CLASSIFICATION THEOREMS FOR SPACE-LIKE SURFACES IN 4-DIMENSIONAL INDEFINITE SPACE FORMS WITH INDEX 2

Bang-Yen Chen and Bogdan D. Suceavǎ

Abstract

Surfaces in 4D Riemannian space forms have been investigated extensively. In contrast, only few results are known for surfaces in 4D neutral indefinite space forms $R_{2}^{4}(c)$. Thus, in this paper we study space-like surfaces in $R_{2}^{4}(c)$ satisfying certain simple geometric properties. In particular, we classify space-like surfaces in \mathbb{E}_{2}^{4} with constant mean and Gauss curvatures and null normal curvature. We also classify Wintgen ideal surfaces in $R_{2}^{4}(c)$ whose Gauss and normal curvatures satisfy $K^{D}=2 K$.

1. Introduction

Let \mathbb{E}_{t}^{m} denote the pseudo-Euclidean m-space equipped with pseudo-Euclidean metric of index t given by

$$
\begin{equation*}
g_{t}=-\sum_{i=1}^{t} d x_{i}^{2}+\sum_{j=t+1}^{n} d x_{j}^{2} \tag{1.1}
\end{equation*}
$$

where $\left(x_{1}, \ldots, x_{m}\right)$ is a rectangular coordinate system of \mathbb{E}_{t}^{m}. We put

$$
\begin{align*}
& S_{s}^{k}(c)=\left\{x \in \mathbb{E}_{s}^{k+1}:\langle x, x\rangle=c^{-1}>0\right\} \tag{1.2}\\
& H_{s}^{k}(c)=\left\{x \in \mathbb{E}_{s+1}^{k+1}:\langle x, x\rangle=c^{-1}<0\right\} \tag{1.3}
\end{align*}
$$

where \langle,$\rangle is the associated inner product. Then S_{s}^{k}(c)$ and $H_{s}^{k}(c)$ are pseudoRiemannian manifolds of constant curvature c and with index s, which are known as pseudo-Riemannian k-sphere and the pseudo-hyperbolic k-space, respectively. The pseudo-Riemannian manifolds $\mathbb{E}_{s}^{k}, S_{s}^{k}(c)$ and $H_{s}^{k}(-c)$ are called indefinite space forms, denoted by R_{s}^{k}.

[^0]Surfaces in 4-dimensional Riemannian space forms have been investigated very extensively (see, for instance, [1, 2, 3]). In contrast, only few results are known for surfaces in 4-dimensional neutral indefinite space forms $R_{2}^{4}(c)$ of constant curvature c and index 2. Thus, we study in this paper space-like surfaces in $R_{2}^{4}(c)$ satisfying some simple geometric properties.

In Section 2 of this paper we provide basic definitions and formulas. In Section 3 we completely classify space-like surfaces in \mathbb{E}_{2}^{4} with constant mean and Gauss curvatures and null normal curvature. In Section 4, we present a result of Sasaki and the precise expression of a minimal immersion $\psi_{\mathcal{B}}$ of the hyperbolic plane $H^{2}\left(-\frac{1}{3}\right)$ of curvature $-\frac{1}{3}$ into the unit pseudo-hyperbolic 4 -space $H_{2}^{4}(-1)$ discovered by the first author in [4]. It is known that the immersion $\psi_{\mathcal{B}}$ is a Wintgen ideal surfaces in $H_{2}^{4}(-1)$ whose Gauss and normal curvatures satisfy $K^{D}=2 K$. In the last section, we classify Wintgen ideal surfaces in $R_{2}^{4}(c)$ whose Gauss and normal curvatures satisfy the condition $K^{D}=2 K$. The later result provides us another simple geometric characterization of the minimal immersion $\psi_{\mathcal{B}}: H^{2}\left(-\frac{1}{3}\right) \rightarrow H_{2}^{4}(-1)$.

2. Preliminaries

A vector v is called space-like (resp., time-like) if $\langle v, v\rangle>0$ (resp., $\langle v, v\rangle<0$). A surface M in a pseudo-Riemannian manifold is called space-like if each nonzero tangent vector is space-like.

Let $R_{2}^{4}(c)$ denote an indefinite space form of constant curvature c and with index 2. The curvature tensor \tilde{R} of $R_{2}^{4}(c)$ is given by

$$
\begin{equation*}
\tilde{R}(X, Y) Z=c\{\langle Y, Z\rangle X-\langle X, Z\rangle Y\} \tag{2.1}
\end{equation*}
$$

for vectors X, Y, Z tangent to $R_{2}^{4}(c)$. Let $\psi: M \rightarrow R_{2}^{4}(c)$ be an isometric immersion of a space-like surface M into $R_{2}^{4}(c)$. Denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections on M and $R_{2}^{4}(c)$, respectively. For vector fields X, Y tangent to M and ξ normal to M, the formulas of Gauss and Weingarten are given respectively by (cf. [1, 2, 10]):

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.2}\\
& \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.3}
\end{align*}
$$

where $\nabla_{X} Y$ and $A_{\xi} X$ are the tangential components and $h(X, Y)$ and $D_{X} \xi$ the normal components of $\tilde{\nabla}_{X} Y$ and $\tilde{\nabla}_{X} \xi$, respectively.

The shape operator A and the second fundamental form h are related by

$$
\begin{equation*}
\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle . \tag{2.4}
\end{equation*}
$$

The mean curvature vector H of M in $H_{2}^{4}(-1)$ is defined by $H=\frac{1}{2}$ trace h.

The equations of Gauss, Codazzi and Ricci are given respectively by

$$
\begin{align*}
R(X, Y) Z= & c\{\langle Y, Z\rangle X-\langle X, Z\rangle Y\}+A_{h(Y, Z)} X-A_{h(X, Z)} Y \tag{2.5}\\
& \left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{2.6}\\
\langle & \left.R^{D}(X, Y) \xi, \eta\right\rangle=\left\langle\left[A_{\xi}, A_{\eta}\right] X, Y\right\rangle \tag{2.7}
\end{align*}
$$

for vector fields X, Y, Z tangent to M, and ξ, η normal to M, where $\bar{\nabla} h$ is defined by

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right),
$$

and R^{D} is the curvature tensor associated with the normal connection D, i.e.,

$$
\begin{equation*}
R^{D}(X, Y) \xi=D_{X} D_{Y} \xi-D_{Y} D_{X} \xi-D_{[X, Y]} \xi \tag{2.8}
\end{equation*}
$$

The normal curvature K^{D} is given by

$$
\begin{equation*}
K^{D}=\left\langle R^{D}\left(e_{1}, e_{2}\right) e_{3}, e_{4}\right\rangle \tag{2.9}
\end{equation*}
$$

A surface M in $R_{2}^{4}(c)$ is called parallel (resp., minimal) if $\bar{\nabla} h=0$ (resp., $H=0$) holds identically. An immersion $\psi: M \rightarrow R_{2}^{4}(c)$ is called full if the image $\psi(M)$ does not lies in any totally geodesic submanifold of $R_{2}^{4}(c)$. A surface M in $R_{2}^{4}(c)$ is called isotropic if, at each point $p \in M,|h(u, u)|$ is independent of the choice of the unit vector $u \in T_{p} M$.

For an immersion $\psi: M \rightarrow H_{2}^{4}(-1)$, let $L=\iota \circ \psi: M \rightarrow \mathbb{E}_{3}^{5}$ be the composition of ψ with the standard inclusion $\iota: H_{2}^{4}(-1) \rightarrow \mathbb{E}_{3}^{5}$ via (1.2). Since $H_{2}^{4}(-1)$ is totally umbilical with mean curvature one in \mathbb{E}_{3}^{5}, we have

$$
\begin{equation*}
\hat{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)+\langle X, Y\rangle L \tag{2.10}
\end{equation*}
$$

for X, Y tangent to M, where h is the second fundamental form of ψ and $\hat{\nabla}$ denotes the Levi-Civita connection of \mathbb{E}_{3}^{5}.

3. Surfaces with Null Normal Curvature in \mathbb{E}_{2}^{4}

Theorem 3.1. Let M be a space-like surface in the pseudo-Euclidean 4-space \mathbb{E}_{2}^{4}. If M has constant mean and Gauss curvatures and null normal curvature, then M is congruent to an open part of one of the following six types of surfaces:
(1) A totally geodesic plane in \mathbb{E}_{2}^{4} defined by $(0,0, x, y)$;
(2) a totally umbilical hyperbolic plane $H^{2}\left(-\frac{1}{a^{2}}\right) \subset \mathbb{E}_{1}^{3} \subset \mathbb{E}_{2}^{4}$ given by

$$
(0, a \cosh u, a \sinh u \cos v, a \sinh u \sin v)
$$

where a is a positive number;
(3) A flat surface in \mathbb{E}_{2}^{4} defined by

$$
\frac{1}{\sqrt{2} m}(\cosh (\sqrt{2} m x), \cosh (\sqrt{2} m y), \sinh (\sqrt{2} m x), \sinh (\sqrt{2} m y))
$$

where m is a positive number;
(4) A flat surface in \mathbb{E}_{2}^{4} defined by

$$
\left(0, \frac{1}{a} \cosh (a x), \frac{1}{a} \sinh (a x), y\right),
$$

where a is a positive number;
(5) A flat surface in \mathbb{E}_{2}^{4} defined by

$$
\left(\frac{\cosh (\sqrt{2} x)}{\sqrt{2 m r}}, \frac{\cosh (\sqrt{2} y)}{\sqrt{2 m(2 m-r)}}, \frac{\sinh (\sqrt{2} x)}{\sqrt{2 m r}}, \frac{\sinh (\sqrt{2} y)}{\sqrt{2 m(2 m-r)}}\right),
$$

where m and r are positive numbers satisfying $2 m>r>0$;
(6) A surface of negative curvature $-b^{2}$ in \mathbb{E}_{2}^{4} defined by

$$
\begin{aligned}
& \left(\frac{1}{b} \cosh (b x) \cosh (b y), \int_{0}^{y} \cosh (b y) \sinh \left(\frac{4 \sqrt{m^{2}-b^{2}}}{b} \tan ^{-1}\left(\tanh \frac{b y}{2}\right)\right) d y\right. \\
& \left.\frac{1}{b} \sinh (b x) \cosh (b y), \int_{0}^{y} \cosh (b y) \cosh \left(\frac{4 \sqrt{m^{2}-b^{2}}}{b} \tan ^{-1}\left(\tanh \frac{b y}{2}\right)\right) d y\right),
\end{aligned}
$$

where b and m are real numbers satisfying $0<b<m$.
Proof. Assume that $L: M \rightarrow \mathbb{E}_{2}^{4}$ is an isometric immersion of a space-like surface M into \mathbb{E}_{2}^{4}. If M is totally geodesic in \mathbb{E}_{2}^{4}, we obtain case (1). Thus, from now on, we assume that M is non-totally geodesic in \mathbb{E}_{2}^{4}.

Let us choose an orthonormal tangent frame $\left\{e_{1}, e_{2}\right\}$ of the tangent bundle and an orthonormal normal frame $\left\{e_{3}, e_{4}\right\}$ of the normal bundle of M which satisfy

$$
\begin{align*}
& \left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{2}, e_{2}\right\rangle=1,\left\langle e_{1}, e_{2}\right\rangle=0 \tag{3.1}\\
& \left\langle e_{3}, e_{3}\right\rangle=\left\langle e_{4}, e_{4}\right\rangle=-1,\left\langle e_{3}, e_{4}\right\rangle=0 . \tag{3.2}
\end{align*}
$$

We may also choose e_{1}, e_{2} which diagonalize $A_{e_{3}}$ so that the shape operator satisfies

$$
A_{e_{3}}=\left(\begin{array}{cc}
\alpha & 0 \tag{3.3}\\
0 & \mu
\end{array}\right), A_{e_{4}}=\left(\begin{array}{cc}
\delta & \gamma \\
\gamma & -\delta
\end{array}\right)
$$

for some functions $\alpha, \gamma, \delta, \mu$.
By definition, the normal curvature K^{D} of M is defined by

$$
\begin{equation*}
K^{D}=\left\langle\left[A_{e_{3}}, A_{e_{4}}\right] e_{1}, e_{2}\right\rangle \tag{3.4}
\end{equation*}
$$

For the orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, we put

$$
\begin{equation*}
\nabla_{X} e_{1}=\omega_{1}^{2}(X) e_{2}, \quad D_{X} e_{3}=\omega_{3}^{4}(X) e_{4} . \tag{3.5}
\end{equation*}
$$

From (2.3), (3.2) and (3.3) we have

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=-\alpha e_{3}-\delta e_{4}, h\left(e_{1}, e_{2}\right)=-\gamma e_{4}, h\left(e_{2}, e_{2}\right)=-\mu e_{3}+\delta e_{4} . \tag{3.6}
\end{equation*}
$$

Thus, the mean curvature vector, the Gauss curvature and the normal curvature are given respectively by

$$
\begin{equation*}
H=-\frac{\alpha+\mu}{2} e_{3}, K=\gamma^{2}+\delta^{2}-\alpha \mu, K^{D}=\gamma(\mu-\alpha) . \tag{3.7}
\end{equation*}
$$

It follows from (3.5), (3.6) and the equation of Codazzi that

$$
\begin{align*}
& e_{1} \gamma-e_{2} \delta=\alpha \omega_{3}^{4}\left(e_{2}\right)-2 \gamma \omega_{1}^{2}\left(e_{2}\right)-2 \delta \omega_{1}^{2}\left(e_{1}\right), \tag{3.8}\\
& e_{2} \alpha=-\gamma \omega_{3}^{4}\left(e_{1}\right)+\delta \omega_{3}^{4}\left(e_{2}\right)+(\alpha-\mu) \omega_{1}^{2}\left(e_{1}\right), \tag{3.9}\\
& e_{2} \gamma+e_{1} \delta=\mu \omega_{3}^{4}\left(e_{1}\right)-2 \delta \omega_{1}^{2}\left(e_{2}\right)+2 \gamma \omega_{1}^{2}\left(e_{1}\right), \tag{3.10}\\
& e_{1} \mu=-\delta \omega_{3}^{4}\left(e_{1}\right)-\gamma \omega_{3}^{4}\left(e_{2}\right)+(\alpha-\mu) \omega_{1}^{2}\left(e_{2}\right) . \tag{3.11}
\end{align*}
$$

Since M has null normal curvature, we may also assume that $\gamma=0$. Thus, by the constancy of mean and Gauss curvatures, we obtain from (3.7) that

$$
\begin{equation*}
\mu=2 m-\alpha, \quad k=\delta^{2}+\alpha^{2}-2 m \alpha \tag{3.12}
\end{equation*}
$$

for some constants k, m. Without loss of generality, we may assume $m \geq 0$.
Case (i). $\mu=\alpha$. In this case, $\mu=\alpha=m$ is a constant, which gives $A_{e_{3}}=m I$. Moreover, (3.12) gives

$$
\begin{equation*}
\delta^{2}=m^{2}+k \geq 0 . \tag{3.13}
\end{equation*}
$$

Case (i.1). $m^{2}=-k$. From (3.13), we get $\delta=0$. Hence, M is a totally umbilical surfaces in \mathbb{E}_{2}^{4}. Such a surface has parallel second fundamental form. Therefore, after applying Proposition 4.3 of [5], we obtain case (2) of the theorem,

Case (i.2). $m^{2}>-k$. Without loss of generality, we may put $\delta=\sqrt{m^{2}+k}$, which is a nonzero constant. Thus, we find from (3.8)-(3.11) that $\omega_{1}^{2}=\omega_{3}^{4}=0$. Hence, M must be flat. So, we have $k=0$. Because $\omega_{1}^{2}=0$, we may choose coordinates $\{x, y\}$ such that $e_{1}=\partial / \partial x, e_{2}=\partial / \partial y$. The metric tensor is then given by $g=d x^{2}+d y^{2}$. Moreover, we know that the second fundamental form satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=-m e_{3}-m e_{4}, h\left(e_{1}, e_{2}\right)=0, h\left(e_{2}, e_{2}\right)=-m e_{3}+m e_{4} . \tag{3.14}
\end{equation*}
$$

Now, it follows from (2.1), (3.14) that the immersion $L: M \rightarrow \mathbb{E}_{2}^{4}$ satisfies

$$
\begin{align*}
& L_{x x}=-m e_{3}-m e_{4}, L_{x y}=0, L_{y y}=-m e_{3}+m e_{4} \\
& \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{3}=-m L_{x}, \tilde{\nabla}_{\frac{\partial}{\partial y}} e_{3}=-m L_{y}, \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{4}=-m L_{x}, \tilde{\nabla}_{\frac{\partial}{\partial y}} e_{4}=m L_{y} \tag{3.15}
\end{align*}
$$

After solving this system and choosing suitable initial conditions, we get case (3).
Case (ii). $\mu \neq \alpha$. It follows from (3.12) that

$$
\begin{equation*}
\mu=2 m-\alpha, \quad \delta=\sqrt{k+2 m \alpha-\alpha^{2}} \tag{3.16}
\end{equation*}
$$

Case (ii.1). $\quad \delta=0$. In this case, we have $k=\alpha^{2}-2 m \alpha$ which is constant. Hence, α is also a constant. Thus, we derive from (3.8)-(3.11) that

$$
\begin{equation*}
\omega_{1}^{2}=0, \quad \alpha \omega_{3}^{4}\left(e_{2}\right)=\mu \omega_{3}^{4}\left(e_{1}\right)=0 \tag{3.17}
\end{equation*}
$$

Therefore, M is flat and $\alpha \mu=0$. Since M is non-totally geodesic, without loss of generality we may assume that $\alpha \neq 0$ and $\mu=0$. Since $\omega_{1}^{2}=0$, we may choose coordinates $\{x, y\}$ such that $e_{1}=\partial / \partial x, e_{2}=\partial / \partial y$. So, we obtain

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=-\alpha e_{3}, \quad h\left(e_{1}, e_{2}\right)=h\left(e_{2}, e_{2}\right)=0 \tag{3.18}
\end{equation*}
$$

It follows from (3.17) and (3.18) that immersion $L: M \rightarrow \mathbb{E}_{2}^{4}$ satisfies

$$
\begin{gather*}
L_{x x}=-\alpha e_{3}, \quad L_{x y}=L_{y y}=0 \\
\tilde{\nabla}_{\frac{\partial}{\partial x}} e_{3}=-\alpha L_{x}, \quad \tilde{\nabla}_{\frac{\partial}{\partial y}} e_{3}=0 \tag{3.19}
\end{gather*}
$$

After solving this system and choosing suitable initial conditions, we get case (4).
Case (ii.2). $\delta \neq 0$. We have

$$
\begin{equation*}
\mu=2 m-\alpha, \quad \gamma=0, \quad \delta=\sqrt{k+2 m \alpha-\alpha^{2}} \neq 0 \tag{3.20}
\end{equation*}
$$

Case (ii.2.1). $m \alpha=-k$. In this case, α and δ are constant. Moreover, we have

$$
\begin{equation*}
\alpha=-\frac{k}{m}, \quad \delta=\frac{\sqrt{-k\left(k+m^{2}\right)}}{m}, \quad \mu=2 m+\frac{k}{m}, \quad \gamma=0 \tag{3.21}
\end{equation*}
$$

Because δ is a real nonzero number, we must have $-m^{2}<k<0$. Thus, we may put $k=-b^{2}$ with $0<b<m$. Substituting (3.21) into (3.8)-(3.11) yields

$$
\begin{equation*}
\omega_{1}^{2}\left(e_{2}\right)=\omega_{3}^{4}\left(e_{1}\right)=0, \quad \omega_{3}^{4}\left(e_{2}\right)=\frac{2 \sqrt{m^{2}-b^{2}}}{b} \omega_{1}^{2}\left(e_{1}\right) \tag{3.22}
\end{equation*}
$$

Thus, if f is a function satisfying $e_{2}(\ln f)=\omega_{1}^{2}\left(e_{1}\right)$, then we get $\left[f e_{1}, e_{2}\right]=0$, which implies that there exist coordinates $\{x, y\}$ such that

$$
\begin{equation*}
\frac{\partial}{\partial x}=f e_{1}, \quad \frac{\partial}{\partial y}=e_{2} . \tag{3.23}
\end{equation*}
$$

Therefore, the metric tensor is given by

$$
\begin{equation*}
g=f^{2} d x^{2}+d y^{2} . \tag{3.24}
\end{equation*}
$$

Consequently, the Levi-Civita connection satisfies

$$
\begin{equation*}
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}=\frac{f_{x}}{f} \frac{\partial}{\partial x}-f f_{y} \frac{\partial}{\partial y}, \quad \nabla_{\frac{\partial}{\partial x} \frac{\partial}{\partial y}}=\frac{f_{y}}{f} \frac{\partial}{\partial x}, \quad \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}=0 . \tag{3.25}
\end{equation*}
$$

From (3.22), (3.23) and (3.25), we derive that

$$
\begin{equation*}
\omega_{1}^{2}\left(e_{1}\right)=-\frac{f_{y}}{f}, \omega_{1}^{2}\left(e_{2}\right)=\omega_{3}^{4}\left(e_{1}\right)=0, \omega_{3}^{4}\left(e_{2}\right)=-\frac{2 f_{y} \sqrt{m^{2}-b^{2}}}{b f} . \tag{3.26}
\end{equation*}
$$

Moreover, it follow from (3.24) and $K=-b^{2}$ that f satisfies

$$
\begin{equation*}
f_{y y}=b^{2} f \tag{3.27}
\end{equation*}
$$

By solving (3.27) we obtain $f=u(x) \cosh (b y+v(x))$ for some functions $u(x), v(x)$. After replacing x by an anti-derivative of $u(x)$, we find from (3.24) and (3.25) that

$$
\begin{gather*}
g=\cosh ^{2}(b y+v(x)) d x^{2}+d y^{2}, \tag{3.28}\\
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}=v^{\prime} \tanh (b y+v) \frac{\partial}{\partial x}-\frac{b}{2} \sinh (2 b y+2 v) \frac{\partial}{\partial y}, \tag{3.29}\\
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}=b \tanh (b y+v) \frac{\partial}{\partial x}, \quad \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}=0 .
\end{gather*}
$$

Also, it follows from (3.6), (3.21), and (3.28) that

$$
\begin{align*}
& h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right)=-\frac{\cosh ^{2}(b y+v)}{m}\left\{b^{2} e_{3}+b \sqrt{m^{2}-b^{2}} e_{4}\right\}, \\
& h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=0, \tag{3.30}\\
& h\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right)=\frac{\left(b^{2}-2 m^{2}\right) e_{3}+b \sqrt{m^{2}-b^{2}} e_{4}}{m} .
\end{align*}
$$

Therefore, the immersion $L: M \rightarrow \mathbb{E}_{2}^{4}$ satisfies

$$
\begin{align*}
L_{x x}= & v^{\prime} \tan (b y+v) L_{x}-\frac{b}{2} \sinh (2 b y+2 v) L_{y} \\
& -\frac{\cosh ^{2}(b y+v)}{m}\left\{b^{2} e_{3}+b \sqrt{m^{2}-b^{2}} e_{4}\right\}, \\
L_{x y}= & b \tanh (b y+v) L_{x}, \\
L_{y y}= & \frac{\left(b^{2}-2 m^{2}\right) e_{3}+b \sqrt{m^{2}-b^{2}} e_{4}}{m}, \tag{3.31}\\
\tilde{\nabla}_{\frac{\partial}{\partial x}} e_{3}= & -\frac{b^{2}}{m} L_{x}, \quad \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{4}=-\frac{b \sqrt{m^{2}-b^{2}}}{m} L_{x}, \\
\tilde{\nabla}_{\frac{\partial}{\partial y}} e_{3}= & \frac{b^{2}-2 m^{2}}{m} L_{y}-2 \sqrt{m^{2}-b^{2}} \tanh (b y+v) e_{4}, \\
\tilde{\nabla}_{\frac{\partial}{\partial y}} e_{4}= & \frac{b \sqrt{m^{2}-b^{2}}}{m} L_{y}+2 \sqrt{m^{2}-b^{2}} \tanh (b y+v) e_{3} .
\end{align*}
$$

The compatibility condition of (3.31) is given by $v^{\prime}(x)=0$. Then, after applying a suitable translation in y, we may put $v=0$. Therefore, system (3.31) reduces to

$$
\begin{align*}
L_{x x} & =-\frac{b}{2} \sinh (2 b y) L_{y}-\frac{\cosh ^{2}(b y)}{m}\left\{b^{2} e_{3}+b \sqrt{m^{2}-b^{2}} e_{4}\right\}, \\
L_{x y} & =b \tanh (b y) L_{x}, \\
L_{y y} & =\frac{\left(b^{2}-2 m^{2}\right) e_{3}+b \sqrt{m^{2}-b^{2}} e_{4}}{m}, \\
\tilde{\nabla}_{\frac{\partial}{\partial x}} e_{3} & =-\frac{b^{2}}{m} L_{x}, \quad \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{4}=-\frac{b \sqrt{m^{2}-b^{2}}}{m} L_{x}, \tag{3.32}\\
\tilde{\nabla}_{\frac{\partial}{\partial y}} e_{3} & =\frac{b^{2}-2 m^{2}}{m} L_{y}-2 \sqrt{m^{2}-b^{2}} \tanh (b y) e_{4}, \\
\tilde{\nabla}_{\frac{\partial}{\partial y}} e_{4} & =\frac{b \sqrt{m^{2}-b^{2}}}{m} L_{y}+2 \sqrt{m^{2}-b^{2}} \tanh (b y) e_{3} .
\end{align*}
$$

Solving the second equation in (3.32) gives

$$
\begin{equation*}
L=A(x) \cosh b y+B(y) \tag{3.33}
\end{equation*}
$$

for some vector-valued functions $A(x), B(y)$. Substituting this into the first, third and fourth equations in (3.32) gives $A^{\prime \prime \prime}(x)=b^{2} A^{\prime}(x)$. Thus, we get

$$
\begin{equation*}
A(x)=c_{5}+c_{1} \cosh (b x)+c_{2} \sinh (b x) \tag{3.34}
\end{equation*}
$$

for some vectors c_{5}, c_{1}, c_{2}. Combining this with (3.33) gives

$$
\begin{equation*}
L=\left(c_{5}+c_{1} \cosh (b x)+c_{2} \sinh (b x)\right) \cosh b y+B(y) . \tag{3.35}
\end{equation*}
$$

By substituting (3.35) into the first, third and fifth equations in (3.32), we find

$$
\begin{align*}
& \cosh ^{2}(b y) B^{\prime \prime \prime}-\frac{b}{2} \sinh (2 b y) B^{\prime \prime}+\left(3 b^{2}-4 m^{2}\right) B^{\prime} \tag{3.36}\\
= & c_{5} b\left(3 b^{2}-4 m^{2}\right) \sinh (b y) .
\end{align*}
$$

A direct computation shows that $B_{p}=-c_{5} \cosh (b y)$ is a particular solution of (3.36). Thus, it follows from (3.35) and (3.36) that

$$
\begin{equation*}
L=\left(c_{1} \cosh (b x)+c_{2} \sinh (b x)\right) \cosh b y+C(y) \tag{3.37}
\end{equation*}
$$

where $C(y)$ satisfies the homogeneous differential equation:

$$
\begin{equation*}
\cosh ^{2}(b y) C^{\prime \prime \prime}(y)-\frac{b}{2} \sinh (2 b y) C^{\prime \prime}(y)+\left(3 b^{2}-4 m^{2}\right) C^{\prime}(y)=0 . \tag{3.38}
\end{equation*}
$$

After solving this differential equation, we have

$$
\begin{align*}
C(y)= & c_{3} \int_{0}^{y} \cosh (b y) \cosh \left(\frac{4 \sqrt{m^{2}-b^{2}}}{b} \tan ^{-1}\left(\tanh \frac{b y}{2}\right)\right) d y \tag{3.39}\\
& +c_{4} \int_{0}^{y} \cosh (b y) \sinh \left(\frac{4 \sqrt{m^{2}-b^{2}}}{b} \tan ^{-1}\left(\tanh \frac{b y}{2}\right)\right) d y+c_{0}
\end{align*}
$$

for some vectors $c_{3}, c_{4}, c_{5} \in \mathbb{E}_{2}^{4}$. Combining this with (3.37) yields

$$
\begin{aligned}
L= & c_{0}+\left(c_{1} \cosh (b x)+c_{2} \sinh (b x)\right) \cosh b y \\
& +c_{3} \int_{0}^{y} \cosh (b y) \cosh \left(\frac{4 \sqrt{m^{2}-b^{2}}}{b} \tan ^{-1}\left(\tanh \frac{b y}{2}\right)\right) d y \\
& +c_{4} \int_{0}^{y} \cosh (b y) \sinh \left(\frac{4 \sqrt{m^{2}-b^{2}}}{b} \tan ^{-1}\left(\tanh \frac{b y}{2}\right)\right) d y
\end{aligned}
$$

Therefore, after choosing suitable initial conditions, we obtain case (6).
Case (ii.2.2). $m \alpha \neq-k$. By substituting (3.20) into (3.8)-(3.11) we obtain

$$
\begin{align*}
& \omega_{3}^{4}\left(e_{1}\right)=\frac{2\left(k+m^{2}\right) \omega_{1}^{2}\left(e_{2}\right)}{m \sqrt{k+2 m \alpha-\alpha^{2}}}, \omega_{3}^{4}\left(e_{2}\right)=\frac{2\left(k+m^{2}\right) \omega_{1}^{2}\left(e_{1}\right)}{m \sqrt{k+2 m \alpha-\alpha^{2}}} \tag{3.40}\\
& \omega_{1}^{2}\left(e_{1}\right)=e_{2}(\ln \sqrt{k+m \alpha}), \omega_{2}^{1}\left(e_{2}\right)=e_{1}\left(\ln \sqrt{k+2 m^{2}-m \alpha}\right) \tag{3.41}
\end{align*}
$$

It follows from (3.41) that $\left[e_{1} / \sqrt{k+m \alpha}, e_{2} / \sqrt{k+2 m^{2}-m \alpha}\right]=0$. Thus, there exist coordinates $\{x, y\}$ such that

$$
\begin{equation*}
\frac{\partial}{\partial x}=\frac{e_{1}}{\sqrt{k+m \alpha}}, \frac{\partial}{\partial y}=\frac{e_{2}}{\sqrt{k+2 m^{2}-m \alpha}} . \tag{3.42}
\end{equation*}
$$

Hence, the metric tensor is given by

$$
\begin{equation*}
g=\frac{d x^{2}}{k+m \alpha}+\frac{d y^{2}}{k+2 m^{2}-m \alpha} \tag{3.43}
\end{equation*}
$$

From (3.43) we have

$$
\begin{align*}
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} & =\frac{-m \alpha_{x}}{2(k+m \alpha)} \frac{\partial}{\partial x}+\frac{m\left(k+2 m^{2}-m \alpha\right) \alpha_{y}}{2(k+m \alpha)^{2}} \frac{\partial}{\partial y} \\
\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} & =\frac{-m \alpha_{y}}{2(k+m \alpha)} \frac{\partial}{\partial x}+\frac{m \alpha_{x}}{2\left(k+2 m^{2}-m \alpha\right)} \frac{\partial}{\partial y} \tag{3.44}\\
\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} & =\frac{-m(k+m \alpha) \alpha_{x}}{2\left(k+2 m^{2}-m \alpha\right)^{2}} \frac{\partial}{\partial x}+\frac{m \alpha_{y}}{2\left(k+2 m^{2}-m \alpha\right)} \frac{\partial}{\partial y}
\end{align*}
$$

It follows from (3.6), (3.20) and (3.23) that the second fundamental form satisfies

$$
\begin{align*}
h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right) & =\frac{-\alpha e_{3}-\sqrt{k+2 m \alpha-\alpha^{2}} e_{4}}{k+m \alpha}, h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=0 \tag{3.45}\\
h\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) & =\frac{(\alpha-2 m) e_{3}+\sqrt{k+2 m \alpha-\alpha^{2}} e_{4}}{k+2 m^{2}-m \alpha}
\end{align*}
$$

By applying (2.1), (3.24), (3.25) and (3.26) we obtain

$$
\begin{align*}
& L_{x x}= \frac{-m \alpha_{x} L_{x}}{2(k+m \alpha)}+\frac{m\left(k+2 m^{2}-m \alpha\right) \alpha_{y} L_{y}}{2(k+m \alpha)^{2}}-\frac{\alpha e_{3}+\sqrt{k+2 m \alpha-\alpha^{2}} e_{4}}{k+m \alpha} \\
& L_{x y}= \frac{-m \alpha_{y} L_{x}}{2(k+m \alpha)}+\frac{m \alpha_{x} L_{y}}{2\left(k+2 m^{2}-m \alpha\right)}, \\
& L_{y y}= \frac{-m(k+m \alpha) \alpha_{x} L_{x}}{2\left(k+2 m^{2}-m \alpha\right)^{2}}+\frac{m \alpha_{y} L_{y}}{2\left(k+2 m^{2}-m \alpha\right)} \\
&+\frac{(\alpha-2 m) e_{3}+\sqrt{k+2 m \alpha-\alpha^{2}} e_{4}}{k+2 m^{2}-m \alpha}, \\
& \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{3}=-\alpha L_{x}+\frac{\left(k+m^{2}\right) \alpha_{x}}{\left(k+2 m^{2}-m \alpha\right) \sqrt{k+2 m \alpha-\alpha^{2}}} e_{4} \tag{3.46}\\
& \tilde{\nabla}_{\frac{\partial}{\partial y}} e_{3}=(\alpha-2 m) L_{y}+\frac{\left(k+m^{2}\right) \alpha_{y}}{(k+m \alpha) \sqrt{k+2 m \alpha-\alpha^{2}}} e_{4}, \\
& \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{4}=-\sqrt{k+2 m \alpha-\alpha^{2}} L_{x}-\frac{\left(k+m^{2}\right) \alpha_{x}}{\left(k+2 m^{2}-m \alpha\right) \sqrt{k+2 m \alpha-\alpha^{2}}} e_{3}, \\
& \tilde{\nabla}_{\frac{\partial}{\partial y}} e_{4}=\sqrt{k+2 m \alpha-\alpha^{2}} L_{y}-\frac{\left(k+m^{2}\right) \alpha_{y}}{(k+m \alpha) \sqrt{k+2 m \alpha-\alpha^{2}}} e_{3} .
\end{align*}
$$

After applying (3.46) and a long computation, we find from $\left\langle L_{x x y}, L_{y}\right\rangle=$ $\left\langle L_{x y x}, L_{y}\right\rangle$ and from $\left\langle L_{x y y}, L_{x}\right\rangle=\left\langle L_{y y x}, L_{x}\right\rangle$ that

$$
\begin{equation*}
\alpha_{y}\left\{(k+m \alpha) \alpha_{x}+\left(k+2 m^{2}-m \alpha\right) \alpha_{y}\right\}=0 \tag{3.47}
\end{equation*}
$$

Hence, we have either
(1) $\alpha_{y}=0$ or
(2) $(k+m \alpha) \alpha_{x}+\left(k+2 m^{2}-m \alpha\right) \alpha_{y}=0$.

Case (ii.2.2.a). $\alpha_{y}=0$. In this case, system (3.46) reduces to

$$
\begin{align*}
& L_{x x}=\frac{-m \alpha_{x} L_{x}}{2(k+m \alpha)}-\frac{\alpha e_{3}+\sqrt{k+2 m \alpha-\alpha^{2}} e_{4}}{k+m \alpha}, \\
& L_{x y}=\frac{m \alpha_{x} L_{y}}{2\left(k+2 m^{2}-m \alpha\right)}, \\
& L_{y y}=\frac{-m(k+m \alpha) \alpha_{x} L_{x}}{2\left(k+2 m^{2}-m \alpha\right)^{2}}+\frac{(\alpha-2 m) e_{3}+\sqrt{k+2 m \alpha-\alpha^{2}} e_{4}}{k+2 m^{2}-m \alpha}, \\
& \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{3}=-\alpha L_{x}+\frac{\left(k+m^{2}\right) \alpha_{x}}{\left(k+2 m^{2}-m \alpha\right) \sqrt{k+2 m \alpha-\alpha^{2}}} e_{4}, \tag{3.48}\\
& \tilde{\nabla}_{\frac{\partial}{\partial y}} e_{3}=(\alpha-2 m) L_{y}, \\
& \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{4}=-\sqrt{k+2 m \alpha-\alpha^{2}} L_{x}-\frac{\left(k+m^{2}\right) \alpha_{x}}{\left(k+2 m^{2}-m \alpha\right) \sqrt{k+2 m \alpha-\alpha^{2}}} e_{3}, \\
& \tilde{\nabla}_{\frac{\partial}{\partial y}} e_{4}=\sqrt{k+2 m \alpha-\alpha^{2}} L_{y} .
\end{align*}
$$

Now, after applying (3.48), $\left\langle L_{x x y}, L_{y}\right\rangle=\left\langle L_{x y x}, L_{y}\right\rangle$ and $\left\langle L_{x y y}, L_{y}\right\rangle=\left\langle L_{y y x}, L_{y}\right\rangle$, we obtain that

$$
\begin{align*}
& a_{x x}=-\frac{2 k\left(k+2 m^{2}-m \alpha\right)^{2}-m^{2}\left(2 k+m^{2}+m \alpha\right) \alpha_{x}^{2}}{m\left(k+2 m^{2}-m \alpha\right)(k+m \alpha)} \tag{3.49}\\
& \alpha_{x}^{2}=\frac{2 k\left(k+2 m^{2}-m \alpha\right)^{2}}{m^{2}\left(k+m^{2}\right)} \tag{3.50}
\end{align*}
$$

Next, by differentiating (3.50) and by applying (3.49), we find $\alpha_{x}=0$. Thus, α is a constant, say $\alpha=r$. Because $\delta \neq 0$, (3.50) gives $k=0$. Therefore, system (3.48) becomes

$$
\begin{aligned}
L_{x x} & =-\frac{r e_{3}+\sqrt{2 m r-r^{2}} e_{4}}{m r} \\
L_{x y} & =0 \\
L_{y y} & =\frac{(r-2 m) e_{3}+\sqrt{2 m r-r^{2}} e_{4}}{2 m^{2}-m r}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{3}=-\alpha L_{x}, \quad \tilde{\nabla}_{\frac{\partial}{\partial y}} e_{3}=(\alpha-2 m) L_{y} \\
& \tilde{\nabla}_{\frac{\partial}{\partial x}} e_{4}=-\sqrt{2 m r-r^{2}} L_{x}, \quad \tilde{\nabla}_{\frac{\partial}{\partial y}} e_{4}=\sqrt{2 m r-r^{2}} L_{y}
\end{aligned}
$$

After solving this system and choosing suitable initial conditions, we have case (5) of the theorem.

Case (ii.2.2.b). $\quad(k+m \alpha) \alpha_{x}+\left(k+2 m^{2}-m \alpha\right) \alpha_{y}=0$. In this case, we have

$$
\begin{equation*}
\alpha_{y}=\frac{(k+m \alpha) \alpha_{x}}{m \alpha-k-2 m^{2}} \tag{3.51}
\end{equation*}
$$

Thus, system (3.46) becomes

$$
\begin{aligned}
L_{x x} & =-\frac{m \alpha_{x}\left(L_{x}+L_{y}\right)}{2(k+m \alpha)}-\frac{\alpha e_{3}+\sqrt{k+2 m \alpha-\alpha^{2}} e_{4}}{k+m \alpha} \\
L_{x y} & =\frac{m \alpha_{x}\left(L_{x}+L_{y}\right)}{2\left(k+2 m^{2}-m \alpha\right)} \\
L_{y y} & =-\frac{m(k+m \alpha) \alpha_{x}\left(L_{x}+L_{y}\right)}{2\left(k+2 m^{2}-m \alpha\right)^{2}}+\frac{(\alpha-2 m) e_{3}+\sqrt{k+2 m \alpha-\alpha^{2}} e_{4}}{k+2 m^{2}-m \alpha}
\end{aligned}
$$

$$
\begin{align*}
\tilde{\nabla}_{\frac{\partial}{\partial x}} e_{3} & =-\alpha L_{x}+\frac{\left(k+m^{2}\right) \alpha_{x} e_{4}}{\left(k+2 m^{2}-m \alpha\right) \sqrt{k+2 m \alpha-\alpha^{2}}} \tag{3.52}\\
\tilde{\nabla}_{\frac{\partial}{\partial y}} e_{3} & =(\alpha-2 m) L_{y}-\frac{\left(k+m^{2}\right) \alpha_{x} e_{4}}{\left(k+2 m^{2}-m \alpha\right) \sqrt{k+2 m \alpha-\alpha^{2}}} \\
\tilde{\nabla}_{\frac{\partial}{\partial x}} e_{4} & =-\sqrt{k+2 m \alpha-\alpha^{2}} L_{x}-\frac{\left(k+m^{2}\right) \alpha_{x} e_{3}}{\left(k+2 m^{2}-m \alpha\right) \sqrt{k+2 m \alpha-\alpha^{2}}} \\
\tilde{\nabla}_{\frac{\partial}{\partial y}} e_{4} & =\sqrt{k+2 m \alpha-\alpha^{2}} L_{y}+\frac{\left(k+m^{2}\right) \alpha_{x} e_{4}}{\left(k+2 m^{2}-m \alpha\right) \sqrt{k+2 m \alpha-\alpha^{2}}}
\end{align*}
$$

Now, from $L_{x x y}=L_{x y x}$ we find $(k+m \alpha) \alpha_{x}=0$. Also, we find from $L_{x y y}=L_{y y x}$ that $k=0$. Thus, α is a constant and $k=0$. Hence, this case reduces to (ii.2.a).

4. Spacelike Minimal Surfaces with Constant Gauss Curvature

From the equation of Gauss, we have
Lemma 4.1. Let M be a space-like minimal surface in $R_{2}^{4}(c)$. Then $K \geq c$. In particular, if $K=c$ holds identically, then M is totally geodesic.

For space-like minimal surfaces in $R_{2}^{4}(c)$, Theorem 1 of [12] implies that M has constant Gauss curvature if and only if it has constant normal curvature.

We recall the following result of Sasaki from [12].

Theorem 4.2. Let M be a space-like minimal surface in $R_{2}^{4}(c)$. If M has constant Gauss curvature, then either
(1) $K=c$ and M is a totally geodesic surface in $R_{2}^{4}(c)$;
(2) $c<0, K=0$ and M is congruent to an open part of the minimal surface defined by $\frac{1}{\sqrt{2}}(\cosh u, \cosh v, 0, \sinh u, \sinh v)$, or
(3) $c<0, K=c / 3$ and M is isotropic.

Let \mathbf{R}^{2} be a plane with coordinates s, t. Consider a map $\mathcal{B}: \mathbf{R}^{2} \rightarrow \mathbb{E}_{3}^{5}$ given by

$$
\begin{align*}
& \mathcal{B}(s, t)=\left(\sinh \left(\frac{2 s}{\sqrt{3}}\right)-\frac{t^{2}}{3}-\left(\frac{7}{8}+\frac{t^{4}}{18}\right) e^{\frac{2 s}{\sqrt{3}}}, t+\left(\frac{t^{3}}{3}-\frac{t}{4}\right) e^{\frac{2 s}{\sqrt{3}}}\right. \\
& \left.\quad \frac{1}{2}+\frac{t^{2}}{2} e^{\frac{2 s}{\sqrt{3}}}, t+\left(\frac{t^{3}}{3}+\frac{t}{4}\right) e^{\frac{2 s}{\sqrt{3}}}, \sinh \left(\frac{2 s}{\sqrt{3}}\right)-\frac{t^{2}}{3}-\left(\frac{1}{8}+\frac{t^{4}}{18}\right) e^{\frac{2 s}{\sqrt{3}}}\right) . \tag{4.1}
\end{align*}
$$

The first author proved in [4] that \mathcal{B} defines a full isometric parallel immersion

$$
\begin{equation*}
\psi_{\mathcal{B}}: H^{2}\left(-\frac{1}{3}\right) \rightarrow H_{2}^{4}(-1) \tag{4.2}
\end{equation*}
$$

of the hyperbolic plane $H^{2}\left(-\frac{1}{3}\right)$ of curvature $-\frac{1}{3}$ into $H_{2}^{4}(-1)$.
The following result was also obtained in [4].
Theorem 4.3. Let $\psi: M \rightarrow H_{2}^{4}(-1)$ be a parallel full immersion of a spacelike surface M into $H_{2}^{4}(-1)$. Then M is minimal in $H_{2}^{4}(-1)$ if and only if M is congruent to an open part of the surface defined by

$$
\begin{gathered}
\left(\sinh \left(\frac{2 s}{\sqrt{3}}\right)-\frac{t^{2}}{3}-\left(\frac{7}{8}+\frac{t^{4}}{18}\right) e^{\frac{2 s}{\sqrt{3}}}, t+\left(\frac{t^{3}}{3}-\frac{t}{4}\right) e^{\frac{2 s}{\sqrt{3}}}\right. \\
\left.\frac{1}{2}+\frac{t^{2}}{2} e^{\frac{2 s}{\sqrt{3}}}, t+\left(\frac{t^{3}}{3}+\frac{t}{4}\right) e^{\frac{2 s}{\sqrt{3}}}, \sinh \left(\frac{2 s}{\sqrt{3}}\right)-\frac{t^{2}}{3}-\left(\frac{1}{8}+\frac{t^{4}}{18}\right) e^{\frac{2 s}{\sqrt{3}}}\right) .
\end{gathered}
$$

Combining Theorem 4.2 and Theorem 4.3, we obtain the following.
Theorem 4.4. Let M be a non-totally geodesic space-like minimal surface in $H_{2}^{4}(-1)$. If M has constant Gauss curvature K, then either
(1) $K=0$ and M is congruent to an open part of the surface defined by

$$
\frac{1}{\sqrt{2}}(\cosh u, \cosh v, 0, \sinh u, \sinh v),
$$

or
(2) $K=-\frac{1}{3}$ and M is is congruent to an open part of the surface defined by

$$
\begin{gathered}
\left(\sinh \left(\frac{2 s}{\sqrt{3}}\right)-\frac{t^{2}}{3}-\left(\frac{7}{8}+\frac{t^{4}}{18}\right) e^{\frac{2 s}{\sqrt{3}}}, t+\left(\frac{t^{3}}{3}-\frac{t}{4}\right) e^{\frac{2 s}{\sqrt{3}}}\right. \\
\left.\frac{1}{2}+\frac{t^{2}}{2} e^{\frac{2 s}{\sqrt{3}}}, t+\left(\frac{t^{3}}{3}+\frac{t}{4}\right) e^{\frac{2 s}{\sqrt{3}}}, \sinh \left(\frac{2 s}{\sqrt{3}}\right)-\frac{t^{2}}{3}-\left(\frac{1}{8}+\frac{t^{4}}{18}\right) e^{\frac{2 s}{\sqrt{3}}}\right) .
\end{gathered}
$$

5. Wintgen Ideal Surfaces Satisfying $K^{D}=-2 K$

In 1979, P. Wintgen [13] proved a basic relationship between Gauss curvature K, normal curvature K^{D}, and mean curvature vector H of a surface M in a Euclidean 4-space \mathbb{E}^{4}; namely,

$$
\begin{equation*}
K+\left|K^{D}\right| \leq\langle H, H\rangle \tag{5.1}
\end{equation*}
$$

with the equality holding if and only if the curvature ellipse is a circle.
The following Wintgen type inequality for space-like surfaces in $R_{2}^{4}(c)$ can be found in [7].

Theorem 5.1. Let M be a space-like surface in a 4-dimensional indefinite space form $R_{2}^{4}(c)$ of constant sectional curvature c and index two. Then we have

$$
\begin{equation*}
K+K^{D} \geq\langle H, H\rangle+c \tag{5.2}
\end{equation*}
$$

at every point. Moreover, the equality sign of (5.2) holds at a point $p \in M$ if and only if, with respect to some suitable orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, the shape operator at p satisfies

$$
A_{e_{3}}=\left(\begin{array}{cc}
\mu+2 \gamma & 0 \tag{5.3}\\
0 & \mu
\end{array}\right), A_{e_{4}}=\left(\begin{array}{ll}
0 & \gamma \\
\gamma & 0
\end{array}\right)
$$

Following [6, 9, 11], we call a surface in $R_{2}^{4}(c)$ Wintgen ideal if it satisfies the equality case of (5.2) identically. Wintgen ideal surfaces in \mathbb{E}_{2}^{4} satisfying $|K|=$ $\left|K^{D}\right|$ are classified by the first author in [7] (see [6] for the classification of Wintgen ideal surfaces in \mathbb{E}^{4} satisfying $|K|=\left|K^{D}\right|$.

We need the following existence result.
Theorem 5.2. Let c be a real number and γ with $3 \gamma^{2}>-c$ be a positive solution of the second order elliptic differential equation

$$
\begin{align*}
& \frac{\partial}{\partial x}\left(\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}-c\right)\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}} \gamma_{x}}{2 \gamma\left(c+3 \gamma^{2}\right)}\right) \tag{5.4}\\
& \quad-\frac{\partial}{\partial y}\left(\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}-c\right) \gamma_{y}}{2 \gamma\left(c+3 \gamma^{2}\right)\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}}\right)=\gamma \sqrt{c+3 \gamma^{2}}
\end{align*}
$$

defined on a simply-connected domain $D \subset \mathbf{R}^{2}$. Then $M_{\gamma}=\left(D, g_{\gamma}\right)$ with the metric

$$
\begin{equation*}
g_{\gamma}=\frac{\sqrt{c+3 \gamma^{2}}}{\gamma\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}}\left(d x^{2}+\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{2 \sqrt{3}} d y^{2}\right) \tag{5.5}
\end{equation*}
$$

admits a non-minimal Wintgen ideal immersion $\psi_{\gamma}: M_{\gamma} \rightarrow R_{2}^{4}(c)$ into a complete simply-connected indefinite space form $R_{2}^{4}(c)$ satisfying $K^{D}=2 K$ identically.

Proof. Let c be a real number and γ be positive solution of (5.4) with $3 \gamma^{2}>-c$ defined on a simply-connected domain D. Consider the surface $M_{\gamma}=\left(D, g_{\gamma}\right)$ with metric g_{γ} given by (5.5). Then the Levi-Civita connection of g_{γ} satisfies

$$
\begin{align*}
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}= & -\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}+c\right) \gamma_{x}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial x}+\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}+c\right) \gamma_{y}}{2 \gamma\left(c+3 \gamma^{2}\right)\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{2 \sqrt{3}}} \frac{\partial}{\partial y} \\
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}= & -\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}+c\right) \gamma_{x}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial x}+\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}-c\right) \gamma_{x}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial y} \\
\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}= & \frac{\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{2 \sqrt{3}}\left(c-3 \gamma \sqrt{c+3 \gamma^{2}}\right) \gamma_{x}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial x} \tag{5.6}\\
& +\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}-c\right) \gamma_{y}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial y}
\end{align*}
$$

Let us define a bilinear map: $h: T M \rightarrow N M$ by

$$
\begin{align*}
h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right) & =-\frac{\left(\gamma+\sqrt{c+3 \gamma^{2}}\right) \sqrt{c+3 \gamma^{2}}}{\gamma\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}} e_{3} \\
h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) & =-\sqrt{c+3 \gamma^{2}} e_{4} \tag{5.7}\\
h\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) & =\frac{\left(\gamma-\sqrt{c+3 \gamma^{2}}\right) \sqrt{c+3 \gamma^{2}}\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}}{\gamma} e_{3}
\end{align*}
$$

where $N M$ is the plane bundle over M spanned by an orthonormal time-like frame $\left\{e_{3}, e_{4}\right\}$. Define a linear metric connection D on $N M$ by

$$
\begin{align*}
D_{\frac{\partial}{\partial x}} e_{3} & =\frac{-3 \gamma \gamma_{y} e_{4}}{\left(c+3 \gamma^{2}\right)\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}} \\
D_{\frac{\partial}{\partial y}} e_{3} & =\frac{3 \gamma\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}} \gamma_{x}}{c+3 \gamma^{2}} e_{4} \\
D_{\frac{\partial}{\partial x}} e_{4} & =\frac{3 \gamma \gamma_{y} e_{3}}{\left(c+3 \gamma^{2}\right)\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}} \tag{5.8}\\
D_{\frac{\partial}{\partial y}} e_{3} & =-\frac{3 \gamma\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}} \gamma_{x}}{c+3 \gamma^{2}} e_{3}
\end{align*}
$$

Then it follows from a very long direct computation that $\left(M_{\gamma}, g_{\gamma}, D, h\right)$ satisfies the equations of Gauss, Codazzi and Ricci. Hence, the fundamental existence and uniqueness theorem of submanifolds implies that, up to rigid motions, there exists a unique isometric immersion from M_{γ} into $R_{2}^{4}(c)$ whose second fundamental form and normal connection are given by h and D, respectively. By applying (5.5), (5.7) and $c+3 \gamma^{2}>0$ we see that M is a non-minimal Wintgen ideal surface in $R_{2}^{4}(c)$.

Now, we classify Wintgen ideal surfaces in $R_{2}^{4}(c)$ which satisfy $K^{D}=2 K$.

Theorem 5.3. Let M be a Wintgen ideal surface in a complete simply-connected indefinite space form $R_{2}^{4}(c)$ with $c=1,0$ or -1 . If M satisfies $K^{D}=2 K$ identically, then one of following three cases occurs:
(1) $c=0$ and M is a totally geodesic surface in \mathbb{E}_{2}^{4};,
(2) $c=-1$ and M is a minimal surface in $H_{2}^{4}(-1)$ congruent to an open part of $\psi_{\mathcal{B}}: H^{2}\left(-\frac{1}{3}\right) \rightarrow H_{2}^{4}(-1) \subset \mathbb{E}_{3}^{5}$ defined by

$$
\begin{gathered}
\quad\left(\sinh \left(\frac{2 s}{\sqrt{3}}\right)-\frac{t^{2}}{3}-\left(\frac{7}{8}+\frac{t^{4}}{18}\right) e^{\frac{2 s}{\sqrt{3}}}, t+\left(\frac{t^{3}}{3}-\frac{t}{4}\right) e^{\frac{2 s}{\sqrt{3}}}\right. \\
\left.\frac{1}{2}+\frac{t^{2}}{2} e^{\frac{2 s}{\sqrt{3}}}, t+\left(\frac{t^{3}}{3}+\frac{t}{4}\right) e^{\frac{2 s}{\sqrt{3}}}, \sinh \left(\frac{2 s}{\sqrt{3}}\right)-\frac{t^{2}}{3}-\left(\frac{1}{8}+\frac{t^{4}}{18}\right) e^{\frac{2 s}{\sqrt{3}}}\right)
\end{gathered}
$$

(3) M is a non-minimal surface in $R_{2}^{4}(c)$ which is congruent to an open part of $\psi_{\gamma}: M_{\gamma} \rightarrow R_{2}^{4}(c)$ associated with a positive solution γ of the elliptic differential equation (5.4) as described in Theorem 5.2.

Proof. Let M be a Wintgen surface in $R_{2}^{4}(c)$. Then, according to Theorem 5.1, there exist an orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ such that shape operator satisfies (5.3) for some functions γ, μ. Thus, the Gauss and normal curvatures are given by

$$
\begin{equation*}
K=c+\gamma^{2}-\mu^{2}-2 \gamma \mu, \quad K^{D}=-2 \gamma^{2} . \tag{5.9}
\end{equation*}
$$

It follows from the condition $K^{D}=2 K$ that $\mu=-\gamma \pm \sqrt{c+3 \gamma^{2}}$. Without loss of generality, we may assume $\gamma \geq 0$.

Case (i). $\mu=-\gamma+\sqrt{c+3 \gamma^{2}}$. We divide this into two subcases.
Case (i.1). $\quad c+3 \gamma^{2}=0$. We have $\mu=-\gamma$ and $c \leq 0$. Thus, M is a minimal surface.

If $c=0$, we get $\gamma=\mu=0$, which implies that M is totally geodesic. So, we get case (1) of the theorem.

If $c=-1$, we have $\gamma=-\mu=\frac{1}{\sqrt{3}}$. Thus, by (5.9) M is a minimal surface with curvature $-\frac{1}{3}$. Hence, we obtain case (2) of the theorem according to Theorem 4.4.

Case (i.2). $\quad c+3 \gamma^{2} \neq 0$. From (5.3) we obtain

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=-\left(\gamma+\sqrt{c+3 \gamma^{2}}\right) e_{3} \\
& h\left(e_{1}, e_{2}\right)=-\gamma e_{4} \tag{5.10}\\
& h\left(e_{2}, e_{2}\right)=\left(\gamma-\sqrt{c+3 \gamma^{2}}\right) e_{3}
\end{align*}
$$

Thus, it follows from Codazzi's equation that

$$
\begin{equation*}
\omega_{1}^{2}\left(e_{1}\right)=\frac{3 \gamma \sqrt{c+3 \gamma^{2}}+c}{2 \gamma\left(c+3 \gamma^{2}\right)} e_{2} \gamma, \quad \omega_{1}^{2}\left(e_{2}\right)=\frac{3 \gamma \sqrt{c+3 \gamma^{2}}-c}{2 \gamma\left(c+3 \gamma^{2}\right)} e_{1} \gamma, \tag{5.11}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{3}^{4}\left(e_{1}\right)=-\frac{3 \gamma e_{2} \gamma}{c+3 \gamma^{2}}, \quad \omega_{3}^{4}\left(e_{2}\right)=\frac{3 \gamma e_{1} \gamma}{c+3 \gamma^{2}} . \tag{5.12}
\end{equation*}
$$

After applying (5.11) we derive that

$$
\left[\frac{\left(c+3 \gamma^{2}\right)^{1 / 4}}{\sqrt{\gamma}\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3} / 2}} e_{1}, \frac{\left(c+3 \gamma^{2}\right)^{1 / 4}\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3} / 2}}{\sqrt{\gamma}} e_{2}\right]=0 .
$$

Hence there exist coordinates $\{x, y\}$ such that

$$
\begin{align*}
& \frac{\partial}{\partial x}=\frac{\left(c+3 \gamma^{2}\right)^{1 / 4}}{\sqrt{\gamma}\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3} / 2}} e_{1}, \\
& \frac{\partial}{\partial y}=\frac{\left(c+3 \gamma^{2}\right)^{1 / 4}\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3} / 2}}{\sqrt{\gamma}} e_{2} . \tag{5.13}
\end{align*}
$$

By using (5.13) we know that the metric tensor is given by

$$
\begin{equation*}
g=\frac{\sqrt{c+3 \gamma^{2}}}{\gamma\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}} d x^{2}+\frac{\sqrt{c+3 \gamma^{2}}\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}}{\gamma} d y^{2} \tag{5.14}
\end{equation*}
$$

which implies that the Levi-Civita connection satisfies

$$
\begin{align*}
\nabla_{\frac{\partial}{}}^{\partial x} \frac{\partial}{\partial x}= & -\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}+c\right) \gamma_{x}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial x}+\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}+c\right) \gamma_{y}}{2 \gamma\left(c+3 \gamma^{2}\right)\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{2 \sqrt{3}}} \frac{\partial}{\partial y}, \\
\nabla_{\frac{\partial}{\partial x}}^{\partial y}= & -\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}+c\right) \gamma_{x}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial x}+\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}-c\right) \gamma_{x}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial y}, \\
\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}= & \frac{\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{2 \sqrt{3}}\left(c-3 \gamma \sqrt{c+3 \gamma^{2}}\right) \gamma_{x}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial x} \tag{5.15}\\
& +\frac{\left(3 \gamma \sqrt{c+3 \gamma^{2}}-c\right) \gamma_{y}}{2 \gamma\left(c+3 \gamma^{2}\right)} \frac{\partial}{\partial y} .
\end{align*}
$$

From (5.12) and (5.13) we find

$$
\begin{align*}
& \omega_{3}^{4}\left(\frac{\partial}{\partial x}\right)=\frac{-3 \gamma \gamma_{y}}{\left(c+3 \gamma^{2}\right)\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}} \tag{5.16}\\
& \omega_{3}^{4}\left(\frac{\partial}{\partial y}\right)=\frac{3 \gamma\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}}{c+3 \gamma^{2}} \gamma_{x} .
\end{align*}
$$

Also, it follows from (5.10) and (5.13) that

$$
\begin{align*}
h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right) & =-\frac{\left(\gamma+\sqrt{c+3 \gamma^{2}}\right) \sqrt{c+3 \gamma^{2}}}{\gamma\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}} e_{3} \\
h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) & =-\sqrt{c+3 \gamma^{2}} e_{4} \tag{5.17}\\
h\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) & =\frac{\left(\gamma-\sqrt{c+3 \gamma^{2}}\right) \sqrt{c+3 \gamma^{2}}\left(6 \gamma+2 \sqrt{3 c+9 \gamma^{2}}\right)^{\sqrt{3}}}{\gamma} e_{3}
\end{align*}
$$

Moreover, from (5.10), (5.15) and the equation of Gauss we know that γ satisfies the elliptic differential equation (5.4). Consequently, after applying Theorem 5.2 we obtain case (3) of the theorem.

Case (ii). $\quad \mu=-\gamma-\sqrt{c+3 \gamma^{2}}$. After replacing e_{3}, e_{4} by $-e_{3},-e_{4}$, respectively, this reduces to (i).

References

1. B.-Y. Chen, Geometry of Submanifolds, Mercer Dekker, New York, 1973.
2. B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, New Jersey, 1984.
3. B.-Y. Chen, Riemannian submanifolds, Handbook of Differential Geometry, Vol. I, North-Holland, pp. 187-418. Amsterdam, 2000.
4. B.-Y. Chen, A minimal immersion of hyperbolic plane in neutral pseudo-hyperbolic 4-space and its characterization, Arch. Math., 94 (2010), 257-265.
5. B.-Y. Chen, Complete classification of parallel spatial surfaces in pseudo-Riemannian space forms with arbitrary index and dimension, J. Geom. Phys., 60 (2010), 260-280.
6. B.-Y. Chen, Classification of Wintgen ideal surfaces in Euclidean 4 -space with equal Gauss and normal curvatures, Ann. Global Anal. Geom., 38 (2010), 145-160.
7. B.-Y. Chen, Wintgen ideal surfaces in 4-dimensional neutral indefinite space form $R_{2}^{4}(c)$, (submitted for publication).
8. B.-Y. Chen and J. Van der Veken, Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms, Tohoku Math. J., 61 (2009), 1-40.
9. S. Decu, M. Petrovic-Torgašev and L. Verstraelen, On the intrinsic Deszcz symmetries and the extrinsic Chen character of Wintgen ideal submanifolds, Tamkang J. Math., 41(2) (2010), 109-116.
10. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1982.
11. M. Petrović-Torgašev and L. Verstraelen, On Deszcz symmetries of Wintgen ideal submanifolds, Arch. Math. (Brno.), 44 (2008), 57-67.
12. M. Sasaki, Spacelike maximal surfaces in 4-dimensional space forms of index 2, Tokyo J. Math., 25 (2002), 295-306.
13. P. Wintgen, Sur l'inégalité de Chen-Willmore, C. R. Acad. Sci. Paris, 288 (1979), 993-995.

Bang-Yen Chen
Department of Mathematics
Michigan State University
East Lansing, MI 48824
U.S.A.
E-mail: bychen@ math.msu.edu
Bogdan D. Suceavǎ
Department of Mathematics
California State University
Fullerton, CA 92854
U.S.A.
E-mail: bsuceava@fullerton.edu

[^0]: Received September 4, 2009, accepted September 7, 2009.
 Communicated by J. C. Yao.
 2000 Mathematics Subject Classification: Primary 53C40; Secondary 53C50.
 Key words and phrases: Gauss curvature, Normal curvature, Wintgen ideal surface, Space-like surface.

