y, y))

+〈z − x, η(y, z)〉+ 〈y − x, η(z, y)〉
≤ ρ(F (z, y) + F (y, z))− 〈z − y, η(z, y)〉 ≤ 0,

i.e., ψ is monotone. Since η is affine in second argument and ϕ is weakly continuous,
by the condition (ii) in Lemma 2.1, we have that for each u, y, z ∈ K,

limsup
t→0

ψ(tu+ (1 − t)z, y)

≤ limsup
t→0

ρF (((tu+ (1 − t)z), y)

+ limsup
t→0

ρ(ϕ(tu+ (1− t)z, y)− ϕ(tu+ (1− t)z, tu+ (1 − t)z))

+ limsup
t→0

〈t(u− x) + (1 − t)(z − x), η(y, tu+ (1− t)z)〉

≤ ρ(F (z, y) + ϕ(z, y)− ϕ(z, z))

+ limsup
t→0

[〈t(u− x) + (1− t)(z − x), tη(y, u)+ (1− t)η(y, z)〉]

≤ ρ(F (z, y) + ϕ(z, y)− ϕ(z, z))

+ limsup
t→0

[t2〈u− x, η(y, u)〉+ t(1 − t)〈z − x, η(y, u)〉

+t(1 − t)〈u− x, η(y, z)〉+ (1− t)2〈z − x, η(y, z)〉]
≤ ρ(F (z, y) + ϕ(z, y)− ϕ(z, z)) + 〈z − x, η(y, z)〉= ψ(z, y).

Therefore ψ is upper hemicontinuous in first argument, the condition (ii) of Lemma
2.1 is satisfied. Since for each z ∈ K , y �→ F (z, y) is convex and lower semi-
continuous, ϕ is weakly continuous and convex in first argument, and η is affine
in second argument and continuous from weak topology in B to weak∗ topology in
B∗ in first argument, It is easy to see that for each z ∈ K, y �→ ψ(z, y) is convex
and lower semicontinuous, the condition (iii) of Lemma 2.1 is satisfied. Clearly
the condition (v) implies that ψ also satisfies the condition (iv) of Lemma 2.1. By
Lemma 2.1, for each x ∈ B, there exists a point zx ∈ K such that

ψ(zx, y) ≥ 0, ∀ y ∈ K.

By the definition of ψ, we obtain that for each x ∈ B, there exists a point zx ∈ K
such that

ρ(F (zx, y) + ϕ(y, zx) − ϕ(zx, zx)) + 〈zx − x, η(y, zx)〉 ≥ 0, ∀ y ∈ K.
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Remark 2.3. If F or η is strictly monotone, then the solution of the MEP (2.1)
in Lemma 2.2 is unique, i.e., for each x ∈ B, there exists unique a point zx ∈ K
such that the inequality (2.1) holds.

Remark 2.4. By Lemma 2.2 and Remark 2.3, we obtain that for each x ∈ B,
there exists a unique zx = JF,ϕ

ρ (x) ∈ K such that

(2.2)
ρ(F (JF,ϕ

ρ (x), y) + ϕ(y, JF,ϕ
ρ (x))− ϕ(JF,ϕ

ρ (x), JF,ϕ
ρ (x)))

+〈JF,ϕ
ρ (x)− x, η(y, JF,ϕ

ρ (x))〉 ≥ 0, ∀ y ∈ K,

and hence JF,ϕ
ρ : X → K is a well-defined single-valued mapping.

Theorem 2.1. Let K be a closed convex subset of a reflexive Banach space B
and ρ > 0 be a positive number. Let F : K × K → R, ϕ : B × B → R and
η : B × B → B∗ satisfy the following conditions:

(i) F is α-strongly monotone and satisfy the conditions (i)-(iii) of Lemma 2.1;
(ii) η is δ-strongly monotone and τ -Lipschitz continuous with η(x, y)+η(y, x) =

0, ∀ x, y ∈ B;
(iii) η is affine in second argument and continuous from weak topology in B to

weak∗ topology in B∗ in first argument.
(iv) ϕ is skew symmetric and weakly continuous, and ϕ is convex in first argu-

ment.
(v) for each x ∈ B there exist a compact subset Dx of B and y0 ∈ K

⋂
Dx

such that F (z, y0) + ϕ(y0, z) − ϕ(z, z)) + 〈z − x, η(y0, z)〉 < 0 for each
x ∈ K \Dx.

Then the mapping JF,ϕ
ρ is τ

δ+ρα -Lipschitz continuous.

Proof. By Lemma 2.2, we have

ρ(F (JF,ϕ
ρ (x), JF,ϕ

ρ (y)) + ϕ(JF,ϕ
ρ (y), JF,ϕ

ρ (x))− ϕ(JF,ϕ
ρ (x), JF,ϕ

ρ (x)))

+〈JF,ϕ
ρ (x)− x, η(JF,ϕ

ρ (y), JF,ϕ
ρ (x))〉 ≥ 0, ∀ x, y ∈ B,

ρ(F (JF,ϕ
ρ (y), JF,ϕ

ρ (x)) + ϕ(JF,ϕ
ρ (x), JF.ϕ

ρ (y))− ϕ(JF,ϕ
ρ (y), JF,ϕ

ρ (y)))

+〈JF,ϕ
ρ (y)− y, η(JF,ϕ

ρ (x), JF,ϕ
ρ (y))〉 ≥ 0, ∀ x, y ∈ B.

Note that ϕ is skew symmetric, by adding the above two inequalities, we have

ρ(F (JF,ϕ
ρ (x), JF,ϕ

ρ (y)) + F (JF,ϕ
ρ (y), JF,ϕ

ρ (x)))

+〈JF,ϕ
ρ (x) − x, η(JF,ϕ

ρ (y), JF,ϕ
ρ (x))〉
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+〈JF,ϕ
ρ (y)− y, η(JF,ϕ

ρ (x), JF,ϕ
ρ (y))〉

≥ ρ[ϕ(JF,ϕ
ρ (x), JF,ϕ

ρ (x))− ϕ(JF,ϕ
ρ (y), JF,ϕ

ρ (x))

−ϕ(JF,ϕ
ρ (x), JF.ϕ

ρ (y)) + ϕ(JF,ϕ
ρ (y), JF,ϕ

ρ (y))] ≥ 0.

By using α-strongly monotonicity of F and η(x, y)+ η(y, x) = 0, ∀ x, y ∈ B, we
have

−ρα‖JF,ϕ
ρ (x)− JF,ϕ

ρ (y)‖2 + 〈x− y, η(JF,ϕ
ρ (x), JF,ϕ

ρ (y))〉
≥ 〈JF,ϕ

ρ (x) − JF,ϕ
ρ (y), η(JF,ϕ

ρ (x), JF,ϕ
ρ (y))〉.

Since η is α-strongly monotone and τ -Lipschitz continuous, it follows from the
above inequality that

−ρα‖JF,ϕ
ρ (x)−JF,ϕ

ρ (y)‖2+τ‖x−y‖‖JF,ϕ
ρ (x)−JF,ϕ

ρ (y)‖ ≥ δ‖JF,ϕ
ρ (x)−JF,ϕ

ρ (y)‖2.

Hence, we have

‖JF,ϕ
ρ (x) − JF,ϕ

ρ (y)‖ ≤ τ

δ + ρα
‖x− y‖ ∀x, y ∈ B.

Remark 2.5. Theorem 2.1 generalizes Theorem 3.1 of Kazmi and Khan [23]
in following way: (1) from Hilbert spaces to reflexive Banach spaces; (2) the MEP
(2.1) is more general than the model of MEP (3.2) in Definition 3.1 of Kazmi and
Khan [23].

3. SYSTEM OF GENERALIZED MIXED IMPLICIT EQUILIBRIUM PROBLEMS

For each i ∈ {1, 2}, let Bi be a real reflexive Banach space with the dual space
B∗

i and 〈·, ·〉i be the dual pair between Bi and B∗
i . We denote the norm of Bi and

B∗
i by ‖ ·‖i. Let Ki be a nonempty closed convex subset of Bi, and CB(Bi) denote

the family of all nonempty bounded closed subsets of Bi. For each i ∈ {1, 2}, Let
H̃i(·, ·) be the Hausdorff metric on CB(Bi) defined by

H̃i(A,B) = max{supa∈A di(a, B); supb∈B di(A, b)}, ∀ A,B ∈ CB(Bi),

where di(a, B) = infb∈B‖a− b‖i and di(A, b) = infa∈A‖a− b‖i.

For each i ∈ {1, 2}, let ϕi : Bi × Bi → R and Fi : Ki × Ki → R be two
bifunctions, gi : Ki → Ki, ηi : Bi × Bi → B∗

i and Ni, Gi : B1 × B2 → Bi

be single-valued mappings, and Ti : B1 → CB(B1) and Si : B2 → CB(B2)
be set-valued mappings. We consider the following system of generalized mixed
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implicit equilibrium problems (SGMIEP): find (x1, x2) ∈ K1 ×K2, u1 ∈ T1(x1),
u2 ∈ T2(x2), v1 ∈ S1(x2) and v2 ∈ S2(x2) such that

(3.1)



F1(g1(x1), y1) + ϕ1(y1, g1(x1))− ϕ1(g1(x1), g1(x1))

+〈G1(x1, x2) +N1(u1, v1), η1(y1, g1(x1))〉 ≥ 0, ∀ y1 ∈ K1,

F2(g2(x2), y2) + ϕ2(y2, g2(x2))− ϕ1(g2(x2), g2(x2))

+〈G2(x1, x2) +N2(u2, v2), η2(y2, g2(x2))〉 ≥ 0, ∀ y2 ∈ K2.

Special cases:

(I) If for i = 1, 2, let Gi ≡ 0, then the SGMIEP (3.1) reduces to the fol-
lowing system of generalized mixed implicit equilibrium problems problems: find
(x1, x2) ∈ K1 × K2, u1 ∈ T1(x1), u2 ∈ T2(x2), v1 ∈ S1(x2) and v2 ∈ S2(x2)
such that

(3.2)



F1(g1(x1), y1) + ϕ1(y1, g1(x1)) − ϕ1(g1(x1), g1(x1))

+〈N1(u1, v1), η1(y1, g1(x1))〉 ≥ 0, ∀ y1 ∈ K1,

F2(g2(x2), y2) + ϕ2(y2, g2(x2)) − ϕ1(g2(x2), g2(x2))

+〈N2(u2, v2), η2(y2, g2(x2))〉 ≥ 0, ∀ y2 ∈ K2.

The SGMIEP (3.2) is new and includes many known models of the system
of generalized mixed equilibrium problems and the system of generalized mixed
variational-like inequality problems as special cases.

(II) If for i = 1, 2, let Fi ≡ 0 and Gi ≡ 0, then the SGMIEP (3.1) reduces to
the system of generalized mixed variational-like inequality problems (SGMVLIP):
Find (x1, x2) ∈ K1×K2, u1 ∈ T1(x1), u2 ∈ T2(x2), v1 ∈ S1(x2) and v2 ∈ S2(x2)
such that

(3.3)



〈N1(u1, v1), η1(y1, g1(x1))〉+ ϕ1(y1, g1(x1))

−ϕ1(g1(x1), g1(x1)) ≥ 0, ∀ y1 ∈ K1,

〈N2(u2, v2), η2(y2, g2(x2))〉+ ϕ2(y2, g2(x2))

−ϕ1(g2(x2), g2(x2)) ≥ 0, ∀ y2 ∈ K2.

The SGMVLIP (3.3) is also new and different from that in the known litera-
ture. If for i = 1, 2, Bi = Hi is Hilbert space, then the SGMVLIP (3.3) includes
many known models of the system of generalized mixed variational-like inequality
problems in known literature as special cases.
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(III) If for i = 1, 2, let Bi = B, Ki = K Gi = 0, Fi = F , ϕi = ϕ, Ni = N ,
Ti = T , Si = S, Ki = K, ηi = η and gi = g then the SGMIEP (3.1) reduce to the
generalized mixed implicit equilibrium problem (GMIEP): Find x ∈ K, u ∈ T (x)
and v ∈ S(x) such that

(3.4) F (g(x), y)+ϕ(y, g(x))−ϕ(g(x), g(x))+〈N (u, v), η(y, g(x))〉≥0, ∀ y∈K.
The GMIEP (3.4) with B = H being a Hilbert space and ϕ ≡ 0 is called the

generalized mixed equilibrium problem (GMEP) by Kazmi and Khan [23].

(IV) If F ≡ 0, then the GMIEP (3.4) reduces to the generalized mixed variational-
like problems (GMVLIP): Find x ∈ K, u ∈ T (x) and v ∈ S(x) such that

(3.5) 〈N (u, v), η(y, g(x))〉+ ϕ(y, g(x))− ϕ(g(x), g(x))≥ 0, ∀ y ∈ K,

Some similar problems have introduced and studied by many author in Hilbert spaces
and Banach spaces, see [25-27].

(V) If for N ≡ 0, then the GMIEP (3.4) reduces to the following general mixed
equilibrium problem (GMEP): Find x ∈ K such that

(3.6) F (g(x), y) + ϕ(y, g(x))− ϕ(g(x), g(x))≥ 0, ∀ y ∈ K.

The GMEP (3.6) is also new.

(VI) If let ϕ(x, y) = f(x) for all (x, y) ∈ K×K, then the GMEP (3.7) reduces
the following mixed equilibrium problem MEP: Find x ∈ K such that

(3.7) F (g(x), y)+ f(y)− f(g(x)) ≥ 0, ∀ y ∈ K.

The MEP (3.7) have been introduced and studied in Hilbert spaces or Banach spaces
by many authors in [3, 13, 14, 22, 23].

Now, related to SGMIEP (3.1), we consider the following system of generalized
equation problems (SGEP): Find (x1, x2) ∈ K1 × K2, u1 ∈ T1(x1), v1 ∈ S1(x2),
u2 ∈ T2(x1) and v2 ∈ S2(x2) such that

(3.8)

{
g1(x1) = JF1,ϕ1

ρ1 (g1(x1)− ρ1(G1(x1, x2) +N1(u1, v1))),

g2(x2) = JF2,ϕ2
ρ2 (g2(x2)− ρ2(G2(x1, x2) +N2(u2, v2))),

where, for each i = 1, 2, JFi,ϕi
ρi : Bi → Ki is the single-valued mapping defined in

Remark 2.4.
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Related to the GMEP (3.6), we consider the following generalized equation
problem (GEP): Find x ∈ K such that

(3.9)
{
g(x) = JF,ϕ

ρ (g(x)),

where, JF,ϕ
ρ : B → K is the single-valued mapping defined in Remark 2.4.

Lemma 3.1. (x1, x2, u1, v1, u2, v2) with (x1, x2) ∈ K1 × K2, u1 ∈ T1(x1),
v1 ∈ S1(x2), u2 ∈ T2(x1) and v2 ∈ S2(x2) is a solution of the SGEP (3.8) if and
only if (x1, x2, u1, v1, u2, v2) with (x1, x2) ∈ K1 ×K2, u1 ∈ T1(x1), v1 ∈ S1(x2),
u2 ∈ T2(x1) and v2 ∈ S2(x2) is a solution of the SGMIEP (3.1).

Proof. If (x1, x2, u1, v1, u2, v2) with (x1, x2) ∈ K1 × K2, u1 ∈ T1(x1), v1 ∈
S1(x2), u2 ∈ T2(x1) and v2 ∈ S2(x2) is a solution of the SGEP (3.8), then we
have {

g1(x1) = JF1,ϕ1
ρ1 (g1(x1) − ρ1(G1(x1, x2) +N1(u1, v1))),

g2(x2) = JF2,ϕ2
ρ2 (g2(x2) − ρ2(G2(x1, x2) +N2(u2, v2))).

Let z1 = g1(x1)−ρ1(G1(x1, x2)+N1(u1, v1)) and z2 = g2(x2)−ρ2(G2(x1, x2)+
N2(u2, v2)), then g1(x1) = JF1,ϕ1

ρ1 (z1) and g2(x2) = JF2,ϕ2
ρ2 (z2). By the definition

of JF1 ,ϕ1
ρ1 and JF2,ϕ2

ρ2 in Remark 2.4, we obtain

(3.10)



ρ1(F1(J
F1,ϕ1
ρ1 (z1), y1)

+ϕ1(y1, J
F1,ϕ1
ρ1 (z1)) − ϕ1(J

F1,ϕ1
ρ1 (z1), J

F1,ϕ1
ρ1 (z1)))

+〈JF1,ϕ1
ρ1 (z1)− z1, η(y1, J

F1,ϕ1
ρ1 (z1))〉 ≥ 0, ∀ y1 ∈ K1,

ρ2(F2(JF2
ρ2

(z2), y2) + ϕ2(y2, J
F2,ϕ2
ρ2 (z2))

−ϕ2(J
F2,ϕ2
ρ2 (z2), J

F2,ϕ2
ρ2 (z2)))

+〈JF2
ρ2

(z2)− z2, η(y2, JF2
ρ2

(z2))〉 ≥ 0, ∀ y2 ∈ K2, .

It follows from z1 = g1(x1) − ρ1(G1(x1, x2) + N1(u1, v1)), z2 = g2(x2) −
ρ2(G2(x1, x2) +N2(u2, v2)), g1(x1) = JF1 ,ϕ1

ρ1 (z1) and g2(x2) = JF2,ϕ2
ρ2 (z2) that

(3.11)



F1(g1(x1), y1) + ϕ1(y1, g1(x1)) − ϕ1(g1(x1), g1(x1))

+〈G1(x1, x2) +N1(u1, v1), η(y1, g1(x1))〉 ≥ 0, ∀ y1 ∈ K1,

F2(g2(x2), y2) + ϕ2(y2, g2(x2)) − ϕ2(g2(x2), g2(x2))

+〈G2(x1, x2) +N2(u2, v2), η(y2, g2(x2))〉 ≥ 0, ∀ y2 ∈ K2, .
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Hence (x1, x2, u1, v1, u2, v2) with (x1, x2) ∈ K1 ×K2, u1 ∈ T1(x1), v1 ∈ S1(x2),
u2 ∈ T2(x1) and v2 ∈ S2(x2) is a solution of the SGMIEP (3.1).

Conversely, if (x1, x2, u1, v1, u2, v2) with (x1, x2) ∈ K1 × K2, u1 ∈ T1(x1),
v1 ∈ S1(x2), u2 ∈ T2(x1) and v2 ∈ S2(x2) is a solution of the SGMIEP (3.1), then
the system of inequalities (3.11) holds. For ρ1, ρ2 > 0, it follows from (3.11) that

(3.12)



ρ1(F1(g1(x1), y1) + ϕ1(y1, g1(x1)) − ϕ1(g1(x1), g1(x1)))

+〈g1(x1) − (g1(x1)− ρ1(G1(x1, x2)

+N1(u1, v1))), η(y1, g1(x1))〉 ≥ 0, ∀ y1 ∈ K1,

ρ2(F2(g2(x2), y2) + ϕ2(y2, g2(x2)) − ϕ2(g2(x2), g2(x2)))

+〈g2(x2) − (g2(x2)− ρ2(G2(x1, x2)

+N2(u2, v2))), η(y2, g2(x2))〉 ≥ 0, ∀ y2 ∈ K2, .

Let z1 = g1(x1)−ρ1(G1(x1, x2)+N1(u1, v1)) ∈ B1 and z2 = g2(x2)−ρ2(G2(x1,

x2) +N2(u2, v2)) ∈ B2, then we have

(3.13)



ρ1(F1((g1(x1), y1) + ϕ1(y1, g1(x1)) − ϕ1(g1(x1), g1(x1)))

+〈g1(x1) − z1, η(y1, g1(x1))〉 ≥ 0, ∀ y1 ∈ K1,

ρ2(F2(g2(x2), y2) + ϕ2(y2, g2(x2)) − ϕ2(g2(x2), g2(x2)))

+〈g2(x2) − z2, η(y2, g2(x2)))〉 ≥ 0, ∀ y2 ∈ K2,

But, by Lemma 2.2 and Remark 2.4, we have

(3.14)



ρ1(F1(J
F1,ϕ1
ρ1 (z1), y1)

+ϕ1(y1, J
F1,ϕ1
ρ1 (z1)) − ϕ1(J

F1,ϕ1
ρ1 (z1), J

F1,ϕ1
ρ1 (z1)))

+〈η(y1, JF1,ϕ1
ρ1 (z1)), J

F1,ϕ1
ρ1 (z1) − z1〉 ≥ 0, ∀ y1 ∈ K1,

ρ2(F2(J
F2,ϕ2
ρ2 (z2), y2)

+ϕ2(y2, J
F2,ϕ2
ρ2 (z2)) − ϕ2(J

F2,ϕ2
ρ2 (z2), J

F2,ϕ2
ρ2 (z2)))

+〈η(y2, JF2,ϕ2
ρ2 (z2)), J

F2,ϕ2
ρ2 (z2) − z2〉 ≥ 0, ∀ y2 ∈ K2

By Remark 2.4, the solution of the SGMIEP (3.14) is unique. Hence we must have
g1(x1) = J

F1 ,ϕ1
ρ1 (z1) and g2(x2) = J

F2,ϕ2
ρ2 (z2). It follows that{

g1(x1) = JF1 ,ϕ1
ρ1 (g1(x1) − ρ1(G1(x1, x2) +N1(u1, v1))),

g2(x2) = JF2 ,ϕ2
ρ2 (g2(x2) − ρ2(G2(x1, x2) +N2(u2, v2))),
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i.e., (x1, x2, u1, v1, u2, v2) with (x1, x2) ∈ K1 × K2, u1 ∈ T1(x1), v1 ∈ S1(x2),
u2 ∈ T2(x1) and v2 ∈ S2(x2) is a solution of the SGEP (3.8). This completes the
proof.

Remark 3.1. Lemma 3.1 generalizes Lemma 2.3 of Huang et al. [22] and
Lemma 3.1 of Kazmi and Khan [23] in the following ways: (1) from Hilbert spaces
to Reflexive Banach spaces; (2) from a generalized mixed equilibrium problem to
the more general system of generalized mixed implicit equilibrium problems.

By using similar argument as in the proof of Lemma 3.1, we can prove the
following.

Lemma 3.2. x ∈ K is a solution of the GEP (3.9) if and only if x is a solution
of the GMEP (3.6).

By using Lemma 3.1 and Nadler’s theorem [32], we can construct the following
iterative algorithm for solving the SGMIEP (3.1).

Algorithm 3.1. Suppose that for i = 1, 2, gi(Ki) = Ki. For given (x0
1, x

0
2) ∈

K1 × K2 and constants ρ1, ρ2 > 0, take u0
1 ∈ T1(x0

1), v0
1 ∈ S1(x0

2), u0
2 ∈ T2(x0

1),
v0
2 ∈ S2(x0

2). Then g1(x0
1) − ρ1(G1(x0

1, x
0
2) + N1(u0

1, v
0
1)) ∈ B1 and g2(x0

2) −
ρ2(G2(x0

1, x
0
2) + N2(u0

2, v
0
2)) ∈ B2. By Lemma 2.2, we have JF1,ϕ1

ρ1 (g1(x0
1) −

ρ1(G1(x0
1, x

0
2)+N1(u0

1, v
0
1)))∈K1 and JF2,ϕ2

ρ2 (g2(x0
2)−ρ2(G2(x0

1, x
0
2)+N2(u0

2, v
0
2)))

∈ K2. Note that gi(Ki) = Ki, i = 1, 2, there exist x1
1 ∈ K1 and x1

2 ∈ K2 such
that

g1(x1
1) = JF1,ϕ1

ρ1
(g1(x0

1) − ρ1(G1(x0
1, x

0
2) +N1(u0

1, v
0
1))),

g2(x1
2) = JF2,ϕ2

ρ2
(g2(x0

2) − ρ2(G2(x0
1, x

0
2) +N2(u0

2, v
0
2))).

By Nadler’s theorem [32], there exist u1
1 ∈ T1(x1

1), v1
1 ∈ S1(x1

2), u1
2 ∈ T2(x1

1),
v1
2 ∈ S2(x1

2) such that

(3.15)



‖u1
1 − u0

1‖1 ≤ (1 + 1)H̃1(T1(x1
1), T1(x0

1)),

‖v1
1 − v0

1‖2 ≤ (1 + 1)H̃2(S1(x1
2), S1(x0

2)),

‖u1
2 − u0

2‖1 ≤ (1 + 1)H̃1(T2(x1
1), T2(x0

1)),

‖v1
2 − v0

2‖2 ≤ (1 + 1)H̃2(S2(x1
2), S2(x0

2)),

By induction, we can define the iterative sequences {xn
1}, {xn

2}, {un
1}, {vn

1}, {un
2}, {vn

2}
as follows:
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(3.16)



g1(xn+1
1 ) = J

F1,ϕ1
ρ1 (g1(xn

1 ) − ρ1(G1(xn
1 , x

n
2 ) +N1(un

1 , v
n
1 ))),

g2(xn+1
2 ) = JF2,ϕ2

ρ2 (g2(xn
2 ) − ρ2(G2(xn

1 , x
n
2 ) +N2(un

2 , v
n
2 ))),

un
1 ∈ T1(xn

1 ),

‖un+1
1 − un

1‖1 ≤ (1 + (n+ 1)−1)H̃1(T1(xn+1
1 ), T1(xn

1 )),

vn
1 ∈ B1(xn

2 ),

‖vn+1
1 − vn

1 ‖2 ≤ (1 + (n+ 1)−1)H̃2(S1(xn+1
2 ), S1(xn

2 )),

un
2 ∈ T2(xn

1 ), ‖1

‖un+1
2 − un

2 ≤ (1 + (n+ 1)−1)H̃1(T2(xn+1
1 ), T2(xn

1 )),

vn
2 ∈ B2(xn

2 ), ‖2

‖vn+1
2 − vn

2 ≤ (1 + (n+ 1)−1)H̃2(S2(xn+1
2 ), S2(xn

2 )), n ≥ 0.

By using Lemma 3.2 and Nadler’s theorem [32], we can construct the following
iterative algorithm for solving the GMEP (3.6).

Algorithm 3.2. Suppose that g(K) = K. For given x0 ∈ K, we have g(x0) ∈
K ⊆ B. By Lemma 2.2 and Remark 2.4, there exist JF,ϕ

ρ (g(x0)) ∈ K and hence
there exists x1 ∈ K such that

g(x1) = JF,ϕ
ρ (g(x0)).

By induction, we can define the iterative sequences {xn} as follows:

(3.17) g(xn+1) = JF,ϕ
ρ (g(xn)), ∀ n ≥ 0.

Definition 3.1. For i = 1, 2, Ni : B1 × B2 → Bi is said to be (σi, εi)-mixed
Lipschitz continuous, if there exist constants σi, εi > 0 such that

‖Ni(u1, v1) −Ni(u2, v2)‖i ≤ σi‖u1 − u2‖1 + εi‖v1 − v2‖2,

∀ (u1, v1), (u2, v2) ∈ B1 ×B2;

Definition 3.2. For i ∈ {1, 2}, Ti : B1 → CB(B1) is said to be H̃1-µi-
Lipschitz continuous, if there exists a constant µi > 0 such that

H̃1(Ti(x1), Ti(x̄1)) ≤ µi‖x1 − x̄1‖1, ∀ x1, x̄1 ∈ B1.

Similarly, we can define the Lipschitz continuity of the mappings Si.

Definition 3.3. For i ∈ {1, 2}, a mapping gi : Ki → Ki is said to be γi-strongly
accretive if, for any x, y ∈ Ki, there exist ji(x − y) ∈ Ji(x − y) and a constant
γi > 0 such that
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〈gi(x)− gi(y), ji(x− y)〉i ≥ γi‖x− y‖2
i ,

where Ji : Bi → 2B∗
i is the normalized duality mapping defined by

Ji(x) = {f ∈ B∗
i : 〈x, f〉i = ‖f‖i · ‖x‖i, ‖f‖i = ‖x‖i}, ∀ x ∈ Bi.

Theorem 3.1. For each i ∈ {1, 2}, let Fi : Ki ×Ki → R, ϕi : Bi × Bi → R,
and ηi : Bi ×Bi → Bi satisfy the conditions (i)-(v) of Theorem 2.1 where Fi is αi-
strongly monotone, and η i is δi-strongly monotone and τ i-Lipschitz continuous. Let
Gi : B1×B2 → Bi be (mi, ni)-mixed Lipschitz continuous and N i : B1×B2 → Bi

be (σi, εi)-mixed Lipschitz continuous, T i : B1 → CB(B1) be H̃1-µi-Lipschitz
continuous, Si : B2 → CB(B2) be H̃2-si-Lipschitz continuous and g i : Ki → Ki

satisfy gi(Ki) = Ki and be γi-strongly accretive and βi-lipschitz continuous. If the
following conditions hold for ρ 1, ρ2 > 0:

(3.18)


τ1

γ1(δ1+ρ1α1)
(β1+ρ1(m1+σ1µ1))+

τ2ρ2

γ2(δ2+ρ2α2)
(n1 + σ2µ2)<1,

τ1ρ1

γ1(δ1+ρ1α1)
(m2+ε1s1)+

τ2
γ2(δ2+ρ2α2)

(β2+ρ2(n2 + ε2s2))<1.

Then the sequences {xn
1}, {xn

2}, {un
1}, {vn

1 }, {un
2} and {vn

2} generated by Algo-
rithm 3.1 strongly converge to x1 ∈ K1, x2 ∈ K2, u1 ∈ T1(x1), v1 ∈ S1(x2),
u2 ∈ T2(x1) and v2 ∈ S2(x2) respectively, and (x1, x2, u1, v1, u2, v2) is a solution
of SGMIEP (3.1).

Proof. For i = 1, 2, since gi is γi-strongly accretive, there exists ji(xn+1
i −xn

i ) ∈
Ji(xn+1

i − xn
i )) such that

‖gi(xn+1
i ) − gi(xn

i )‖i‖xn+1
i − xn

i ‖i

≥ 〈gi(xn+1
i ) − gi(xn

i ), ji(xn+1
i − xn

i )〉i ≥ γi‖xn+1
i − xn

i ‖2
i .

This implies that

(3.19) ‖xn+1
i − xn

i ‖i ≤ 1
γi
‖gi(xn+1

i ) − gi(xn
i )‖i.

It follows from Algorithm 3.1 and Theorem 2.1 that
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‖xn+2
1 − xn+1

1 ‖1

≤ 1
γ1

‖g1(xn+2
1 ) − g1(xn+1

1 )‖1

=
1
γ1

‖JF1,ϕ1
ρ1

(g1(xn+1
1 ) − ρ1(G1(xn+1

1 , xn+1
2 ) + (N1(un+1

1 , vn+1
1 )))

− [JF1,ϕ1
ρ1

(g1(xn
1 ) − ρ1(G1(xn

1 , x
n
2) +N1(un

1 , v
n
1 )))]‖1

≤ τ1
γ1(δ1+ρ1α1)

‖g1(xn+1
1 )−g1(xn

1 )−ρ1(G1(xn+1
1 , xn+1

2 )−G1(xn
1 , x

n
2 ))

− ρ1(N1(un+1
1 , vn+1

1 ))−N1(un
1 , v

n
1 )))‖1

≤ τ1
γ1(δ1+ρ1α1)

[‖g1(xn+1
1 )−g1(xn

1 )‖1+ρ1‖G1(xn+1
1 , xn+1

2 )−G1(xn
1 , x

n
2 )‖1

+ ρ1‖N1(un+1
1 , vn+1

1 )−N1(un
1 , v

n
1 )‖1].

(3.20)

Since g1 is β1-Lipschitz continuous, we have

(3.21) ‖g1(xn+1
1 )− g1(xn

1 )‖1 ≤ β1‖xn+1
1 − xn

1‖1.

Since G1 is (m1, n1)-mixed Lipschitz continuous, we have

(3.22) ‖G1(xn+1
1 , xn+1

2 )−G1(xn
1 , x

n
2 )‖1 ≤ m1‖xn+1

1 − xn
1‖1 + n1‖xn+1

2 − xn
2‖2.

Since N1 is (σ1, ε1)-mixed Lipschitz continuous, T1 is H̃1-µ1-Lipschitz continuous
and S1 is H̃2-s1-Lipschitz continuous, by Algorithm 3.1, we have

‖N1(un+1
1 , vn+1

1 )−N1(un
1 , v

n
1 )‖1≤σ1‖un+1

1 − un
1‖1+ε1‖vn+1

1 −vn
1 ‖2

≤ (1 +
1

n + 1
)(σ1H̃1(T1(xn+1

1 ), T1(xn
1 )) + ε1H̃2(S1(xn+1

2 ), S1(xn
2 )))

≤ (1 +
1

n + 1
)(σ1µ1‖xn+1

1 − xn
1‖1 + ε1s1‖xn+1

2 − xn
2‖2).

(3.23)

By (3.20))-(3.23), we have

‖xn+2
1 − xn+1

1 ‖1

≤ τ1
γ1(δ1 + ρ1α1)

(β1 + ρ1(m1 + σ1µ1(1 +
1

n+ 1
)))‖xn+1

1 − xn
1‖1

+
τ1ρ1

γ1(δ1 + ρ1α1)
(n1 + ε1s1(1 +

1
n+ 1

))‖xn+1
2 − xn

2‖2

≤Γn
1‖xn+1

1 − xn
1‖1 + Θn

1‖xn+1
2 − xn

2‖2,

(3.24)
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where
Γn

1 =
τ1

γ1(δ1 + ρ1α1)
(β1 + ρ1(m1 + σ1µ1(1 +

1
n + 1

))),

Θn
1 =

τ1ρ1

γ1(δ1 + ρ1α1)
(n1 + ε1s1(1 +

1
n+ 1

)).

Similarly, we can obtain

‖xn+2
2 − xn+1

2 ‖2 ≤ 1
γ2

‖g2(xn+2
2 ) − g2(xn+1

2 )‖2

≤ 1
γ2

‖JF2
ρ2

(g2(xn+1
2 ) − ρ2(G2(xn+1

1 , xn+1
2 ) +N2(un+1

2 , vn+1
2 )))

− JF2
ρ2

(g2(xn
2 ) − ρ2(G2(xn

1 , x
n
2 ) +N2(un

2 , v
n
2 )))‖2

≤ τ2
γ2(δ2 + ρ2α2)

‖g2(xn+1
2 )− ρ2(G2(xn+1

1 , xn+1
2 ) +N2(un+1

2 , vn+1
2 ))

− (g2(xn
2 ) − ρ2(G2(xn

1 , x
n
2) +N2(un

2 , v
n
2 )))‖2

≤ τ2
γ2(δ2+ρ2α2)

[‖g2(xn+1
2 )−g2(xn

2 )‖2+ρ2‖G2(xn+1
1 , xn+1

2 )−G2(xn
1 , x

n
2)‖

+ ρ2‖N2(un+1
2 , vn+1

2 )−N2(un
2 , v

n
2 )‖2]

≤ τ2
γ2(δ2+ρ2α2)

[β2‖xn+1
2 −xn

2‖2+ρ2(m2‖xn+1
1 −xn

1‖1+n2‖xn+1
2 −xn

2‖2)

+ ρ2(1 +
1

n+ 1
)(σ2µ2‖xn+1

1 − xn
1‖1 + ε2s2‖xn+1

2 − xn
2‖2)]

≤ τ2ρ2

γ2(δ2 + ρ2α2)
(m2 + σ2µ2(1 +

1
n+ 1

))‖xn+1
1 − xn

1‖1

+
τ2

γ2(δ2 + ρ2α2)
(β2 + ρ2(n2 + ε2s2(1 +

1
n+ 1

)))‖xn+1
2 − xn

2‖2

≤ Γn
2‖xn+1

1 − xn
1‖1 + Θ2‖xn+1

2 − xn
2‖2,

(3.25)

where
Γn

2 =
τ2ρ2

γ2(δ2 + ρ2α2)
(m2 + σ2µ2(1 +

1
n+ 1

)),

Θn
2 =

τ2
γ2(δ2 + ρ2α2)

(β2 + ρ2(n2 + ε2s2(1 +
1

n+ 1
))).

It follows from (3.24) and (3.25) that
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‖xn+2
1 − xn+1

1 ‖1 + ‖xn+2
2 − xn+1

2 ‖2

≤ (Γn
1 + Γn

2 )‖xn+1
1 − xn

1‖1 + (Θn
1 + Θn

2 )‖xn+1
2 − xn

2‖2

≤ ∆n(‖xn+1
1 − xn

1‖1 + ‖xn+1
2 − xn

2‖2), ∀ n = 1, 2, · · · ,

(3.26)

where ∆n = max{Γn
1 + Γn

2 ,Θ
n
1 + Θn

2}.
Let

Γ1 =
τ1

γ1(δ1+ρ1α1)
(β1+ρ1(m1 + σ1µ1)), Γ2 =

τ2ρ2

γ2(δ2 + ρ2α2)
(m2 + σ2µ2)

Θ1 =
τ1ρ1

γ1(δ1 + ρ1α1)
(n1 + ε1s1), Θ2 =

τ2
γ2(δ2 + ρ2α2)

(β2 + ρ2(n2 + ε2s2))

and ∆ = max{Γ1 + Γ2,Θ+Θ2}.
Then, we have Γn

1 → Γ1, Γn
2 → Γ2, Θn

1 → Θ1, Θn
2 → Θ2 and ∆n → ∆ as n→ ∞.

Now, define a norm ‖ · ‖∗ on B1 ×B2 by

‖(x1, x2)‖∗ = ‖x1‖1 + ‖x2‖2, ∀ (x1, x2) ∈ B1 × B2.

Then (B1 ×B2, ‖ · ‖∗) is a Banach space. It follows from (3.26) that

(3.27) ‖(xn+2
1 , xn+2

2 ) − (xn+1
1 , xn+1

2 )‖∗ ≤ ∆n‖(xn+1
1 , xn+1

2 ) − (xn
1 , x

n
2 )‖∗.

By the condition (3.18), we know that 0 < ∆ < 1. Hence there exist ∆0 ∈ (0, 1)
and n0 > 0 such that ∆n ≤ ∆0 for all n ≥ n0. Therefore, it follows from (3.27)
that

‖(xn+2
1 , xn+2

2 )−(xn+1
1 , xn+1

2 )‖∗≤∆0‖(xn+1
1 , xn+1

2 )−(xn
1 , x

n
2 )‖∗.∀n≥n0.(3.28)

This implies that {(xn
1 , x

n
2 )} is a Cauchy sequence in B1 × B2. Thus, there exist

(x1, x2) ∈ B1 × B2 such that (xn
1 , x

n
2 ) → (x1, x2) as n → ∞. Since K1 ×K2 is

closed, we have (x1, x2) ∈ K1×K2. By Algorithm 3.1 and the Lipschitz continuity
of T1, T2, S1, and S2, we get

(3.29)



‖un+1
1 − un

1‖1 ≤ (1 + (n + 1)−1)H̃1(T1(xn+1
1 ), T1(xn

1 ))

≤ µ1‖xn+1
1 − xn

1‖1,

‖vn+1
1 − vn

1 ‖2 ≤ (1 + (n + 1)−1)H̃2(S1(xn+1
2 ), S1(xn

2 ))

≤ s1‖xn+1
2 − xn

2‖2,

‖un+1
2 − un

2‖1 ≤ (1 + (n + 1)−1)H̃1(T2(xn+1
1 ), T2(xn

1 ))

≤ µ2‖xn+1
1 − xn

1‖1,

‖vn+1
2 − un

2‖2 ≤ (1 + (n + 1)−1)H̃2(S2(xn+1
2 ), S2(xn

2 ))

≤ s2‖xn+1
2 − xn

2‖2.
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It follows that {un
1}, {vn

1}, {un
2} and {vn

2 } are all Cauchy sequences. Thus, there
exist u1, u2 ∈ B1 and v1, v2 ∈ B2 such that un

1 → u1, vn
1 → v1, un

2 → u2 and
vn
2 → v2, as n → ∞. Now, we show that u1 ∈ T1(x1). Noting un

1 ∈ T1(xn
1 ), we

have

d(u1, T1(x1)) ≤ ‖u1 − un
1‖1 + d(un

1 , T (x1))

≤ ‖u1 − un
1‖1 + H̃1(T1(xn

1 ), T1(x1))

≤ ‖u1 − un
1‖1 + µ1‖xn

1 − x1‖1 → 0 (n→ ∞).

Since T1(x1) is closed, it implies u1 ∈ T1(x1). Similarly, one can show that v1 ∈
B1(x2), u2 ∈ T2(x1) and v2 ∈ B2(x2). By Algorithm 3.1, we have{

g(xn+1
1 ) = JF1,ϕ1

ρ1 (g(xn
1) − ρ1(G1(xn

1 , x
n
2 ) +N1(un

1 , v
n
1 ))),

g(xn+1
2 ) = JF2,ϕ2

ρ2 (g(xn
2) − ρ2(G2(xn

1 , x
n
2 ) +N2(un

2 , v
n
2 ))),

It follows from the continuity of gi, JFi,ϕi
ρi , Gi, Ni, Ti and Si that (x1, x2, u1, v1, u2, v2)

satisfies the following relation,

(3.30)

{
g1(x1) = J

F1 ,ϕ1
ρ1 (g1(x1) − ρ1(G1(x1, x2) +N1(u1, v1))),

g2(x2) = JF2
ρ2,ϕ2

(g2(x2)− ρ2(G2(x1, x2) +N2(u2, v2))),

By Lemma 3.1, (x1, x2, u1, v1, u2, v2) is a solution of the SGMIEP (3.1). This
completes the proof.

Theorem 3.2. Let F : K×K → R, ϕ : B×B → R, and η : B×B → B∗ satisfy
the conditions (i)-(v) of Theorem 2.1 where F is α-strongly monotone, and η is δ-
strongly monotone and τ -Lipschitz continuous. Let g : K → K satisfy g(K) = K

and be γ-strongly accretive and β-Lipschitz continuous. If the following conditions
hold for ρ > 0:

(3.31)
τβ

γ(δ + ρα)
< 1.

Then the sequences {xn} generated by Algorithm 3.2 strongly converge to x ∗ ∈ K

and x∗ is a solution of GMEP (3.6).

Proof. Since g is γ-strongly accretive, there exists j(xn+1 − xn) ∈ J(xn+1 −
xn)) such that

‖g(xn+1)−g(xn)‖‖xn+1−xn‖ ≥ 〈g(xn+1)−g(xn), j(xn+1−xn)〉 ≥ γ‖xn+1−xn‖2.
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This implies that

(3.32) ‖xn+1 − xn‖ ≤ 1
γ
‖g(xn+1)− g(xn)‖.

It follows from Algorithm 3.2, Theorem 2.1 and β-Lipschitz continuity of g that

‖xn+2 − xn+1‖ ≤ 1
γ
‖g(xn+2) − g(xn+1)‖

=
1
γ
‖JF,ϕ

ρ (g(xn+1))− JF,ϕ
ρ (g(xn))‖

≤ τ

γ(δ+ρα)
‖g(xn+1)−g(xn)‖

≤ τβ

γ(δ+ρα)
‖xn+1 − xn‖.

(3.33)

By the condition (3.31) and (3.33), {xn} is a Cauchy sequence in K. Note that K
is closed, there exists x∗ ∈ K such that xn → x∗ as n→ ∞.

By Algorithm 3.2, we have

g(xn+1) = JF,ϕ
ρ (g(xn)).

It follows from the continuity of g and JF,ϕ
ρ that,

g(x∗) = JF,ϕ
ρ (g(x∗)).

Hence, x∗ is a solution of GEP (3.9). By Lemma 3.2, x∗ is also a solution of the
GMEP (3.6).

Remark 3.2. Theorem 3.2 is a new existence result for mixed equilibrium prob-
lem which is different from that in [3, 13, 14, 22, 23].
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