TAIWANESE JOURNAL OF MATHEMATICS

Vol. 15, No. 2, pp. 573-585, April 2011

This paper is available online at http://www.tjm.nsysu.edu.tw/

WEIGHTED OSTROWSKI INTEGRAL INEQUALITY FOR MAPPINGS OF BOUNDED VARIATION

Kuei-Lin Tseng, Shiow-Ru Hwang, Gou-Sheng Yang and Yi-Ming Chou

Abstract. In this paper, we establish some weighted Ostrowski integral inequality for mappings of bounded variation.

1. Introduction

Throughout in this paper, we define the following notations:

- (a_1) $V_c^d(f)$ is the total variation of f on the interval [c,d] where $f:[c,d] \to \mathbb{R}$ is bounded variation on [a,b].
- (a_2) $I_k: a = x_0 < x_1 < \cdots < x_k = b$ is a partition of the interval [a, b].
- (a₃) $l_i := x_{i+1} x_i \ (i = 0, \dots, k-1)$ where $x_i \ (i = 0, \dots, k-1)$ is defined as in (a₂).
- (a_4) $v(l) := \max_{i=0,\cdots,k-1} l_i$ where l_i $(i=0,\cdots,k-1)$ is defined as in (a_3)
- (a_5) $L_i := \int_{x_i}^{x_{i+1}} g(t)dt \ (i=0,\cdots,k-1)$ where $x_i \ (i=0,\cdots,k-1)$ is defined as in (a_2) and $g:[a,b] \to \mathbb{R}$ is integrable on [a,b].
- (a_6) $v(L) := \max_{i=0,\cdots,k-1} L_i$ where L_i $(i=0,\cdots,k-1)$ is defined as in (a_5) .
- (a_7) $\triangle_n : a = x_0^{(n)} < x_1^{(n)} < \dots < x_{n-1}^{(n)} < x_n^{(n)} = b$ is a sequence of partition of [a,b].
- (a₈) $l_i^{(n)} := x_{i+1}^{(n)} x_i^{(n)}$ $(i = 0, \dots, n-1)$ where $x_i^{(n)}$ $(i = 0, \dots, n-1)$ is defined as in (a_7) .
- $(a_9) \ v(l^{(n)}) := \max_{i=0,\cdots,n-1} l_i^{(n)} \text{ where } l_i^{(n)} \ (i=0,\cdots,n-1) \text{ is defined as in } (a_8).$

Received May 6, 2009, accepted September 17, 2009.

Communicated by H. M. Srivastava.

2000 Mathematics Subject Classification: 26D15.

Key words and phrases: Bounded variation, Ostrowski integral inequality, Riemann-Stieltjes integral.

$$(a_{10}) \ L_i^{(n)} := \int_{x_i^{(n)}}^{x_{i+1}^{(n)}} g(t) dt \ (i = 0, \dots, n-1) \text{ where } x_i^{(n)} \ (i = 0, \dots, n-1) \text{ is defined as in } (a_7) \text{ and } g : [a, b] \to \mathbb{R} \text{ is integrable on } [a, b].$$

defined as in (a_7) and $g:[a,b]\to\mathbb{R}$ is integrable on [a,b]. $(a_{11})\ \ v(L^{(n)}):=\max_{i=0,\cdots,n-1}L_i^{(n)} \ \text{where}\ \ L_i^{(n)}\ \ (i=0,\cdots,n-1) \ \text{is defined as in} \ \ (a_{10}).$

$$(a_{12}) \ I_n(f, \Delta_n, w_n) := \sum_{j=0}^n w_j^{(n)} f(x_j^{(n)}) \text{ where } f : [a, b] \to \mathbb{R}, w_j^{(n)} \ (j = 0, \dots, n)$$

are the quadrature weights with $\sum_{j=0}^n w_j^{(n)} = b-a$ and $x_i^{(n)} - a \leq \sum_{j=0}^i w_j^{(n)} \leq x_{i+1}^{(n)} - a$ $(i=0,\cdots,n-1)$.

$$(a_{13}) \ I_n(f,h,\triangle_n,\rho_n) := \sum_{j=0}^n \rho_j^{(n)} f(x_j^{(n)}) \text{ where } f:[a,b] \to \mathbb{R}, \ h:[a,b] \to \mathbb{R},$$

 $h(w_j^{(n)})$ $(j=0,\cdots,n)$ are the quadrature weights with $\sum_{j=0}^n \rho_j^{(n)} = h(b) - h(a)$

and
$$h(x_i^{(n)}) - h(a) \le \sum_{j=0}^i \rho_j^{(n)} \le h(x_{i+1}^{(n)}) - h(a) \ (i = 0, \dots, n-1).$$

In [1], Ostrowski proved the following integral inequality.

Theorem A. Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b) with derivative $f':(a,b) \to \mathbb{R}$ bounded on (a,b), that is, $\|f'\|_{\infty} := \sup_{t \in (a,b)} |f'(t)| < \infty$. Then the inequality

(1)
$$\left| \int_{a}^{b} f(t)dt - (b-a)f(x) \right| \leq \left[\frac{1}{4}(b-a)^{2} + \left(x - \frac{a+b}{2} \right)^{2} \right] \|f'\|_{\infty}$$

holds for all $x \in [a, b]$. The constant $\frac{1}{4}$ is the best possible.

For some recent results which generalize, improve and extend the inequality (1), see the papers [2-6].

2. Dragomir and Tseng-hwang-dragomir's Inequalities

In [4], Dragomir pointed out the following natural generalisation of (1) for mappings of bounded variation.

Theorem B. Let $f:[a,b] \to \mathbb{R}$ be a mapping of bounded variation on [a,b]. Then

(2)
$$\left| \int_{a}^{b} f(t)dt - (b-a)f(x) \right| \leq \left[\frac{(b-a)}{2} + \left(x - \frac{a+b}{2} \right) \right] V_{a}^{b}(f)$$

holds for all $x \in [a, b]$. The constant $\frac{1}{2}$ is the best possible.

In [2], Dragomir proved the following two theorems concerning Ostrowski type inequalities.

Theorem C. Let x_i $(i=0,\cdots,k)$, v(l), $V_a^b(f)$ be as above and let α_i $(i=0,\cdots,k+1)$ be "k+2" points so that $\alpha_0=a,\alpha_i\in[x_{i-1},x_i]$ $(i=1,\cdots,k)$ and $\alpha_{k+1}=b$. If $f:[a,b]\to\mathbb{R}$ is a mapping of bounded variation on [a,b], then we have the inequality

(3)
$$\left| \int_{a}^{b} f(t)dt - \sum_{i=0}^{k} (\alpha_{i+1} - \alpha_{i}) f(x_{i}) \right|$$

$$\leq \left[\frac{1}{2} v(l) + \max_{i=0,\cdots,k-1} \left| \alpha_{i+1} - \frac{x_{i} + x_{i+1}}{2} \right| \right] V_{a}^{b}(f)$$

$$\leq v(l) V_{a}^{b}(f) .$$

Theorem D. Let $x_i^{(n)}$, $w_j^{(n)}(i=0,\cdots,n)$, $I_n(f,\triangle_n,w_n)$, $v(l^{(n)})$ be as above and let $f:[a,b]\to\mathbb{R}$ be a mapping of bounded variation on [a,b] and $r_i=a+\sum_{j=0}^i w_j^{(n)}$ $(i=0,\cdots,n-1)$. Then we have the estimate

(4)
$$\left| I_{n}\left(f, \triangle_{n}, w_{n}\right) - \int_{a}^{b} f(t)dt \right|$$

$$\leq \left[\frac{1}{2}v(l^{(n)}) + \max_{i=0,\cdots,n-1} \left| r_{i} - \frac{x_{i}^{(n)} + x_{i+1}^{(n)}}{2} \right| \right] V_{a}^{b}\left(f\right)$$

$$\leq v(l^{(n)})V_{a}^{b}\left(f\right) .$$

In particular

$$\lim_{v(l^{(n)})\to 0} I_n(f, \triangle_n, w_n) = \int_a^b f(x)dx$$

uniformly related as the w_n .

In [6], Tseng, Hwang and Dragomir established the following weighted Ostrowski type inequality.

Theorem E. Let $0 \le \alpha \le 1$, $g:[a,b] \to (0,\infty)$ be continuous on [a,b] and let $h:[a,b] \to \mathbb{R}$ be differentiable such that h'(t)=g(t) on [a,b]. Let

 $c=h^{-1}((1-\frac{\alpha}{2})h(a)+\frac{\alpha}{2}h(b))$ and $d=h^{-1}(\frac{\alpha}{2}h(a)+(1-\frac{\alpha}{2})h(b)).$ Suppose that f and $V_a^b(f)$ are defined as in Theorem B. Then, for all $x\in [c,d]$, we have

$$(5) \qquad \left| \int_{a}^{b} f(t)g(t)dt - \left[(1-\alpha)f(x) + \alpha \cdot \frac{f(a) + f(b)}{2} \right] \int_{a}^{b} g(t)dt \right| \leq M \cdot V_{a}^{b}\left(f\right)$$

where

$$M := \left\{ \begin{aligned} \frac{1-\alpha}{2} \int_a^b g(t)dt + \left| h(x) - \frac{h(a) + h(b)}{2} \right|, & if \ 0 \leq \alpha \leq \frac{1}{2} \\ \max \left\{ \frac{1-\alpha}{2} \int_a^b g(t)dt + \left| h(x) - \frac{h(a) + h(b)}{2} \right|, \frac{\alpha}{2} \int_a^b g(t)dt \right\}, & if \ \frac{1}{2} < \alpha < \frac{2}{3} \\ \frac{\alpha}{2} \int_a^b g(t)dt, & if \ \frac{2}{3} \leq \alpha \leq 1. \end{aligned} \right.$$

3. Main Results

Theorem 1. Let $f, x_i \ (i=0,\cdots,k+1)$ and $\alpha_i \ (i=0,\cdots,k+1)$ be defined as in Theorem C and let $h:[a,b]\to\mathbb{R}, \ g:[a,b]\to(0,\infty)$ be continuous on [a,b] with h'(t)=g(t) on [a,b]. Then we have the inequality

$$\left| \int_{a}^{b} f(t)g(t)dt - \sum_{i=0}^{k} f(x_{i}) \int_{\alpha_{i}}^{\alpha_{i+1}} g(t)dt \right|$$

$$\leq \left[\max_{i=0,\cdots,k-1} \frac{L_{i}}{2} + \left| h(\alpha_{i+1}) - \frac{h(x_{i}) + h(x_{i+1})}{2} \right| \right] V_{a}^{b}(f)$$

$$\leq \left[\frac{1}{2}v(L) + \max_{i=0,\cdots,k-1} \left| h(\alpha_{i+1}) - \frac{h(x_{i}) + h(x_{i+1})}{2} \right| \right] V_{a}^{b}(f)$$

$$\leq v(L) V_{a}^{b}(f)$$

where L_i $(i = 0, \dots, k-1)$, v(L) and $V_a^b(f)$ are as above.

Proof. Define the kernel $K_h : [a, b] \to \mathbb{R}$ by

$$K_h(t) := \begin{cases} h(t) - h(\alpha_1), t \in [a, x_1) \\ h(t) - h(\alpha_2), t \in [x_1, x_2) \\ \vdots \\ h(t) - h(\alpha_{k-1}), t \in [x_{k-2}, x_{k-1}) \\ h(t) - h(\alpha_k), t \in [x_{k-1}, b]. \end{cases}$$

Using the integrating by parts formula, we have the following identity

$$\begin{split} &\int_{a}^{b} K_{h}(t) \ df(t) = \sum_{i=0}^{k-1} \int_{x_{i}}^{x_{i+1}} \left[h(t) - h(\alpha_{i+1}) \right] \ df(t) \\ &= \sum_{i=0}^{k-1} \left[\left[h(t) - h(\alpha_{i+1}) \right] \ f(t) \left| \frac{t = x_{i+1}}{t = x_{i}} - \int_{x_{i}}^{x_{i+1}} f(t) g(t) \ dt \right] \\ &= \sum_{i=0}^{k-1} \left[\left(h(x_{i+1}) - h(\alpha_{i+1}) \right) f(x_{i+1}) + \left(h(\alpha_{i+1}) - h(x_{i}) \right) f(x_{i}) \right] - \int_{a}^{b} f(t) g(t) dt \\ &= \left(h(b) - h(\alpha_{k}) \right) f(b) + \sum_{i=0}^{k-2} \left(h(x_{i+1}) - h(\alpha_{i+1}) \right) f(x_{i+1}) \\ &+ \left(h(\alpha_{1}) - h(a) \right) f(a) + \sum_{i=1}^{k-1} \left(h(\alpha_{i+1}) - h(x_{i}) \right) f(x_{i}) - \int_{a}^{b} f(t) g(t) dt \\ &= \left(h(b) - h(\alpha_{k}) \right) f(b) + \sum_{i=1}^{k-1} \left(h(\alpha_{i+1}) - h(x_{i}) \right) f(x_{i}) - \int_{a}^{b} f(t) g(t) dt \\ &= \left(h(b) - h(\alpha_{k}) \right) f(b) + \left(h(\alpha_{1}) - h(a) \right) f(a) \\ &+ \sum_{i=1}^{k-1} \left(h(\alpha_{i+1}) - h(\alpha_{i}) \right) f(x_{i}) - \int_{a}^{b} f(t) g(t) dt \\ &= \sum_{i=0}^{k} \left(h(\alpha_{i+1}) - h(\alpha_{i}) \right) f(x_{i}) - \int_{a}^{b} f(t) g(t) dt \\ &= \sum_{i=0}^{k} \left(h(\alpha_{i+1}) - h(\alpha_{i}) \right) f(x_{i}) - \int_{a}^{b} f(t) g(t) dt \\ &= \sum_{i=0}^{k} \left(h(\alpha_{i+1}) - h(\alpha_{i}) \right) f(x_{i}) - \int_{a}^{b} f(t) g(t) dt \end{split}$$

and then we have the inequality

$$\left| \int_{a}^{b} f(t)g(t)dt - \sum_{i=0}^{k} f(x_{i}) \int_{\alpha_{i}}^{\alpha_{i+1}} g(t)dt \right|$$

$$= \left| \int_{a}^{b} K_{h}(t) df(t) \right| = \left| \sum_{i=0}^{k-1} \int_{x_{i}}^{x_{i+1}} (h(t) - h(\alpha_{i+1})) df(t) \right|$$

$$\leq \sum_{i=0}^{k-1} \left| \int_{x_{i}}^{x_{i+1}} (h(t) - h(\alpha_{i+1})) df(t) \right| := T.$$

It is well known [7, p.159] that if $\mu, \nu: [c,d] \to \mathbb{R}$ are such that μ is continuous on [c,d] and ν is of bounded variation on [c,d], then $\int_c^d \mu(t) \ d\nu(t)$ exists and [7, p. 177]

(7)
$$\left| \int_{c}^{d} \mu(t) d\nu(t) \right| \leq \sup_{t \in [c,d]} |\mu(t)| V_{c}^{d}(\nu).$$

Using (7), we have

$$\left| \int_{x_{i}}^{x_{i+1}} (h(t) - h(\alpha_{i+1})) df(t) \right|$$

$$\leq \sup_{t \in [x_{i}, x_{i+1}]} |(h(t) - h(\alpha_{i+1})| V_{x_{i}}^{x_{i+1}}(f)$$

$$= \max \left\{ h(\alpha_{i+1}) - h(x_{i}), h(x_{i+1}) - h(\alpha_{i+1}) \right\} V_{x_{i}}^{x_{i+1}}(f)$$

$$= \left[\frac{h(x_{i+1}) - h(x_{i})}{2} + \left| h(\alpha_{i+1}) - \frac{h(x_{i}) + h(x_{i+1})}{2} \right| \right] V_{x_{i}}^{x_{i+1}}(f)$$

$$= \left[\frac{1}{2} \int_{x_{i}}^{x_{i+1}} g(t) dt + \left| h(\alpha_{i+1}) - \frac{h(x_{i}) + h(x_{i+1})}{2} \right| \right] V_{x_{i}}^{x_{i+1}}(f)$$

$$= \left[\frac{L_{i}}{2} + \left| h(\alpha_{i+1}) - \frac{h(x_{i}) + h(x_{i+1})}{2} \right| \right] V_{x_{i}}^{x_{i+1}}(f).$$

Then

$$T \leq \sum_{i=0}^{k-1} \left[\frac{L_i}{2} + \left| h(\alpha_{i+1}) - \frac{h(x_i) + h(x_{i+1})}{2} \right| \right] V_{x_i}^{x_{i+1}}(f)$$

$$\leq \max_{i=0,\cdots,k-1} \left[\frac{L_i}{2} + \left| h(\alpha_{i+1}) - \frac{h(x_i) + h(x_{i+1})}{2} \right| \right] \sum_{i=0}^{k-1} V_{x_i}^{x_{i+1}}(f)$$

$$\leq \max_{i=0,\cdots,k-1} \left[\frac{L_i}{2} + \left| h(\alpha_{i+1}) - \frac{h(x_i) + h(x_{i+1})}{2} \right| \right] V_a^b(f)$$

$$\leq \left[\frac{1}{2} v(L) + \max_{i=0,\cdots,k-1} \left| h(\alpha_{i+1}) - \frac{h(x_i) + h(x_{i+1})}{2} \right| \right] V_a^b(f) := S.$$

Now, as

$$\left| h(\alpha_{i+1}) - \frac{h(x_i) + h(x_{i+1})}{2} \right|$$

$$\leq \frac{h(x_{i+1}) - h(x_i)}{2}$$

$$= \frac{1}{2} \int_{x_i}^{x_{i+1}} g(t) dt = \frac{L_i}{2} \ (i = 0, \dots, k-1),$$

$$\max_{i=0,\dots,k-1} \left| h(\alpha_{i+1}) - \frac{h(x_i) + h(x_{i+1})}{2} \right| \leq \frac{1}{2} v(L)$$

and we have

$$(9) S \leq v\left(L\right) V_a^b\left(f\right).$$

Then, by (8) and (9), we obtain (6). This completes the proof.

Remark 1. Let g(t) = 1 and h(t) = t $(t \in [a, b])$ in Theorem 1. Then the second and third inequalities of (6) reduce to the inequality (3).

Remark 2. Let c, d, M, be defined as in Theorem E and let $k = 2, x_0 = a, \alpha_1 = c, x_1 = x, \alpha_2 = d, x_2 = b$ in Theorem 1. Since

$$\frac{L_0}{2} + \left| h(c) - \frac{h(a) + h(x)}{2} \right| \\
= \frac{h(x) - h(a)}{2} + \left| h(c) - \frac{h(a) + h(x)}{2} \right| \\
= \max \left\{ h(x) - h(c), \ (h(c) - h(a)) \right\} \\
= \max \left\{ h(x) - h(c), \ \frac{\alpha}{2} \left(h(b) - h(a) \right) \right\} \\
= \max \left\{ h(x) - h(c), \ \frac{\alpha}{2} \int_{a}^{b} g(t) dt \right\}$$

and

$$\begin{split} & \frac{L_1}{2} + \left| h(d) - \frac{h(x) + h(b)}{2} \right| \\ & = \frac{h(b) - h(x)}{2} + \left| h(d) - \frac{h(x) + h(b)}{2} \right| \\ & = \max \left\{ h(d) - h(x), \ (h(b) - h(d)) \right\} \\ & = \max \left\{ h(d) - h(x), \ \frac{\alpha}{2} \left(h(b) - h(a) \right) \right\} \\ & = \max \left\{ h(d) - h(x), \ \frac{\alpha}{2} \int_a^b g(t) dt \right\}, \end{split}$$

we have

$$\max \left\{ \frac{L_0}{2} + \left| h(c) - \frac{h(a) + h(x)}{2} \right|, \ \frac{L_1}{2} + \left| h(d) - \frac{h(x) + h(b)}{2} \right| \right\}$$

$$= \max \left\{ h(x) - h(c), \ h(d) - h(x), \frac{\alpha}{2} \int_a^b g(t) dt \right\}$$

$$= \max \left\{ \max \left\{ h(x) - h(c), \ h(d) - h(x) \right\}, \frac{\alpha}{2} \int_a^b g(t) dt \right\}$$

$$= \max \left\{ \frac{h(d) - h(c)}{2} + \left| h(x) - \frac{h(c) + h(d)}{2} \right|, \frac{\alpha}{2} \int_a^b g(t) dt \right\}$$

$$= \max \left\{ \frac{1 - \alpha}{2} \int_a^b g(t) dt + \left| h(x) - \frac{h(a) + h(b)}{2} \right|, \frac{\alpha}{2} \int_a^b g(t) dt \right\} = M$$

and then the first inequality of (6) reduces to the inequality (5).

Theorem 2. Let $x_i^{(n)}$ $(i = 0, \dots, n)$, f, h, g be defined as in Theorem 1 and let $s_i = h(a) + \sum_{i=0}^{i} \rho_j^{(n)}$ $(i = 0, \dots, n-1)$. Then we have the estimate

(10)
$$\left| I_{n}\left(f, h, \triangle_{n}, \rho_{n}\right) - \int_{a}^{b} f(t)g(t)dt \right|$$

$$\leq \left[\frac{1}{2}v(L^{(n)}) + \max_{i=0,\cdots,n-1} \left| s_{i} - \frac{h(x_{i}^{(n)}) + h(x_{i+1}^{(n)})}{2} \right| \right] V_{a}^{b}(f)$$

$$\leq v(L^{(n)})V_{a}^{b}(f)$$

where $v(L^{(n)})$ and $V_a^b(f)$ are as above.

Proof. Define the sequence

$$h(\alpha_{i+1}^{(n)}) := h(a) + \sum_{j=0}^{i} \rho_j^{(n)}, \ i = 0, \dots, n,$$

then we have

$$h(\alpha_{n+1}^{(n)}) = h(a) + \sum_{j=0}^{n} \rho_j^{(n)} = h(b)$$

and we observe also that $\alpha_{n+1}^{(n)}=b$ and $\alpha_{i+1}^{(n)}\in\left[x_i^{(n)},x_{i+1}^{(n)}\right]$ $(i=0,\cdots,n-1).$

Define $h(\alpha_0^{(n)}) := h(a)$ and compute for $(i=1,\cdots,n-1)$

$$h(\alpha_1^{(n)}) - h(\alpha_0^{(n)}) = \rho_0^{(n)},$$

$$h(\alpha_{i+1}^{(n)}) - h(\alpha_i^{(n)}) = \rho_i^{(n)},$$

$$h(\alpha_{n+1}^{(n)}) - h(\alpha_n^{(n)}) = \rho_n^{(n)},$$

and

then

$$\sum_{i=0}^{n} (h(\alpha_{i+1}^{(n)}) - h(\alpha_{i}^{(n)})) f(x_{i}^{(n)}) = \sum_{i=0}^{n} \rho_{i}^{(n)} f(x_{i}^{(n)}) = I_{n} (f, h, \Delta_{n}, \rho_{n}).$$

Applying the second and third inequalities of (6), we get the inequality (10). This completes the proof.

Remark 3. Let g(t) = 1 and h(t) = t $(t \in [a, b])$ in Theorem 2. Then the inequality (10) reduces to the inequality (4).

4. Some Particular Integral Inequalities

Proposition 1. Let f, h, g be defined as in Theorem 1. Then the following inequality

(11)
$$\left| \int_{a}^{b} f(t)g(t)dt - \left[f(a) \int_{a}^{\alpha} g(t)dt + f(b) \int_{\alpha}^{b} g(t)dt \right] \right| \\ \leq \left[\frac{1}{2} \int_{a}^{b} g(t)dt + \left| h(\alpha) - \frac{h(a) + h(b)}{2} \right| \right] V_{a}^{b}(f)$$

holds for all $\alpha \in [a, b]$.

Proof. Let $k=1, x_0=a, x_1=b, \alpha_0=a, \alpha_1=\alpha \in [a,b]$ and $\alpha_2=b$ in Theorem1. Then we get the inequality (11).

Remark 4. In Proposition 1, we get a weighted generalization of Proposition 1 in [2].

Remark 5. If we choose $\alpha=h^{-1}(\frac{h(a)+h(b)}{2})$ in Proposition 1, then we have $\int_a^\alpha g(t)dt=h(\alpha)-h(a)=\frac{h(b)-h(a)}{2}=\frac{1}{2}\int_a^b g(t)dt$, $\int_\alpha^b g(t)dt=h(b)-h(a)=\frac{h(b)-h(a)}{2}=\frac{1}{2}\int_a^b g(t)dt$ and the inequality (11) reduces to the following inequality:

$$\left| \int_{a}^{b} f(t)g(t)dt - \left[\frac{f(a) + f(b)}{2} \int_{a}^{b} g(t)dt \right] \right|$$

$$\leq \frac{1}{2} \int_{a}^{b} g(t)dt \cdot V_{a}^{b}(f)$$

which is the "weighted trapezoid" inequality for mappings of bounded variation.

Remark 6. Let g(t) = 1 and h(t) = t $(t \in [a, b])$ in Remark 5. Then we get a result of Remark 1 in [2].

Proposition 2. Let f, h, g be as above and $a \le x_1 \le b$, $a \le \alpha_1 \le x_1 \le \alpha_2 \le b$. Then we have

$$\left| \int_{a}^{b} f(t)g(t)dt - \left[f(a) \int_{a}^{\alpha_{1}} g(t)dt + f(x_{1}) \int_{\alpha_{1}}^{\alpha_{2}} g(t)dt + f(b) \int_{\alpha_{2}}^{b} g(t)dt \right] \right|$$

$$\leq \frac{1}{2} \left[\frac{1}{2} \int_{a}^{b} g(t)dt + \left| h(x_{1}) - \frac{h(a) + h(b)}{2} \right| + \left| h(\alpha_{1}) - \frac{h(a) + h(x_{1})}{2} \right| + \left| h(\alpha_{2}) - \frac{h(x_{1}) + h(b)}{2} \right| + \left| \left| h(\alpha_{1}) - \frac{h(a) + h(x_{1})}{2} \right| - \left| h(\alpha_{2}) - \frac{h(x_{1}) + h(b)}{2} \right| \right| \right] V_{a}^{b}(f)$$

$$\leq \left[\frac{1}{2} \int_{a}^{b} g(t)dt + \left| h(x_{1}) - \frac{h(a) + h(b)}{2} \right| \right] V_{a}^{b}(f)$$

$$\leq \int_{a}^{b} g(t)dt V_{a}^{b}(f) .$$

Proof. In Theorem 1, we choose k=2 and the partition $a=x_0 \le x_1 \le x_2=b$ and the number $\alpha_0=a, \ \alpha_1 \in [a,x_1], \ \alpha_2 \in [x_1,b]$ and $\alpha_3=b$. Using the second and third inequalities of (6), we get

$$\left| \int_{a}^{b} f(t)g(t)dt - \left[f(a) \int_{a}^{\alpha_{1}} g(t)dt + f(b) \int_{\alpha_{2}}^{b} g(t)dt \right] \right|$$

$$+ f(x_{1}) \int_{\alpha_{1}}^{\alpha_{2}} g(t)dt + f(b) \int_{\alpha_{2}}^{b} g(t)dt \right]$$

$$+ \left[\max \left\{ \int_{a}^{x_{1}} g(t)dt, \int_{x_{1}}^{b} g(t)dt \right\} + \max \left\{ \left| h(\alpha_{1}) - \frac{h(a) + h(x_{1})}{2} \right|, \left| h(\alpha_{2}) - \frac{h(x_{1}) + h(b)}{2} \right| \right\} \right] V_{a}^{b}(f)$$

$$= \frac{1}{2} \left[\max \left\{ h(x_{1}) - h(a), h(b) - h(x_{1}) \right\}$$

$$+ \max \left\{ \left| h(\alpha_1) - \frac{h(a) + h(x_1)}{2} \right|, \left| h(\alpha_2) - \frac{h(x_1) + h(b)}{2} \right| \right\} \right] V_a^b(f)$$

$$= \left[\frac{1}{4} (h(b) - h(a)) + \frac{1}{2} \left| h(x_1) - \frac{h(a) + h(b)}{2} \right| \right.$$

$$+ \frac{1}{2} \left| h(\alpha_1) - \frac{h(a) + h(x_1)}{2} \right| + \frac{1}{2} \left| h(\alpha_2) - \frac{h(x_1) + h(b)}{2} \right|$$

$$+ \frac{1}{2} \left| \left| h(\alpha_1) - \frac{h(a) + h(x_1)}{2} \right| - \left| h(\alpha_2) - \frac{h(x_1) + h(b)}{2} \right| \right| \right] V_a^b(f)$$

$$= \frac{1}{2} \left[\frac{1}{2} \int_a^b g(t) dt + \left| h(x_1) - \frac{h(a) + h(b)}{2} \right|$$

$$+ \left| h(\alpha_1) - \frac{h(a) + h(x_1)}{2} \right| + \left| h(\alpha_2) - \frac{h(x_1) + h(b)}{2} \right|$$

$$+ \left| \left| h(\alpha_1) - \frac{h(a) + h(x_1)}{2} \right| - \left| h(\alpha_2) - \frac{h(x_1) + h(b)}{2} \right| \right] V_a^b(f)$$

and the first inequality in (12) is proved.

Now, observe that

$$\left| h(\alpha_1) - \frac{h(a) + h(x_1)}{2} \right| \le \frac{h(x_1) - h(a)}{2}$$

and

$$\left| h(\alpha_2) - \frac{h(x_1) + h(b)}{2} \right| \le \frac{h(b) - h(x_1)}{2}.$$

Consequently,

$$\max \left\{ \left| h(\alpha_1) - \frac{h(a) + h(x_1)}{2} \right|, \left| h(\alpha_2) - \frac{h(x_1) + h(b)}{2} \right| \right\}$$

$$\leq \frac{1}{2} \max \left\{ h(x_1) - h(a), h(b) - h(x_1) \right\}$$

$$= \frac{1}{2} \left[\frac{h(b) - h(a)}{2} + \left| h(x_1) - \frac{h(a) + h(b)}{2} \right| \right]$$

$$= \frac{1}{4} \int_a^b g(t)dt + \frac{1}{2} \left| h(x_1) - \frac{h(a) + h(b)}{2} \right|.$$

By (13) and (14), the second inequality in (12) is proved. The last inequality in (12) is obvious.

Remark 7. In Proposition 2, we get a weighted generalization of Proposition 2 in [2].

Remark 8. If we choose $\alpha_1 = a, \alpha_2 = b, x_1 = x \in [a, b]$ in Proposition 2 then, the inequality (12) reduces to the following inequality:

$$\left| \int_{a}^{b} f(t)g(t)dt - f(x) \int_{a}^{b} g(t)dt \right|$$

$$\leq \left[\frac{1}{2} \int_{a}^{b} g(t)dt + \left| h(x) - \frac{h(a) + h(b)}{2} \right| \right] V_{a}^{b}(f)$$

which is the "weighted Ostrowski" inequality for mappings of bounded variation.

Remark 9. Let g(t) = 1 and h(t) = t $(t \in [a, b])$ in Remark 8. Then we get the Theorem B.

Remark 10. If we choose $\alpha_1 = h^{-1}(\frac{5h(a)+h(b)}{6})$, $\alpha_2 = h^{-1}(\frac{h(a)+5h(b)}{6})$ and $x = h^{-1}(\frac{h(a)+h(b)}{2})$, then the inequality (12) reduces to the following inequality:

$$\left| \int_{a}^{b} f(t)g(t)dt - \frac{1}{3} \int_{a}^{b} g(t)dt \cdot \left[\frac{f(a) + f(b)}{2} + 2f(x) \right] \right|$$

$$\leq \frac{1}{3} \int_{a}^{b} g(t)dt \cdot V_{a}^{b}(f)$$

which is the "weighted Simpson" inequality for mappings of bounded variation.

Remark 11. Let g(t) = 1 and h(t) = t $(t \in [a, b])$ in Remark 10. Then we get the inequality (4.9) in [2].

Remark 12. Similarly we can get some weighted inequalities related to the composite quadrature formula given in [2].

REFERENCES

- 1. A. Ostrowski, Ueber die Absolutabweichung einer differenzierbaren funktion von ihren integralmittelwert, *Comment. Math. Helv.*, **10** (1938), 226-227, (in German).
- 2. S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, *Bull. Australian Math. Soc.*, **60** (1999), 495-508.
- 3. S. S. Dragomir, A New generalization of Ostrowski integral inequality for mappings whode derivatives are bounded and applications in numberical integration and for special means, *Appl. Math. Lett.*, **11(1)** (1998), 105-109.
- 4. S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, *Math. Inequal. Apple.*, **60** (1999), 495-508.

- 5. Kuei-Lin Tseng, Improvements of some inequalites of Ostrowski type and their applications, *Taiwanese J. Math.*, **12(9)** (2008), in press.
- 6. Kuei-Lin Tseng, Shiow-Ru Hwang and S. S. Dragomir, Generalizations of weighted Ostrowski type inequalities for mappings of bounded variation and their applications, *Computers and Mathematics with Applications*, **55(8)** (2008), 1785-1793.
- 7. T. M. Apostol, *Mathematical Analysis*, Second Edition, Addision-Wesley Publishing Company, 1975.

Kuei-Lin Tseng Department of Mathematics Aletheia University Tamsui 25103, Taiwan E-mail: kltseng@email.au.edu.tw

Shiow-Ru Hwang China University of Science and Tchnology Nankang, Taipei 11522, Taiwan E-mail: hsru@cc.cust.edu.tw

Gou-Sheng Yang and Yi-Ming Chou Department of Mathematics Tamkang University Tamsui 25137, Taiwan E-mail: 005490@mail.au.edu.tw

895190063@s95.tku.edu.tw