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WEIGHTED OSTROWSKI INTEGRAL INEQUALITY FOR MAPPINGS
OF BOUNDED VARIATION

Kuei-Lin Tseng, Shiow-Ru Hwang, Gou-Sheng Yang and Yi-Ming Chou

Abstract. In this paper, we establish some weighted Ostrowski integral in-
equality for mappings of bounded variation.

1. INTRODUCTION

Throughout in this paper, we define the following notations:
(a1) V&(f) is the total variation of f on the interval [c, d] where f : [c,d] — R is
bounded variation on [a, b].
(ag) Iy :a=zp < x1 <--- <z = Db is a partition of the interval [a, b].
(ag) l:=wjp1 —2; (1=0,---,k—1) where z; (i =0,---,k— 1) is defined as
in (az).
(ag) v(l):= ax 1li where [; (i = 0,---,k — 1) is defined as in (a3)

Tit1
(as) L; := / g(t)dt (i =0,---,k—1)wherez; (i =0,---,k — 1) is defined

as in (agi and g : [a, b] — R is integrable on [a, b] .

(ag) v(L) := _lnax lLi where L; (i = 0,---,k — 1) is defined as in (as).

(a7) Lnia=a{" <2l <. <2 <2 =bis a sequence of partition of
[a, b].

(ag) ZZ(”) = xgi)l — xgn) (i =0,---,n —1) where xgn) (i=0,---,n—1)1is
defined as in (a7).

(ag) v(I™):= max llz(”) where lz(”) (i=0,---,n—1) is defined as in (as).
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(n)

(age) L™ = /(j g(t)dt (i =0, ,n— 1) where 2™ (i = 0,---,n—1) is

defined as in (a7) and g : [a, b] — R is integrable on [a, b] .

(a11) v(LM) = _max ILE”) where L™ (i = 0,---,n — 1) is defined as in
(a10)- .

(a12) In (f, Dnywn) == > w” f(2”) where f : [a,b] = R, w\™ (j =0, ,n)
=0

are the quadrature weights withY w(” =b —a and (" —a < S w{" <
j=0 Jj=0
xgi)l—a (t=0,---,n—1).

(ar3) In (frhy By pn) ==Y " F(2l™) where f : [a,b] — R, b : [a,b] — R,
=0

h(w'™) (j =0, -, n) are the quadrature weights with ij”) = h(b)—h(a)
j=0

and A(e{”) — (a) < S 8" < h(a(h) —h(a) (=0, ,n—1).

j=0

In [1], Ostrowski proved the following integral inequality.
Theorem A. Let f : [a,b] — R be continuous on [a,b] and differentiable

on (a,b) with derivative f’ : (a,b) — R bounded on (a,b), that is, ||f'||., =
sup |f'(t)| < co. Then the inequality

te(a,b)
< l(b _a)?4 (o a+b\>
=17 a x 5

holds for all = € [a, b]. The constant 1 is the best possible.

(1)

b
/f@ﬁ—w—wﬂ@

(T

For some recent results which generalize, improve and extend the inequality (1),
see the papers [2-6].

2. DRAGOMIR AND TSENG-HWANG-DRAGOMIR’S INEQUALITIES

In [4], Dragomir pointed out the following natural generalisation of (1) for
mappings of bounded variation.

Theorem B. Let f : [a,b] — R be a mapping of bounded variation on [a, b].
Then
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@ | [ sww-0-asw|<[L52 (o ) v

holds for all = € [a, b]. The constant 3 is the best possible.

In [2], Dragomir proved the following two theorems concerning Ostrowski type
inequalities.

Theorem C. Letz; (i =0, -, k), v(l), V? (f) be as above and let o; (i = 0,
-+, k+1) be “k + 2” points so that a«g = a, ; € [zj—1,2](i = 1,---, k) and
agy1 = b. If f:[a,b] — R is a mapping of bounded variation on [a, b], then we
have the inequality

b k
JRCED SRR
a =0
3 A A
®) < BUU) +i:0’1¥1.§i’>1§_1 iyl — % ] V2 (f)

<v(V2(f).

Theorem D. Let 2", w(™(i = 0,---,n) , L, (f, Dy wy) , 0(I™) be as
above and let f : [a,b] — R be a mapping of bounded variation on [a, b] and

K]
ri=a-+ Zwﬁ”) (¢=0,---,n—1). Then we have the estimate
§=0

I (. Bnvn) = | ’ f(t)dt‘

A 4 2f8)

5 Ve (f)

r. —
1=0,--- ,n—1 !

() < [%v(l(”)) + max

<o(I™VP(f).
In particular

lim I, (f, O&n,wy) = /b f(z)dzx

’U(l("))—>0
uniformly related as the w,,,
In [6], Tseng, Hwang and Dragomir established the following weighted Os-
trowski type inequality.

Theorem E. Let 0 < a < 1, g : [a,b] — (0,00) be continuous on [a, b]
and let h : [a,b] — R be differentiable such that h'(t) = g¢(¢) on [a,b]. Let
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=h7 (1= $)h(a) + Sh(b)) and d = h~*(Sh(a) + (1 — )h(b)). Suppose that
fand V2 (f) are deflned as in Theorem B. Then, for all = € ¢, d], we have

b

b b
© |[ roga-|0-asea- LOLIO) gl < v )
where
b
L P g i BT o)
b b
M := max{ a/ gtdt+‘ h(a);—h(b) ,g/ g(t)dt}, if 3<a<s3
%/Zmﬁ, ﬁ§§a§1

3. MaIN REsuLTS

Theorem 1. Let f, z; (i =0,---,k+1)and a; (¢ =0,---, k + 1) be defined
as in Theorem C and let & : [a,b] — R, g: [a,b] — (0, c0) be continuous on [a, b]
with A/ (t) = g (t) on [a, b]. Then we have the inequality

I/ f(t) dt— f(xi) /:M g(t)dtl

i

©) < [ nax_ | % + ‘h(az‘+1) _ Al +2h(xi+1) ] Ve (f)
< [%v (L) +,_max | Ih(OéH—l) _ B +2h(xi+1) ] Ve (f)

v (L) Vy (f)
where L; (i =0,---,k—1), v (L) and V? (f) are as above.
Proof. Define the kernel K, : [a,b] — R by

Kh(t) =

h(t) — h(ak_l), te [xk_g, xk_l)
h(t) — h(ag),t € [TK—1,b].
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Using the integrating by parts formula, we have the following identity

Z/ h(aiy1)] df(t)

/ K
kZ [ () [izme — / + ore dt]

az—i—l

= S (A ) o) (i) -he) el 0

k—2
= (h(b) - (1) + > (h(wiy1) = hei1)) f (i)
-
—l—(h(()q +Z Oéz—f—l xz xz /f
=1
k—

= (h(b) — h(ow)) f(b) + (h(wz) () f (i)

=1

k—1

—l—(h(()q +Z Oéz—f—l xz xz /f
= (h(b) = h(ax))f(b) + (h(a1) — h(a)) f(a)

k—1

+Z(h(az+1 az xz /f

k:l
= (h(eit1) — h(ag)) f(xs) f(t)

e /

k

S

~
[e=]

and then we have the inequality

Dt =3 () /a “ o(t)dt
-1/ <>df<>1 ko /:“m(t) Boinn) df (1)
Zl [ o) = tossr) arco =7

=0
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It is well known [7, p.159] that if i, v : [¢, d] — R are such that p is continuous

d
on [c,d] and v is of bounded variation on [c, d], then/ wu(t) dv(t) exists and [7,
p. 177] ‘

d
/ u(t)dl/(t)l < s [V

()

Using (7), we have

[ o) = e df(t)‘

i

< sup  |(h(t) = h(eis1)| Ve, T ()

te[mi,$i+1]

= max {h(a;y1) — h(x;), h(zit1) — h(ait1)} meii-&-l (f)

- [l Hd |y B ) ]
_ [% / + g(t)dt + ‘h(am) - M) i) ] VI ()
- [t - M) ]
Then
r= k_ol [L? + ‘h(azﬂ) SR TCT) N
5 om%il 5+ ptau) - M) I:Z_;va%“(f)
< [go 0+ oy [rtowen) - MR T gy
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‘h(()&z‘_H) _ h((L‘Z) +2h(xi+1)
< h($i+1)2— h(z:)
:%Aji+lg(t)dt:% (1= 0, k1),
=0 ‘h(ai‘f'l) i) +2h(xi+1) = %” (L)
and we have
9) S <v(L)VI(f).

Then, by (8) and (9), we obtain (6).
This completes the proof.

Remark 1. Let g(¢t) = 1 and h(t) =t (¢t € [a,b]) in Theorem 1. Then the
second and third inequalities of (6) reduce to the inequality (3).

Remark 2. Let ¢, d, M, be defined as in Theorem E and let k = 2, g = a,
a1 =c¢, x1 =T, as =d, zg = b in Theorem 1. Since

and
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:max{l_Ta/abg(t)dt—i—lh(x)—M , %/abg(t)dt} _ M

and then the first inequality of (6) reduces to the inequality (5).

Theorem 2. Let x(”) (i=0,---,n), f, h, g be defined as in Theorem 1 and

let s; = h(a) + ij” ' .,n—1). Then we have the estimate

b
L (£, By B ) — / F(B)g(t)dt

™M) 4 ()
2

il V2 ()

S; —

n—1

(10) [ L(” + max

L(n Vb

| /\

where v(L(™) and V (f) are as above.

Proof. Define the sequence
h‘( z+1 + ijn . nv

then we have

h‘( n+1 +ijn =

and we observe also that a(”)l = b and az+)1 € [mﬁ”), xm (i=0,---,n—1).

Define h(« (”)) := h(a) and compute for (i =1,---,n—1)



Weighted Ostrowski Integral Inequality for Mappings of Bounded Variation 581

and
(o) = h(af?) = p1,
then
S (h(adf) = h(a™ sz” 2™ = Lo (f, hy B, p) -
1=0

Applying the second and third inequalities of (6), we get the inequality (10).
This completes the proof.

Remark 3. Let g(t) = 1 and h(t) =t (¢t € [a,b]) in Theorem 2. Then the
inequality (10) reduces to the inequality (4).

4. SOME PARTICULAR INTEGRAL INEQUALITIES

Proposition 1. Let f, h,g be defined as in Theorem 1. Then the following

inequality
t)dt — [f( )/aag(t)dtjtf(b) /abg(t)dtH

< [5/(1 ()dt—i—‘h( )—MH Ve (f)

holds for all « € [a, b].

(11)

Proof. Letk =129 =a, 21 =b, a9 =a, a1 =« € [a,b] and ag = b in
Theoreml. Then we get the inequality (11).

Remark 4. In Proposition 1, we get a weighted generalization of Proposition
1in [2].

Remark 5. If we choose o = h—l(w) in Proposition 1, then we

«a — hla b b
have / o(t)dt = h(a) — hla) = M _ %/ g(t)dt | / g(t)dt =

2 2
following inequality:

/f dh{ﬂ);ﬂ)ﬁgwﬂ'

_ b
h(b) — h(a) = ———= = l/ g(t)dt and the inequality (11) reduces to the
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1 [t
<5 [ sV
which is the “weighted trapezoid” inequality for mappings of bounded variation.

Remark 6. Let g(t) =1 and h(t) =t (t € [a, b]) in Remark 5. Then we get
a result of Remark 1 in [2].

Proposition2. Let f,h,gbeasaboveanda < z1 <b,a < a3 <z1 < ay <b.
Then we have
(e %) a2
/ f(t)g(t)dt — [ )/ g(t)ydt+ f (wl)/ g(t)dt
a a1

+f()/w |

< % [% /abg(t)dt—i— h(zy) —

(12) N h(a) —;h(ml)

h(a) + h(z1)
2

h(xl) —

h(a) + h(b) I
2

h(al) —

N 'h(a2) B h(wl);h(b)'

plag) — RO [

2

—i—“h(al) —

< B /abg(?f)dtﬂL

b
< / g(O)dtV? (f).

o) 10

Proof. In Theorem 1, we choose k& = 2 and the partitiona = zg < z1 < x5 =b
and the number oy = a, a; € [a, 1], ag € [z1,b] and ag = b. Using the second
and third inequalities of (6), we get

/f dt—[ )/:lg(t)dt

+f <x1>/m g(t)dt + 1 () /b g(t)dtH

(13) < % [max{ / Y ot / b g(t)dt}

h(a) 4+ h(z1)

+max{

h(al) —

= % [max {h(x1) — h(a), h(b) — h(z1)}
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hlag) — MO v

2
= | 00 = 1@ + 5 pten) - L

)

2

45 [y - MO +%-m@g-ﬁglgtﬁ@4
%I hay) — M@ zh(“) - Ih(a2) - 7}““);“6)'” V2 (f)

= 5[5 [ stone+ ey - MO

2
i) — MOy o M) 21O
+||n(a) - h(a’)zh(“) — |h(as) - Ll); h(b)lu Ve (f)

and the first inequality in (12) is proved.
Now, observe that

ha) - MO ER@)|  hlen) — o)
and h(z1) + h(b)| _ h(b) — h(xy)
h(az) — 5 ‘ < .
Consequently,
max{ h(ay) — w n(as) - h(x1)2+ h(b) I}
< %max {h(z1) — h(a), h(b) — h(x1)}
(14) 1 [h(b) — h(a) h(a) + h(b)
=3 [f + 'h(ml) - H
’ a
:ilgwﬁ+%h@Q_M);M®+

By (13) and (14), the second inequality in (12) is proved.
The last inequality in (12) is obvious.

Remark 7. In Proposition 2, we get a weighted generalization of Proposition
2in[2].
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Remark 8. If we choose a; = a,ay = b, x1 = = € [a,b] in Proposition 2
then, the inequality (12) reduces to the following inequality:

a

/ ’ Fa(bdt — £ () / bg(t)dt'

< [% /abg(t)dt—i— 'h(m) - MH Ve (f)

which is the “weighted Ostrowski” inequality for mappings of bounded variation.

Remark 9. Let g(t) =1 and h(t) =t (t € [a, b]) in Remark 8. Then we get
theTheorem B.

Remark 10. If we choose a; = h_l(w),ag = h—l(w) and
x = h—l(w), then the inequality (12) reduces to the following inequality:

/ gttt - / 0yt LI o) |

b
<5 [ awir-via)

which is the “weighted Simpson” inequality for mappings of bounded variation.

Remark 11. Let g(t) = 1 and h(t) =t (¢t € [a, b]) in Remark 10. Then we
get the inequality (4.9) in [2].

Remark 12. Similarly we can get some weighted inequalities related to the
composite quadrature formula given in [2].
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