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FIXED POINT THEOREMS AND ERGODIC THEOREMS FOR
NONLINEAR MAPPINGS IN HILBERT SPACES

Wataru Takahashi and Jen-Chih Yao*

Abstract. In this paper, we first consider classes of nonlinear mappings
containing the class of firmly nonexpansive mappings which can be deduced
from an equilibrium problem in a Hilbert space. Further, we deal with fixed
point theorems and ergodic theorems for these nonlinear mappings.

1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H . Then a mapping T : C → H is said to be nonexpansive if ‖Tx − Ty‖ ≤
‖x − y‖ for all x, y ∈ C. We know that if C is a bounded closed convex subset
of H and T : C → C is nonexpansive, then the set F (T ) of fixed points of T is
nonempty. Further, from Baillon [1] we know the first nonlinear ergodic theorem
in a Hilbert space: Let C be a nonempty bounded closed convex subset of H and
let T : C → C be nonexpansive. Then, for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ). An important example of nonexpansive
mappings in a Hilbert space is a firmly nonexpansive mapping. A mapping F is
said to be firmly nonexpansive if

‖Fx − Fy‖2 ≤ 〈x − y, Fx− Fy〉
for all x, y ∈ C; see, for instance, Browder [3], Goebel and Kirk [5], Goebel and
Reich [6], Reich and Shoikhet [11] and Takahashi [13]. It is known that a mapping
F : C → H is firmly nonexpansive if and only if

‖Fx − Fy‖2 + ‖(I − F )x − (I − F )y‖2 ≤ ‖x − y‖2
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for all x, y ∈ C, where I is the identity mapping on H . It is also known that a
firmly nonexpansive mapping F can be deduced from an equilibrium problem in a
Hilbert space as follows: Let C be a nonempty closed convex subset of H and let
f : C × C → R be a bifunction satisfying the following conditions:

(A1) f(x, x) = 0, ∀x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;
(A3) limt↓0 f(tz + (1 − t)x, y) ≤ f(x, y), ∀x, y, z ∈ C;
(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.

We know the following lemma; see, for instance, [2] and [4].

Lemma 1.1. Let C be a nonempty closed convex subset of H and let f be a
bifunction from C × C into R satisfying (A1), (A2), (A3) and (A4). Then, for any
r > 0 and x ∈ H , there exists z ∈ C such that

f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, if Trx = {z ∈ C : f(z, y) + 1
r 〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, then the

following hold:

(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e.,

‖Trx − Try‖2 ≤ 〈Trx − Try, x− y〉, ∀x, y ∈ H.

Recently, Kohsaka and Takahashi [9] introduced the following nonlinear map-
ping: Let E be a smooth, strictly convex and reflexive Banach space, let J be the
duality mapping of E and let C be a nonempty closed convex subset of E . Then,
a mapping S : C → E is said to be nonspreading if

φ(Sx, Sy) + φ(Sy, Sx) ≤ φ(Sx, y) + φ(Sy, x)

for all x, y ∈ C, where φ(x, y) = ‖x‖2 − 2 〈x, Jy〉 + ‖y‖2 for all x, y ∈ E .
They considered such a mapping to study the resolvents of a maximal monotone
operator in the Banach space. In the case when E is a Hilbert space, we know that
φ(x, y) = ‖x − y‖2 for all x, y ∈ E . So, a nonspreading mapping S in a Hilbert
space H is defined as follows:

2 ‖Sx− Sy‖2 ≤ ‖Sx− y‖2 + ‖x − Sy‖2

for all x, y ∈ C. On the other hand, Takahashi [16] found another new nonlinear
mapping called a hybrid mapping which is deduced from a firmly nonexpansive
mapping.
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In this paper, we first discuss classes of nonlinear mappings containing the class
of firmly nonexpansive mappings which can be deduced from a firmly nonexpansive
mapping in a Hilbert space. Further, we deal with fixed point theorems and ergodic
theorems for these nonlinear mappings.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product 〈 · , · 〉 and
norm ‖ · ‖, respectively. In a Hilbert space, it is known that

(1) ‖αx + (1 − α)y‖2 = α ‖x‖2 + (1− α) ‖y‖2 − α(1 − α) ‖x − y‖2

for all x, y ∈ H and α ∈ R; see, for instance, [15]. Further, in a Hilbert space, we
have that

(2) 2 〈x − y, z − w〉 = ‖x − w‖2 + ‖y − z‖2 − ‖x − z‖2 − ‖y − w‖2

for all x, y, z, w ∈ H . Indeed, we have that

2 〈x − y, z − w〉 = 2 〈x, z〉 − 2 〈x, w〉 − 2 〈y, z〉+ 2 〈y, w〉
= (−‖x‖2 + 2 〈x, z〉 − ‖z‖2) + (‖x‖2 − 2 〈x, w〉+ ‖w‖2)

+ (‖y‖2 − 2 〈y, z〉+ ‖z‖2) + (−‖y‖2 + 2 〈y, w〉 − ‖w‖2)

= ‖x − w‖2 + ‖y − z‖2 − ‖x − z‖2 − ‖y − w‖2 .

Let C be a closed convex subset of H and let T be a mapping of C into H . We
denote by F (T ) the set of all fixed points of T , that is, F (T ) = {z ∈ C : Tz = z}.
We denote the strong convergence and the weak convergence of {xn} to x ∈ H by
xn → x and xn ⇀ x, respectively. A mapping T : C → H is nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. A mapping F : C → H is firmly nonexpansive if

‖Fx − Fy‖2 ≤ 〈x − y, Fx− Fy〉
for all x, y ∈ C. We know that a firmly nonexpansive mapping S : C → H is
nonexpansive. The following lemma is in [13].

Lemma 2.1. Let C be a nonempty closed convex subset of H and let f : C →
(−∞,∞] be a proper convex lower semicontinuous function such that f(z m) → ∞
as ‖zm‖ → ∞. Then there exists an element z0 ∈ C such that

f(z0) = min{f(z) : z ∈ C}.
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Let N be the set of positive integers and let l∞ be the Banach space of bounded
sequences with supremum norm. Let µ be an element of (l∞)∗ (the dual space
of l∞). Then, we denote by µ(f) the value of µ at f = (x1, x2, x3, . . .) ∈ l∞.
Sometimes, we denote by µn(xn) the value µ(f). A linear functional µ on l∞ is
called a mean if µ(e) = ‖µ‖ = 1, where e = (1, 1, 1, . . . ). A mean µ is called a
Banach limit on l∞ if µn(xn+1) = µn(xn). We know that there exists a Banach
limit on l∞; see [13] for more details.

3. NONLINEAR MAPPINGS

Let H be a Hilbert space. Let C be a nonempty closed convex subset of H and
let T be a mapping of C into H . Then, from [16], we have the following equality:

(3) ‖Tx − Ty‖2 = ‖x − y − (Tx− Ty)‖2 − ‖x − y‖2 + 2〈x− y, Tx− Ty〉

for all x, y ∈ C. We have also from (2) that

(4) 2 〈x − y, Tx− Ty〉 = ‖x − Ty‖2 + ‖y − Tx‖2 − ‖x − Tx‖2 − ‖y − Ty‖2.

Further, we have that

(5) ‖x − y − (Tx− Ty)‖2 = ‖x − Tx‖2 + ‖y − Ty‖2 − 2〈x − Tx, y − Ty〉.
If T : C → H is firmly nonexpansive, then

‖Tx − Ty‖2 ≤ 〈x − y, Tx− Ty〉.
So, we have from (3) that

2‖Tx− Ty‖2 ≤ 2〈x − y, Tx− Ty〉
= ‖Tx − Ty‖2 − ‖x − y − (Tx − Ty)‖2 + ‖x − y‖2

≤ ‖Tx − Ty‖2 + ‖x − y‖2.

Then, we have

‖Tx − Ty‖2 ≤ ‖x − y‖2

and hence

‖Tx − Ty‖ ≤ ‖x− y‖.
Such a mapping is called a nonexpansive mapping. Thus, we can get new classes
of nonlinear operators which contain the class of firmly nonexpansive mappings in
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a Hilbert space. For example, Kohsaka and Takahahi [9] obtained a nonspreading
mapping, i.e.,

2‖Tx− Ty‖2 ≤ ‖x− Ty‖2 + ‖y − Tx‖2

for all x, y ∈ C. We know that the class of nonspreading mappings contains the
class of firmly nonexpansive mappings; see [16]. From Iemoto and Takahashi [7],
we know the following lemma.

Lemma 3.1. Let C be a nonempty closed convex subset of H . Then a mapping
S : C → H is nonspreading if and only if

‖Sx− Sy‖2 ≤ ‖x − y‖2 + 2 〈x − Sx, y − Sy〉
for all x, y ∈ C.

Further, Takahashi [16] defined the following hybrid mapping, i.e.,

‖Tx − Ty‖2 ≤ ‖x − y‖2 + 〈x− Tx, y − Ty〉
for all x, y ∈ C. We also know that the class of hybrid mappings contains the class
of firmly nonexpansive mappings; see [16]. From Takahashi [16], we know the
following lemma.

Lemma 3.2. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Then a mapping T : C → H is hybrid if and only if

3‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖y − Tx‖2 + ‖x − Ty‖2

for all x, y ∈ C.

So, a hybrid mapping T : C → H is different from a nonspreading mapping.

4. GENERALIZED FIXED POINT THEOREM

In this section, we prove a generalized fixed point theorem in a Hilbert space.
Before proving the theorem, we show the following lemma.

Lemma 4.1. Let C be a nonempty closed convex subset of a Hilbert space H ,
let {xn} be a bounded sequence in H and let µ be a Banach limit. If g : C → R

is defined by
g(z) = µn‖xn − z‖2, ∀z ∈ C,

then there exists a unique z0 ∈ C such that

g(z0) = min{g(z) : z ∈ C}.
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Proof. Let z, y ∈ C and α, β ∈ [0, 1] with α + β = 1. Then, for any n ∈ N

we have from (1)

‖xn − (αz + βy)‖2 ≤ α‖xn − z‖2 + β‖xn − y‖2.

Since µ is a Banach limit, we have

g(αz + βy) = µn‖xn − (αz + βy)‖2

≤ αµn‖xn − z‖2 + βµn‖xn − y‖2

= αg(z) + βg(y).

This implies that g : C → R is a convex function. Let z ∈ C and let {zm} be a
sequence in C such that zm → z. Then, for any n, m ∈ N we have

‖xn − zm‖2 − ‖xn − z‖2 ≤ |‖xn − zm‖ − ‖xn − z‖|(‖xn − zm‖ + ‖xn − z‖)
≤ M1‖zm − z‖,

where M1 = supn,m∈N (‖xn − zm‖ + ‖xn − z‖). So, we have

g(zm) − g(z) ≤ M1‖zm − z‖.

Similarly, we have
g(z)− g(zm) ≤ M1‖zm − z‖.

Therefore, we have
|g(zm) − g(z)| ≤ M1‖zm − z‖.

This implies that g : C → R is a continuous function. Suppose that {zm} is a
sequence in C such that ‖zm‖ → ∞. Then, we have

‖zm‖2 = ‖zm − xn + xn‖2

= ‖zm − xn‖2 + ‖xn‖2 + 2〈zm − xn, xn〉
≤ ‖zm − xn‖2 + ‖xn‖2 + 2(‖zm‖ + ‖xn‖)‖xn‖
≤ ‖zm − xn‖2 + M2

2 + 2(‖zm‖ + M2)M2,

where M2 = supn∈N ‖xn‖. Hence, we have

‖zm‖(‖zm‖ − 2M2) − 3M2
2 ≤ ‖zm − xn‖2.

So, we have
‖zm‖(‖zm‖ − 2M2) − 3M2

2 ≤ µn‖zm − xn‖2.
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This implies that g(zm) → ∞ as ‖zm‖ → ∞. Therefore, we have from Lemma
2.1 that there exists an element z0 ∈ C such that

g(z0) = min{g(z) : z ∈ C}.
Let z0 and z1 be elements in C such that z0 �= z1 and

g(z0) = g(z1) = min{g(z) : z ∈ C} = r.

From (1), we have

‖xn − (
1
2
z0 +

1
2
z1)‖2 =

1
2
‖xn − z0‖2 +

1
2
‖xn − z1‖2 − 1

4
‖z0 − z1‖2.

So, using µ, we have

g(
1
2
z0 +

1
2
z1) =

1
2
g(z0) +

1
2
g(z1) − 1

4
‖z0 − z1‖2

= r − 1
4
‖z0 − z1‖2.

This is a contradiction. So, we have z0 = z1.

Theorem 4.1. Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let T be a mapping of C into itself. Suppose that there exists an
element x ∈ C such that {T nx} is bounded and

µn‖T nx − Ty‖2 ≤ µn‖T nx − y‖2, ∀y ∈ C

for some Banach limit µ. Then, T has a fixed point in C.

Proof. Using a Banach limit µ on l∞, we can define g : C → R as follows:

g(z) = µn‖T nx − z‖2, ∀z ∈ C.

From Lemma 4.1, there exists a unique z0 ∈ C such that

g(z0) = min{g(z) : z ∈ C}.
So, we have

g(Tz0) = µn‖T nx − Tz0‖2 ≤ µn‖T nx − z0‖2 = g(z0).

Since Tz0 is in C and z0 ∈ C is a unique element such that

g(z0) = min{g(z) : z ∈ C},
we have Tz0 = z0. This completes the proof.
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5. SOME FIXED POINT THEOREMS

In this section, we obtain some fixed point theorems by using Theorem 4.1. The
following is the well-known fixed point theorem for nonexpansive mappings in a
Hilbert space; see, for instance, [15].

Theorem 5.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let T : C → C be a nonexpansive mapping, i.e.,

‖Tx− Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T
has a fixed point in C.

Proof. Let µ be a Banach limit on l∞. For any n ∈ N and y ∈ C, we have

‖T n+1x − Ty‖2 ≤ ‖T nx − y‖2.

So, we have

µn‖T nx − Ty‖2 = µn‖T n+1x − Ty‖2 ≤ µn‖T nx − y‖2

for all y ∈ C. By Theorem 4.1, T has a fixed point in C.

The following is a fixed point theorem for nonspreading mappings in a Hilbert
space.

Theorem 5.2. ([9]). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let T : C → C be a nonspreading mapping, i.e.,

2‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T
has a fixed point in C.

Proof. Let µ be a Banach limit on l∞. For any n ∈ N and y ∈ C, we have

2‖T n+1x − Ty‖2 ≤ ‖T n+1x − y‖2 + ‖T nx − Ty‖2.

So, we have

2µn‖T nx − Ty‖2 = 2µn‖T n+1x − Ty‖2

≤ µn‖T n+1x − y‖2 + µn‖T nx − Ty‖2

= µn‖T nx − y‖2 + µn‖T nx − Ty‖2
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and hence
µn‖T nx − Ty‖2 ≤ µn‖T nx − y‖2.

By Theorem 4.1, T has a fixed point in C.
The following is a fixed point theorem for hybrid mappings in a Hilbert space.

Theorem 5.3. ([16]). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let T : C → C be a hybrid mapping, i.e.,

‖Tx − Ty‖2 ≤ ‖x − y‖2 + 〈x − Tx, y − Ty〉, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T
has a fixed point in C.

Proof. Let µ be a Banach limit on l∞. We know from Lemma 3.2 that a
mapping T : C → C is hybrid if and only if

3‖Tx− Ty‖2 ≤ ‖x − y‖2 + ‖Tx− y‖2 + ‖Ty − x‖2, ∀x, y ∈ C.

So, for any n ∈ N and y ∈ C, we have

3‖T n+1x − Ty‖2 ≤ ‖T nx − y‖2 + ‖T n+1x − y‖2 + ‖T nx − Ty‖2.

So, we have

3µn‖T nx − Ty‖2 = 3µn‖T n+1x − Ty‖2

≤ 2µn‖T nx − y‖2 + µn‖T nx − Ty‖2

and hence
µn‖T nx − Ty‖2 ≤ µn‖T nx − y‖2.

By Theorem 4.1, T has a fixed point in C.

We can also prove the following fixed point theorem in a Hilbert space.

Theorem 5.4. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let T : C → C be a mapping such that

2‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖Tx − y‖2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T

has a fixed point in C.
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Proof. Let µ be a Banach limit on l∞. For any n ∈ N and y ∈ C, we have

2‖T n+1x − Ty‖2 ≤ ‖T nx − y‖2 + ‖T n+1x − y‖2.

So, we have

2µn‖T nx − Ty‖2 = 2µn‖T n+1x − Ty‖2

≤ 2µn‖T nx − y‖2

and hence
µn‖T nx − Ty‖2 ≤ µn‖T nx − y‖2.

By Theorem 4.1, T has a fixed point in C.

We can also discuss the demiclosedness of our nonlinear mappings in a Hilbert
space. The following result is well known; see [13].

Theorem 5.5. Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let T be a nonexpansive mapping of C into itself. Then T is
demiclosed, i.e., xn ⇀ u and xn − Txn → 0 imply u ∈ F (T ).

The following result is in [7].

Theorem 5.6. Let H be a Hilbert space and let C be a nonempty closed
convex subset of H . Let T be a nonspreadind mapping of C into itself. Then T is
demiclosed, i.e., xn ⇀ u and xn − Txn → 0 imply u ∈ F (T ).

From Takahashi [16], we also know the following result.

Theorem 5.7. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let T be a hybrid mapping of C into itself. Then T is demiclosed,
i.e., xn ⇀ u and xn − Txn → 0 imply u ∈ F (T ).

We can further prove the following result.

Theorem 5.8. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let T : C → C be a mapping such that

2‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖Tx − y‖2, ∀x, y ∈ C.

Then T is demiclosed, i.e., xn ⇀ u and xn − Txn → 0 imply u ∈ F (T ).

Proof. Let {xn} ⊂ C be a sequence such that xn ⇀ u and xn − Txn → 0 as
n → ∞. Then the sequences {xn} and {Txn} are bounded. Suppose that u �= Tu.
From Opial’s theorem [10], we have
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lim inf
n→∞ ‖xn − u‖2 < lim inf

n→∞ ‖xn − Tu‖2

= lim inf
n→∞ ‖xn − Txn + Txn − Tu‖2

= lim inf
n→∞ ‖Txn − Tu‖2

≤ lim inf
n→∞

1
2
(‖xn − u‖2 + ‖Txn − u‖2)

= lim inf
n→∞

1
2
(‖xn − u‖2 + ‖Txn − xn + xn − u‖2)

= lim inf
n→∞ ‖xn − u‖2 .

This is a contradiction. Hence we get the conclusion.

6. NONLINEAR ERDODIC THEOREMS

Baillon [1] proved the first nonlinear ergodic theorem for nonexpansive map-
pings in a Hilbert space.

Theorem 6.1. Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let T be a nonexpansive mapping of C into itself such that F (T )
is nonempty. Then, for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ).

We can also prove the following nonlinear ergodic theorem for our nonlinear
operators in a Hilbert space.

Theorem 6.2. Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let T be a mapping of C into itself such that F (T ) is nonempty.
Suppose that T satisfies one of the following conditions:

(i) T is nonspreading;
(ii) T is hybrid;
(iii) 2‖Tx− Ty‖2 ≤ ‖x − y‖2 + ‖Tx − y‖2, ∀x, y ∈ C.

Then, for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ).
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Proof. Let us prove the case of (i). We first show that F (T ) is closed and
convex. It follows from Theorem 5.6 that F (T ) is closed. In fact, let {xn} ⊂ F (T )
and xn → z. Then, we have xn ⇀ z and xn −Txn = 0. So, from Theorem 5.6 we
have z = Tz. Let us show that F (T ) is convex. Let x, y ∈ F (T ) and α ∈ [0, 1]
and put z = αx + (1− α)y. Then, we have from (1) that

‖z − Tz‖2 = ‖αx + (1 − α)y − Tz‖2

= α‖x − Tz‖2 + (1 − α)‖y − Tz‖2 − α(1 − α)‖x − y‖2

= α‖Tx − Tz‖2 + (1 − α)‖Ty − Tz‖2 − α(1 − α)‖x − y‖2

≤ α(1− α)2‖x− y‖2 + (1− α)α2‖x− y‖2 − α(1− α)‖x − y‖2

= α(1− α)(1− α + α − 1)‖x − y‖2

= 0.

So, we have Tz = z. Let x ∈ C and let P be the metric projection of H onto
F (T ). Then, we have

‖PT nx − T nx‖ ≤ ‖PT n−1x − T nx‖
= ‖TPT n−1x − T nx‖
≤ ‖PT n−1x − T n−1x‖.

This implies that {‖PT nx − T nx‖} is nonincreasing. We also know that for any
v ∈ C and u ∈ F (T ),

〈v − Pv, Pv − u〉 ≥ 0

and hence
‖v − Pv‖2 ≤ 〈v − Pv, v − u〉.

So, we get

‖Pv − u‖2 = ‖Pv − v + v − u‖2

= ‖Pv − v‖2 − 2〈Pv − v, u− v〉 + ‖v − u‖2

≤ ‖v − u‖2 − ‖Pv − v‖2.

Let m, n ∈ N with m ≥ n. Putting v = T mx and u = PT nx, we have

‖PTmx − PT nx‖2

≤ ‖Tmx − PT nx‖2 − ‖PTmx − Tmx‖2

≤ ‖T nx − PT nx‖2 − ‖PTmx − Tmx‖2.
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So, {PTnx} is a Cauchy sequence. Since F (T ) is closed, {PTnx} converges
strongly to an element p of F (T ). Take u ∈ F (T ). Then we obtain, for any n ∈ N,

‖Snx − u‖ ≤ 1
n

n−1∑
k=0

‖T kx − u‖ ≤ ‖x − u‖.

So, {Snx} is bounded and hence there exists a weakly convergent subsequence
{Snix} of {Snx}. If Snix ⇀ v, then we have v ∈ F (T ). In fact, for any y ∈ C

and k ∈ N ∪ {0}, we have that

‖T k+1x − Ty‖2 ≤ ‖T kx − y‖2 + 2〈T kx − T k+1x, y − Ty〉
= ‖T kx − y‖2 + ‖T kx − Ty‖2 + ‖T k+1x − y‖2

− ‖T kx − y‖2 − ‖T k+1x − Ty‖2

= ‖T kx − Ty‖2 + 2〈T kx − Ty, Ty − y〉 + ‖Ty − y‖2

+ ‖T kx−Ty‖2+‖T k+1x−y‖2−‖T kx−y‖2−‖T k+1x−Ty‖2.

So, we obtain that

2‖T k+1x − Ty‖2 ≤ 2‖T kx − Ty‖2 + 2〈T kx − Ty, Ty − y〉
+ ‖Ty − y‖2 + ‖T k+1x − y‖2 − ‖T kx − y‖2.

Summing these inequalities with respect to k = 0, 1, . . . , n − 1, we have

2‖T nx − Ty‖2 ≤ 2‖x− Ty‖2 + 2
〈 n−1∑

k=0

T kx − nTy, Ty − y
〉

+ n‖Ty − y‖2 + ‖T nx − y‖2 − ‖x − y‖2.

Deviding this inequality by n, we have
2
n
‖T nx − Ty‖2 ≤ 2

n
‖x − Ty‖2 + 2〈Snx − Ty, Ty − y〉

+ ‖Ty − y‖2 +
1
n
‖T nx − y‖2 − 1

n
‖x− y‖2,

where Snx = 1
n

∑n−1
k=0 T kx. Replacing n by ni and letting ni → ∞, we obtain

from Snix ⇀ v that

0 ≤ ‖Ty − y‖2 + 2〈v − Ty, Ty − y〉.
Putting y = v, we have

0 ≤ ‖Tv − v‖2 + 2〈v − Tv, Tv − v〉.
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So, we have 0 ≤ −‖Tv − v‖2 and hence Tv = v. To complete the proof of (i), it
is sufficient to show that if Snix ⇀ v, then v = p. We have, for any u ∈ F (T ),

〈T kx − PT kx, PT kx − u〉 ≥ 0.

Since {‖T kx − PT kx‖} is nonincreasing, we have

〈u − p, T kx − PT kx〉 ≤ 〈PT kx − p, T kx − PT kx〉
≤ ‖PT kx − p‖ · ‖T kx − PT kx‖
≤ ‖PT kx − p‖ · ‖x− Px‖.

Adding these inequalities from k = 0 to k = n − 1 and dividing n, we have

〈u− p, Snx − 1
n

n−1∑
k=0

PT kx〉 ≤ ‖x − Px‖
n

n−1∑
k=0

‖PT kx − p‖.

Since Snix ⇀ v and PT kx → p, we have

〈u − p, v − p〉 ≤ 0.

We know v ∈ F (T ). So, putting u = v, we have 〈v − p, v − p〉 ≤ 0 and hence
‖v − p‖2 ≤ 0. So, we obtain v = p. This completes the proof of (i).

Let us prove the case of (ii). It follows from Theorem 5.7 that F (T ) is closed.
As in the proof of (i), we can show that F (T ) is convex. Let x ∈ C and let P be
the metric projection of H onto F (T ). Then, as in the proof of (i), we can have that
{PT nx} is a Cauchy sequence. Since F (T ) is closed, {PTnx} converges strongly
to an element p of F (T ). Take u ∈ F (T ). Then we obtain, for any n ∈ N,

‖Snx − u‖ ≤ 1
n

n−1∑
k=0

‖T kx − u‖ ≤ ‖x − u‖.

So, {Snx} is bounded and hence there exists a weakly convergent subsequence
{Snix} of {Snx}. If Snix ⇀ v, then we have v ∈ F (T ). In fact, for any y ∈ C

and k ∈ N ∪ {0}, we have that

2‖T k+1x − Ty‖2 ≤ 2‖T kx − y‖2 + 2〈T kx − T k+1x, y − Ty〉
= 2‖T kx − y‖2 + ‖T kx − Ty‖2 + ‖T k+1x − y‖2

− ‖T kx − y‖2 − ‖T k+1x − Ty‖2

= 2‖T kx − Ty‖2 + 4〈T kx − Ty, Ty − y〉+ 2‖Ty − y‖2

+ ‖T kx−Ty‖2+‖T k+1x−y‖2−‖T kx−y‖2−‖T k+1x−Ty‖2.

So, we obtain that



New Nonlinear Mappings 471

3‖T k+1x − Ty‖2 ≤ 3‖T kx − Ty‖2 + 4〈T kx − Ty, Ty − y〉
+ 2‖Ty − y‖2 + ‖T k+1x − y‖2 − ‖T kx − y‖2.

Summing these inequalities with respect to k = 0, 1, . . . , n − 1, we have

3‖T nx − Ty‖2 ≤ 3‖x− Ty‖2 + 4

〈
n−1∑
k=0

T kx − nTy, Ty − y

〉

+ 2n‖Ty − y‖2 + ‖T nx − y‖2 − ‖x − y‖2.

Deviding this inequality by n, we have
3
n
‖T nx − Ty‖2 ≤ 3

n
‖x − Ty‖2 + 4〈Snx − Ty, Ty − y〉

+ 2‖Ty − y‖2 +
1
n
‖T nx − y‖2 − 1

n
‖x − y‖2,

where Snx = 1
n

∑n−1
k=0 T kx. Replacing n by ni and letting ni → ∞, we obtain

from Snix ⇀ v that

0 ≤ 2‖Ty − y‖2 + 4〈v − Ty, Ty − y〉.
Putting y = v, we have

0 ≤ 2‖Tv − v‖2 + 4〈v − Tv, Tv − v〉.
So, we have 0 ≤ −2‖Tv − v‖2 and hence Tv = v. To complete the proof of (ii),
it is sufficient to show that if Snix ⇀ v, then v = p. As in the proof of (i), we can
prove v = p. This completes the proof of (ii).

As in the proofs of (i) and (ii), we can prove the case of (iii).
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