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ABSENCE OF REAL ROOTS OF CHARACTERISTIC FUNCTIONS OF

FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH NINE REAL PARAMETERS

Shao-Yuan Huang and Sui-Sun Cheng

Abstract. We consider the oscillation of a class of first order neutral differ-

ential equations with nine real parameters. This relatively difficult problem

is completely solved by applying the Cheng-Lin envelope method to find the

exact conditions for the absence of real roots of the associated characteris-

tic function. Several specific examples are also included to illustrate these

conditions.

1. INTRODUCTION

Functional differential equations in which multiple delays and/or advancements

are involved in the unknown functions or their derivatives can be used to model a

variety of physical models and therefore their qualitative properties are important.

In recent years, such equations have been the subject of numerous investigations (as

can be seen by a quick search of the MathSciNet of the American Mathematical

Society). Yet for simple linear differential equations with constant coefficients,

explicit necessary and sufficient conditions for these equations to have a specific

property are rare.

In this paper, we intend to consider the following neutral type functional differ-

ential equation

(1) au′(t) + bu(t) + (cu′(t+ σ) + du(t+ σ)) + xu(t+ δ) + yu(t+ τ) = 0

where a, b, c, d, x, y, σ, δ, τ are real parameters, and to find the exact region contain-
ing these parameters such that all the solutions of (1) oscillate.
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It is well known that every solution of (1) oscillates if, and only if, its charac-

teristic function

(2) F (λ) = aλ+ b+ (cλ+ d)eσλ + xeδλ + yeτλ

does not have any real roots (see e.g. [1]). Therefore, our problem stated above is

equivalent to finding the exact region containing these parameters such that F (λ)
does not have any real roots.

Several special cases of (1) have been studied. Among these are the equations

u′(t) + p̃u′(t− τ̃) + q1u(t) + q2u(t− σ̃) = 0, τ̃ , σ̃ > 0 and p̃, q1, q2 are real,

[u(t) + cu(t− τ)]′+ru(t)+pu(t−τ)+qu(t+σ) = 0, τ , σ > 0 and c, r, p, q are real,

studied in [2,3] and [6,7] respectively, while other special cases containing not more

than 4 real parametrs can be found in numreous studies and in the book by Gyori
and Ladas [5].

Needless to say, our problem is a relatively difficult one since we have 9 real
parameters. Fortunately, an envelope method is developed recently by Cheng and

Lin and formalized recently in [4]. We apply this method together with several

new ideas and techniques to the function F and provide a complete answer to our
problem.

2. PREPARATORY RESULTS

To facilitate discussions, we first recall a few basic concepts and tools explained

in [4]. Let R and C be respectively the sets of real and complex numbers and let

Θ0 be the null function, that is Θ0(x) = 0 for all x ∈ R. Given an interval I in R,
the chi-function χI : I → R is defined by

χI (x) = 1, x ∈ I.

The restriction of a real function f defined over an interval J (which is not disjoint

from I) will be written as fχI , so that fχI is now defined on I ∩ J and

(fχI)(x) = f(x), x ∈ I ∩ J.

A function G of the form

G(λ) = f0(λ) + e−λτ1f1(λ) + · · ·+ e−λτmfm(λ), λ ∈ C,

is called a ∇(d0, d1, ..., dm)-polynomial if τ1, ..., τm are mutually distinct nonzero
real numbers, and for each i ∈ {0, 1, ...,m}, fi is a polynomial of (di+2)-variables
λ, a

〈i〉
di
, a

〈i〉
di−1, ..., a

〈i〉
d0

fi(λ) := fi

(
λ, a

〈i〉
di
, a

〈i〉
di−1, ..., a

〈i〉
d0

)
= a

〈i〉
di
λdi + a

〈i〉
di−1 + · · · + a

〈i〉
d0
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where λ varies over a subset of C, each a〈i〉di−k , k ∈ {1, 2, ..., di}, varies over a
subset of R and a

〈i〉
di
varies over a subset of R containing points other than 0. In

particular, the function F in (2) may be considered as a ∇(1, 1, 0, 0)-polynomial
when a and c are not 0.

Let S be a plane curve and L be a plane straight line. Let d(A,B) denote the
distance of two points A and B, and let d(A,L) be the distance between the point
A and the straight line L. Assume S and L have a commom point P . According
to the theory of contact (due to Langrange), the straight line L is called the tangent

of the curve S at the point P if

(3) lim
A→P,A∈S

d(A,L)
d(A, P )

= 0.

In case S is described by a pair of parametric functions, we have the following

result.

Lemma 1. Let the plane curve S be describled by the parametric functions x(t)
and y(t) on an interval I. Let t0 ∈ I such that x(t) 6= x(t0) for all t ∈ I\{t0}. For
any m ∈ R, let the straight line Lm be defined by Lm(x) = m(x− x(t0)) + y(t0)
for x ∈ R. Suppose the limit

M := lim
t→t0

y(t) − y(t0)
x(t) − x(t0)

exists. Then the straight line LM(x) is the unique tangent of the curve S at

(x(t0), y(t0)).

Proof. Let Pt = (x(t), y(t)), α(t) = x(t) − x(t0) and β(t) = y(t) − y(t0)
for t ∈ I. Then α(t) 6= 0 for all t ∈ I\{t0} and limt→t0 β(t)/α(t) = M. For any
m ∈ R, we see that

(4) lim
t→t0

d(Pt, Lm)
d(Pt, Pt0)

= lim
t→t0

∣∣∣∣∣
mα(t) − β(t)√
α2(t) + β2(t)

∣∣∣∣∣ = lim
t→t0

∣∣∣∣∣∣
m− β(t)

α(t)√
1 + β2(t)

α2(t)

∣∣∣∣∣∣
.

By (4),

lim
t→t0

d(Pt, LM)
d(Pt, Pt0)

= 0,

so LM (x) is the tangent of the curve S at (x(t0), y(t0)). If there is another tangent
LM ′ of the curve S at (x(t0), y(t0)), then by (3) and (4), we see that

0 =
∣∣∣∣
M ′ −M√
1 +M2

∣∣∣∣ .
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Then M = M ′. The proof is complete.

We remark that this definition is compatible with the concept of ‘tangent lines’

associated with the graph of a real smooth function y = f(x) of a real variable.
Indeed, let S be the curve which is also described by the graph of a smooth function
f passing through P = (x0, y0). By Lemma 1, it is easy to see that (3) holds if,
and only if, the straight line L is the tangent of the graph of the function f.

A point in the plane is said to be a dual point of order m of the plane curve S,

wherem is a nonnegative integer, if there exist exactly m mutually distinct tangents

of S that also pass through it. The set of all dual points of order m of S in the

plane is called the dual set of order m of S. We remark that m = 0 is allowed. In
this case, there are no tangents of S that pass through the point in consideration.

Let {Cλ : λ ∈ I} , where I is a real interval, be a family of plane curves. With
each Cλ, suppose we can associate just one point Pλ in each Cλ such that the
totality of these points form a curve S. Then S is called an envelope of the family

{Cλ|λ∈I} if the curves Cλ and S share a common tangent line at the common
pointPλ.Suppose we have a family of curves in thex, y-plane implicitly defined by

F (x, y, λ) = 0, λ ∈ I,

where I is an interval of R. Then it is well known that the envelope S is described
by a pair of parametric functions (ψ(λ), φ(λ)) that satisfy

{
F (ψ(λ), φ(λ), λ) = 0,

F ′
λ(ψ(λ), φ(λ), λ) = 0,

for λ ∈ I, provided some “good conditions” are satisfied. In particular, let f, g, h :
I → R. Then for each fixed λ ∈ I, the equation

(5) Lλ : f(λ)x+ g(λ)y = h(λ), (f(λ), g(λ)) 6= 0,

defines a straight line Lλ in the x, y-plane, and we have a collection {Lλ : λ ∈ I}
of straight lines. For such a collection, we have the following result.

Theorem 1. (see [4, Theorems 2.3 and 2.5]). Let f, g, h be real differentiable

functions defined on the interval I such that f(λ)g′(λ) − f ′(λ)g(λ) 6= 0 and
g(λ) 6= 0 for λ ∈ I. Let Φ be the family of straight lines of the form (5). Let the

curve S be defined by the functions x = ψ(λ), y = φ(λ):

(6) ψ(λ) =
g′(λ)h(λ)− g(λ)h′(λ)
f(λ)g′(λ)− f ′(λ)g(λ)

, φ(λ) =
f(λ)h′(λ)− f ′(λ)h(λ)
f(λ)g′(λ)− f ′(λ)g(λ)

, λ ∈ I.

Suppose ψ and φ are smooth functions over I and one of the following cases
holds: (i) ψ′(λ) 6= 0 for λ ∈ I ; (ii) ψ′(λ) 6= 0 for I\{d} where d ∈ I and
limλ→d− φ

′(λ)/ψ′(λ) as well as limλ→d+ φ
′(λ)/ψ′(λ) exist and are equal. Then

S is the envelope of the family Φ.
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Theorem 2. (see [4, Theorem 2.6]). Let Λ be an interval in R, and f, g, h be
real differentiable functions defined on Λ such that f(λ)g′(λ)− f ′(λ)g(λ) 6= 0 for
λ ∈ Λ. Let Φ be the family of straight lines of the form (5), where λ ∈ Λ, and let
the curve S be the envelope of the family Φ. Then the point (α, β) in the plane is
a dual point of order m of S, if, and only if, the function f(λ)α+ g(λ)β− h(λ),
as a function of λ, has exactly m mutually distinct roots in Λ.

The above result states roughly that the roots of the function F (λ|α, β) =
f(λ)α+ g(λ)β − h(λ) in the interval Λ ‘match’ the tangents connecting the point
(α, β) to the envelope of the family {Lλ|λ ∈ Λ} of straight lines, where Lλ is the
straight line defined by F (λ|x, y) for x, y ∈ R. Therefore we only need to count
the number of such tangents for different pairs of (α, β), that is, to classify dual
points of envelopes.

Plane curves can take on complicated forms. Fortunately, for some plane curves,

their dual points can be described precisely. Indeed, a complete list of distribution

maps of dual points of strictly convex and smooth (i.e. continuously differentiable)

graphs of real functions of one variable defined on real intervals can be found in [4,

Theorems 3.3-3.20.]. Based on such distribution maps, a partial list of distributions

of dual points of piecewise convex-concave and smooth graphs is also available (see

[4, Appendix A]). In this paper, we will need some of these distribution maps (see

Lemmas 3 through 5 below) and will build some new ones (see Lemmas 6 through

9 below) for use in later discussions.

In deriving the complete list of distribution maps in [4], strictly convex and

smooth functions are classified by their monotonicity and behaviors near the bound-

ary points of their domains. Some of these classifications are standard. A less

familiar one is recalled here as follows. Let g be a function defined on an interval I
with c = inf I and d = sup I. Note that c or d may be infinite, or may be outside the
interval I, and that g(c+), g(d−), g′(c+) or g′(d−) may not exist. For λ ∈ (c, d),
let

(7) Lg|λ(x) = g′(λ)(x− λ) + g(λ), x ∈ R.

In case d is finite and g(d−), g′(d−) exist, we let

(8) Lg|d(x) = g′(d−)(x− d) + g(d−), x ∈ R,

and in case c is finite and g(c+), g′(c+) exist, we let

(9) Lg|c(x) = g′(c+)(x− c) + g(c+), x ∈ R.

When d is finite, we say g ∼ Hd− if limλ→d− Lg|λ(α) = −∞ for any α < d;
and similarly when c is finite, g ∼ Hc+ if limλ→c+ Lg|λ(α) = −∞ for any α > c.
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In case d is infinite, we say g ∼ H+∞ if limλ→+∞ Lg|λ(α) = −∞ for any α ∈ R;
and similarly, when c is infinite, we say g ∼ H−∞ if limλ→−∞ Lg|λ(α) = −∞ for

any α ∈ R.
There is a convenient criteria for the determination of functions with the above

stated properties.

Lemma 2. ([4, Lemmas 3.1 and 3.5]). Let g : (c, d) → R be a smooth and

strictly convex function. (i) Assume d < +∞. If g′(d−) = +∞, then g ∼ Hd− . (ii)
Assume d = +∞. If g′(+∞) = +∞, or, g′(+∞) = 0 and g(+∞) = −∞, then

g ∼ H+∞.

The description of the distribution of dual points of a plane curve can be cum-

bersome. For this reason, it is convenient to introudce several notations. We say that

a point (a, b) in the plane is strictly above (above, strictly below, below) the graph
of a function g if a belongs to the domain of g and g(a) < b (respectively g(a) ≤ b,

g(a) > b and g(a) ≥ b). The notation is (a, b) ∈ ∨(g) (respectively (a, b) ∈ ∨(g),
(a, b) ∈ ∧(g) and (a, b) ∈ ∧(g)). Suppose we now have two real functions g1 and g2
defined one real subsets I1 and I2 respectively. We say that (a, b) ∈ ∨(g1)⊕∨(g2) if
a ∈ I1∩I2 and b > g1(a) and b > g2(a), or, a ∈ I1\I2 and b > g1(a), or, a ∈ I2\I1
and b > g2(a). The notations (a, b) ∈ ∨(g1) ⊕ ∨(g2), (a, b) ∈ ∨(g1) ⊕ ∧(g2), etc.
are similarly defined. If we now have n real functions g1, ..., gn defined on in-
tervals I1, ..., In respectively, we write (a, b) ∈ ∨(g1) ⊕ ∨(g2) ⊕ · · · ⊕ ∨(gn) if
a ∈ I1 ∪ I2 ∪ · · · ∪ In, and if

a∈Ii1 ∪Ii2∪· · ·∪Iim ⇒b>gi1(a), b>gi2(a), ..., b > gim(a), i1, ..., im∈{1, ..., n}.

The notations (a, b) ∈ ∨(g1)⊕ ∨(g2) ⊕ · · · ⊕ ∨(gn), etc. are similarly defined.
Equipped with the functions Lg|λ defined by (7)-(9) and the ordering of points

and graphs in the plane, we may now state the following distribution results for

dual points.

Lemma 3. ([4, Theorem 3.20], see Figure 1). Let g : R → R be a strictly

convex and smooth function such that g ∼ H−∞ and g ∼ H+∞. Then (α, β) is a
dual point of order 0, 1 or 2 of g if, and only if, respectively β > g(α), β = g(α)
or β < g(α).

Lemma 4. ([4, Theorem A.9], see Figure 2). Let c ∈ R, g1 ∈ C1(c,+∞) and
g2 ∈ C1[c,+∞). Suppose the following hold:

(i) g1 is strictly concave on (c,+∞) such that −g1 ∼ H+∞;
(ii) g2 is strictly convex on [c,+∞) such that g2 ∼ H+∞;

(iii) g(v)
1 (c+) = g

(v)
2 (c) for v = 0, 1.

Then the intersection of dual sets of order 0 of g1 and g2 is empty.
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Lemma 5. ([4, Theorem A.3], see Figure 3). Let c, d ∈ R such that c < d,

g1 ∈ C1(c, d) and g2 ∈ C1(−∞, d]. Suppose the following hold:

(i) g1 is strictly concave on (c, d) such that g1(c+), and g′1(c
+) exist;

(ii) g2 is strictly convex on (−∞, d] such that g2 ∼ H−∞;

(iii) g(v)
1 (d−) = g

(v)
2 (d) for v = 0, 1.

Then the intersection of the dual sets of order 0 of g1 and g2 is ∨(Lg1|c) ⊕ ∨(g2).

Fig. 1. Fig. 2. Fig. 3.

As explained in [4, Appendix A], dual sets of order 0 of plane curves that are
made up of several pieces of convex and concave functions can be obtained by

intersections. In particular, the following result is easily deduced from Theorems

3.4 and 3.10 in [4].

Lemma 6. (See Figure 4). Let c, d ∈ R such that c < d, g1 ∈ C1[c, d] and
g2 ∈ C1(−∞, d). Suppose the following hold:

(i) g1 is strictly convex on [c, d];
(ii) g2 is strictly concave on (−∞, d) such that Lg2|−∞ (the asymptote of g2 at

−∞) exists;

(iii) g(v)
1 (d) = g

(v)
2 (d−) for v = 0, 1.

Then the intersection of the dual sets of order 0 of g1 and g2 is
(
∨(g1) ⊕ ∨(Lg1|c)

⊕∨(Lg2|−∞)
)
∪

(
∧(g2)⊕ ∧(Lg1|c)

)
.

Fig. 4. Intersection of the dual sets of order 0 in (a) and (b) (see [4, Theorems 3.4 and

3.10]) to yield (c).
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The following result is easily deduced from Theorems 3.9 and 3.11 in [4]

Lemma 7. (See Figure 5). Let a, c ∈ R, g1 ∈ C1(a, c] and g2 ∈ C1(−∞, c).
Suppose the following hold:

(i) g1 is strictly convex on (a, c] such that g1 ∼ Ha+;

(ii) g2 is strictly concave on (−∞, c) such that −g2 ∼ H−∞;

(iii) g(v)
1 (c) = g

(v)
2 (c−) for v = 0, 1.

Then the intersection of the dual sets of order 0 of g1 and g2 is ∧(g2χ(−∞,a]).

Fig. 5. Intersection of the dual sets of order 0 in (a) and (b) (see [4, Theorems 3.9 and

3.11]) to yield (c).

The following result is easily deduced from Theorems 3.4 and A.3 in [4].

Lemma 8. (See Figure 6). Let a, b, c ∈ R, g1 ∈ C1(a,+∞), g2 ∈ C1[a, b)
and g3 ∈ C1[c, b]. Suppose the following hold:

(i) g1 is strictly convex on [a,+∞) such that g1 ∼ H+∞;
(ii) g2 is strictly concave on (a, b);
(iii) g3 is strictly convex on [c, b];

(iv) g(v)
1 (a+) = g

(v)
2 (a+) and g(v)

2 (b−) = g
(v)
3 (b−) for v = 0, 1.

Then the intersection of the dual sets of order 0 of g1, g2 and g3 is ∨(g1)⊕∨(g3)⊕
∨(Lg3|c).

Fig. 6. Intersection of the dual sets of order 0 in (a) and (b) (see [4, Theorems 3.4 and

A.3]) to yield (c).
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The following result is easily deduced from Theorems 3.8 in [4] and Lemma 5.

Lemma 9. (See Figure 7). Let c, d ∈ R, g1 ∈ C1(0, c], g2 ∈ C1(d, c) and
g3 ∈ C1[d,+∞). Suppose the following hold:

(i) g1 is strictly convex on (0, c];
(ii) g2 is strictly concave on (d, c);
(iii) g3 is strictly convex on [d,+∞) such that g3 ∼ H+∞;

(iv) g(v)
1 (c) = g

(v)
2 (c−) and g(v)

2 (d+) = g
(v)
3 (d) for v = 0, 1.

Then the intersection of the dual sets of order 0 of g1, g2 and g3 is ∨(g1) ⊕
∨(g3χ[0,+∞)) ⊕ ∨(Θ0χ{0}).

Fig. 7. Intersection of the dual sets of order 0 in (a) and (b) (see [4, Theorems 3.8] and

Lemma 5) to yield (c).

Given a pair of parametric functions x = ψ(λ) and y = ϕ(λ) defined on an
interval I. We may sometimes be able to solve for λ from x = ψ(λ) and then
subsitute it into ϕ(λ) to yield a function y = f(x). The following simple result can
be used to make sure that smooth graphs can be obtained from parametric curves

in this manner.

Lemma 10. (see [4, Theorem 2.1]). Let G be the curve describled by a pair

of smooth functions ψ(λ) and φ(λ) on an interval I such that ψ′(λ) > 0 (or
ψ′(λ) < 0) for t ∈ I except at perhaps one point r. Suppose q is a continuous

function defined on I such that φ′(λ)/ψ′(λ) = q(λ) for λ ∈ I\{r}. Then G is also
the graph of a smooth function y = S(x) defined on ψ(I).

For the sake of convenience, we will use the same notation to indicate a real

function of a real variable and its graph. Therefore, in the above result, we may

stay the conclusion in the form “Then the curve G is the graph of a smooth function

y = G(x) defined over ψ(I).”
The graph of a real function f defined on a set J of real numbers is the set

{(x, y) ∈ R2|y = f(x), x ∈ J}.
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For the sake of convenience, we will use the same notation to indicate a (real)

function of a real variable and its graph. Therefore, in the sequel, we will meet

statements such as ’the set S is also the graph of a function y = S(x) defined on
the interval I ...’.

We now turn to the function F (λ) in (2). In case ac = 0, or, any two of the
numbers τ, σ and δ are the same, or, τσδ = 0, the resulting function is a simpler one
and the corresponding characteristic region has been considered in detail in Chapter

7 of [4].

Therefore we may assume that ac 6= 0 and τ, σ, δ are mutually distinct nonzero
real numbers. However, if σ < 0, then

e−σλF (λ) = (cλ+ d) + (aλ+ b)e−σλ + xe(δ−σ)λ + ye(τ−σ)λ,

and the real roots of the functions F (λ) and e−σλF (λ) are the same. So we may
assume that σ > 0.

Since a 6= 0, by dividing F (λ) by a if necessary, we may further assume without
loss of generality that our characteristic equation F (λ) is of the form

(10) Q(λ|x, y, a, b, c, σ, δ, τ) = λ+ a+ (bλ+ c)eσλ + xeδλ + yeτλ

where a, c, x, y ∈ R, b ∈ R\{0} and σ, δ, τ are mutually distinct nonzero real
numbers with δ < τ and σ > 0. The subset of (x, y, a, b, c, σ, δ, τ) ∈ R8 such that

none of the roots of the corresponding ∇(1, 1, 0, 0)-polynomial Q are real is called
its C\R -characteristic region. Before we discuss the C\R -characteristic region

of Q, we need to first handle the ∇(1, 1) -polynomial

(11) T (λ|α, β, w, σ) = λ+ β + e−λσ(wλ+ α), α, β, w, σ ∈ R;w 6= 0, σ > 0.

This quasi-polynomial has been discussed in [4, Section 7.1.4]. However, we need

a few more of its properties for later uses.

3. PROPERTIES OF ∇(1, 1)-POLYNOMIAL T (λ|α, β, w, σ)

Let T and the involved parameters be defined by (11). Let the parametric curve
S be defined by

(12) ψ(λ) =
1
σ
eσλ +

w

σ
− wλ, ϕ(λ) = −λ− 1

σ
− w

σ
e−σλ, λ ∈ R.

Observe that ψ and ϕ are smooth for λ ∈ R, and that

(13) ψ′(λ) = −(w − eσλ), ϕ′(λ) = e−σλ(w − eσλ), λ ∈ R.

Therefore, for each λ ∈ R with eσλ 6= w, we have

(14)
ϕ′(λ)
ψ′(λ)

= −e−σλ and
d
dλ

ϕ′(λ)
ψ′(λ)

ψ′(λ)
=

σ

eσλ(eσλ − w)
.
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Lemma 11. Let T (λ|α, β, w, σ) be defined by (11) and let the curve S be the
plane curve defined by (12). For any given α ∈ R, let y = h(λ|α) be the function
defined by

(15) h(λ|α) = −e−σλ(α− ψ(λ)) + ϕ(λ) for λ ∈ R.

The following results hold:

(i) (α, β) is a dual point of order m of S if, and only if, h(λ|α) = β has exactly

m distinct real solutions;

(ii) T (λ|α, β, w, σ) has exactly m distinct real roots if, and only if, h(λ|α) = β

has exactly m distinct real solutions;

(iii) T (λ|α, β, w, σ)> 0 (or T (λ|α, β, w, σ)< 0) for some real interval I if, and
only if, h(λ|α) < β (respectively h(λ|α) > β) for λ ∈ I.

Proof. From (13), we see that ψ′(λ) has at most one real root, and for each
λ0 ∈ R, ψ(λ) 6= ψ(λ0) for all λ ∈ R\{λ0} which is sufficiently close to λ0. Since

lim
λ→λ0

ϕ(λ)− ϕ(λ0)
ψ(λ)− ψ(λ0)

= lim
λ→λ0

ϕ′(λ)
ψ′(λ)

= −e−σλ0 ,

by Lemma 1, the straight line

Lλ0(x) = −e−σλ0(x− ψ(λ0)) + ϕ(λ0)

is the tangent line of S at the point (ψ(λ0), ϕ(λ0)). So by (15),

h(λ0|α) = Lλ0(α) for any α ∈ R

In other words, h(λ|α) can be interpreted as the y-coordinate of the point of inter-
section of the vertical straight line x = α with the tangent line of S at the point

(ψ(λ), ϕ(λ)). Therefore, if there is a tangent line of S at (ψ(λ), ϕ(λ)) that passes
through the point (α, β), then h(λ|α) = β. Conversely, if h(λ|α) = β for some
λ ∈ R, then there is a tangent line of the graph of S at (ψ(λ), ϕ(λ)) that passes
through the points (α, β). The proof of the statement (i) is complete.

Next, by substituting ψ(λ) and ϕ(λ) into (15), we may easily obtain

(16) h(λ|α) = β − T (λ|α, β, w, σ).

Clearly, if λ is a real root of T (λ|α, β, w, σ), then λ is a real solution of h(λ|α) = β.
The converse is also ture. The proof of the statement (ii) is complete. By (16),

T (λ|α, β, w, σ)> 0 for some real interval I, then h(λ|α) < β on I. The converse

is true. The proof of the statement (iii) is complete.
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We remark that, in view of (16), there exist additional relations between the

functions h(λ|α) and T (λ|α, β, w, σ). For instance, they have the same extremal
points, and the properties of the graphs of −h(λ|α) and T (λ|α, β, w, σ) are similar,
etc. So in later discussions, we may investigate the properties of the function

T (λ|α, β, w, σ) by means of the function h(λ|α). Note also, that by (15),

(17) h′λ(λ|α) = σe−σλ(α− ψ(λ)).

The statements (i) and (ii) in the above result assert that T has exactlym distinct

real roots if, and only if, (α, β) is a dual point of order m of the curve S. This
leads us to investigate the distribution of dual points of S. We need to consider two

cases: w > 0 and w < 0.
Suppose w < 0. We see that

lim
λ→−∞

(ψ(λ), ϕ(λ)) = (−∞,+∞) and lim
λ→+∞

(ψ(λ), ϕ(λ)) = (+∞,−∞),

and that ψ′(λ) and ϕ′(λ) in (13) have no real roots. By Lemma 10, the curve S
is the graph of a smooth function y = S(x) over R. By the chain rule and other
previously obtained information related to ψ(λ) and ϕ(λ), we may then see that
S is strictly decreasing and strictly convex on R, that S(+∞) = −∞ and that

S ′(−∞) = −∞ as well as S ′(+∞) = 0. The latter three properties imply, by
Lemma 2, that S ∼ H+∞ and S ∼ H−∞. We break the plane into three sets (see

Figure 8):

Fig. 8.

(18)
Ω−

0 = {(x, y) : y > S(x)}, Ω−
1 = {(x, y) : y = S(x)}

and Ω−
2 = {(x, y) : y < S(x)}.

Lemma 12. Suppose w < 0. Let T (λ|α, β, w, σ) be defined by (11) and the
sets Ω−

0 , Ω−
1 and Ω−

2 be defined by (18). Then the following statements hold:

(i) For any α, β ∈ R, the function T (λ|α, β, w, σ) has at most two real roots.

(ii) If (α, β) ∈ Ω−
0 ∪ Ω−

1 , then T (λ|α, β, w, σ)≥ 0 for λ ∈ R.
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(iii) If (α, β) ∈ Ω−
2 , then there are exactly two real roots r1 and r2, r1 <

r2, of T (λ|α, β, w, σ) such that T (λ|α, β, w, σ) > 0 on R\[r1, r2] and
T (λ|α, β, w, σ)< 0 on (r1, r2).

Proof. Under our assumptions, by the properties of the curve S and Lemma 3,
Ω−

0 is the dual set of order 0 of S, Ω−
1 is the dual set of order 1 of S and Ω−

2 is

the dual set of order 2 of S. Furthermore, there are no dual sets of order m, where
m ≥ 3, of S. By Lemma 11, (α, β) is a dual point of order m of S if, and only if,

T (λ|α, β, w, σ) has exactly m distinct real roots. So the proof of the statement (i)

is complete.

We note that T (−∞|α, β, w, σ) = T (+∞|α, β, w, σ) = +∞. If (α, β) ∈ Ω−
0 ,

then T (λ|α, β, w, σ) has no real roots and T (λ|α, β, w, σ) > 0 for λ ∈ R. If
(α, β) ∈ Ω−

1 , then T (λ|α, β, w, σ) has exactly one real root r. So T (λ|α, β, w, σ)>
0 for λ ∈ R\{r}. The proof of the statement (ii) is complete. If (α, β) ∈ Ω−

2 , then
T (λ|α, β, w, σ) has exactly two real roots r1 and r2. Since ψ(λ) is strictly increasing
on R by (13), ψ(−∞) = −∞ and ψ(+∞) = +∞, we see that ψ(λ) = α has
a unique real solution. By (17), h(λ|α) has at most one local extremal point. By
(16), T (λ|α, β, w, σ) has at most one local extremal point as well. Hence, it must
be true that T (λ|α, β, w, σ)> 0 on R\[r1, r2] and T (λ|α, β, w, σ)< 0 on (r1, r2).

Next we suppose w > 0. We see that

lim
λ→−∞

(ψ(λ), ϕ(λ)) = lim
λ→+∞

(ψ(λ), ϕ(λ)) = (+∞,−∞),

that ψ′(λ) and ϕ′(λ) have exactly commom one real root λ∗ = (lnw)/σ and

r∗ := ψ(λ∗) =
w(2− lnw)

σ
.

We may see that the curve S is composed of two pieces S1 and S2. The first piece S1

corresponds to the case where λ ∈ (−∞, λ∗) and the second S2 corresponds to the

case where λ ∈ [λ∗,+∞). By means of these information together with (12), (13)
and (14) and Lemma 10, S1 is the graph of a function y = S1(x) which is strictly
decreasing, strictly concave, and smooth over (r∗,+∞) ; and S2 is the graph of a

function y = S2(x) which is strictly decreasing, strictly convex, and smooth over
[r∗,+∞). Since S ′

1(+∞) = −∞, S2(+∞) = −∞ and S ′
2(+∞) = 0, according

to Lemma 2, we see that −S1 ∼ H+∞ and S2 ∼ H+∞. We break the plane into
three sets (see Figure 9):

(19)

Ω+
1 = (∧(S1)) ∪

(
∨(S2χ(r∗,+∞))

)
∪ {(x, y) : x ≤ r∗},

Ω+
2 = {(x, y) : x>r∗ and y=S1(x)} ∪ {(x, y) : x>r∗ and y=S2(x)},

Ω+
3 = {(x, y) : x > r∗ and S1(x) < y < S2(x)}.
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Fig. 9.

Lemma 13. Suppose w > 0. Let T (λ|α, β, w, σ) be defined by (11) and the
sets Ω+

1 , Ω+
2 and Ω+

3 be defined by (19). Then the following statements hold:

(1) For any α, β∈R, the function T (λ|α, β, w, σ) has at most three real roots.

(2) If (α, β) ∈ Ω+
1 ∪Ω+

2 , then there is a real root r of T (λ|α, β, w, σ) such that
T (λ|α, β, w, σ)≤ 0 on (−∞, r) and T (λ|α, β, w, σ)≥ 0 on (r,+∞).

(3) If (α, β) ∈ Ω+
3 , then there are exactly three real roots r1, r2 and r3 of

T (λ|α, β, w, σ) such that T (λ|α, β, w, σ) < 0 on (−∞, r1) ∪ (r2, r3) and
T (λ|α, β, w, σ)> 0 on (r1, r2) ∪ (r3,+∞).

Proof. By (15), h(−∞|α) = +∞ and h(+∞|α) = −∞. From (12) and

(13), we have that ψ(−∞) = ψ(+∞) = +∞, that ψ(λ) is strictly decreasing on
(−∞, λ∗) and ψ(λ) is strictly increasing on (λ∗,+∞). So ψ(λ) has the absolute
minimal value r∗.

Assume α > r∗. The equation ψ(λ) = α has exactly two real solutions λmin ∈
(−∞, λ∗) and λmax ∈ (λ∗,+∞) so that

ψ(λ)< α for λ ∈ (λmin, λmax) and ψ(λ)> α for λ ∈ R\[λmin, λmax].

By (17), we see that h(λ|α) is strictly increasing on (λmin, λmax) and h(λ|α) is
strictly decreasing on R\[λmin, λmax]. So λmin is a local minimal point of h and
λmax is a local maximal point of h. Furthermore,

h(λmin|α) = ϕ(λmin) = S1(ψ(λmin)) = S1(α)

and

h(λmax|α) = ϕ(λmax) = S2(ψ(λmax)) = S2(α)

(see Figure 10(a)). Assume α ≤ r∗. By (17), we see that h(λ|α) is strictly de-
creasing on R (see Figure 10(b)). Therefore, given any α, β ∈ R, h(λ|α) = β has
at most three real solutions. The proof of the statement (i) is then completed by

Lemma 11(i).
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If (α, β1) ∈ Ω+
3 , that is α > r∗ and S1(α) < β1 < S2(α), then h(λ|α) = β1

has exactly three real solutions r1, r2 and r3 such that h(λ|α) > β1 on (−∞, r1)∪
(r2, r3) and h(λ|α) < β1 on (r1, r2) ∪ (r3,+∞). The proof of the statement (iii)
is then completed by Lemma 11(iii) (see Figure 10(a)).

Fig. 10.

To prove the statement (ii), suppose (α, β2) ∈ Ω+
2 . Then, α > r∗ and S2(α) =

β2, or α > r∗ and S1(α) = β2. In the former case, h(λ|α) = β2 has exactly two

real solutions r4 ∈ (−∞, λmin) and rmax such that h(λ|α) > β2 on (−∞, r4) and
h(λ|α) < β2 on (r4, rmax) ∪ (rmax,+∞). We take r = r4. By Lemma 11(iii),
T (λ|α, β, w, σ) ≤ 0 on (−∞, r) and T (λ|α, β, w, σ) ≥ 0 on (r,+∞). The latter
case is similarly proved (see Figure 10(a)).

Suppose (α, β3) ∈ Ω+
1 . If α > r∗, we see that S1(α) > β3 or S2(α) < β3. In the

former case, h(λ|α) = β3 has exactly one real solution r5 such that h(λ|α) > β3

on (−∞, r5) and h(λ|α) < β3 on (r5 + ∞). Take r = r5, by Lemma 11(iii),

T (λ|α, β, w, σ) ≤ 0 on (−∞, r) and T (λ|α, β, w, σ) ≥ 0 on (r,+∞). The latter
case is similarly proved. Suppose α ≤ r∗. For any β4 ∈ R, h(λ|α) = β4 has

exactly one real solution r6 such that h(λ|α) > β4 on (−∞, r6) and h(λ|α) < β4

on (r6 +∞). Take r = r6, by Lemma 11(iii), T (λ|α, β, w, σ) ≤ 0 on (−∞, r) and
T (λ|α, β, w, σ) ≥ 0 on (r,+∞) (see Figures 10(a) and 10(b)). The proof of the
statement (iii) is complete.

4. C\R-CHARACTERISTIC REGION OF ∇(1, 1, 0, 0)-POLYNOMIAL

Consider the ∇(1, 1, 0, 0)-polynomial Q(λ|x, y, a, b, c, σ, δ, τ) defined by (10).
For each λ ∈ R, let Lλ be the straight line in the plane defined by

(20) Lλ : eδλx+ eτλy = −
{
λ+ a+ (bλ+ c)eσλ

}
.

Note that Lλ defined by (20) is of the form (5) and f ′(λ)g(λ) − f(λ)g′(λ) =
(τ − δ)e(τ+δ)λ 6= 0. From (6), we let G be the curve defined by the parametric

functions
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(21) x(λ) = Γ(λ; δ, τ) and y(λ) = Γ(λ; τ, δ)

for λ ∈ R, where

Γ(λ; u, v) =
e−λu

u− v

{
v(λ+ a) − 1 + eλσ[(v − σ)(bλ+ c) − b]

}
.

Then

(22) x′(λ) =
e(σ−δ)λ

δ − τ
b(σ−δ)(τ−σ)T (λ), y′(λ) = −e

(σ−τ)λ

δ − τ
b(σ−δ)(τ−σ)T (λ),

where T (λ) = T (λ|A,B, C, σ) is given by (11),

(23) A =
δ + τ − δτa

(σ − δ)(τ − σ)b
,

(24) B =
c(σ − δ)(τ − σ) + b(δ + τ − 2σ)

(σ − δ)(τ − σ)b
,

and

(25) C =
−δτ

(σ − δ)(τ − σ)b
.

Note that our assumptions on b, σ, δ, τ in (10) implies C 6= 0. Let Σ(A,B, C, σ) =
{λ ∈ R : T (λ|A,B, C, σ) = 0}. According to Lemma 12(i) and Lemma 13(i), the
real roots of T are finite in number and isolated, hence Σ(A,B, C, σ) is a finite set.
Furthermore, by (22), x′(λ) = 0 if, and only if, λ ∈ Σ(A,B, C, σ). We see that

(26)
y′(λ)
x′(λ)

= −e(δ−τ)λ < 0 for λ ∈ R\Σ(A,B, C, σ)

and

lim
λ→d−

y′(λ)
x′(λ)

= lim
λ→d+

y′(λ)
x′(λ)

= −e(δ−τ)d < 0 for d ∈ Σ(A,B, C, σ).

By Theorem 1, G is the envelope of the family {Lλ : λ > 0} where Lλ is defined
by (20). We have

(27)

d
dλ

(
y′(λ)
x′(λ)

)

x′(λ)
=

−(δ − τ)2eτλ

(σ − δ)(τ − σ)bT (λ)
for λ ∈ R\Σ(A,B, C, σ).

In view of Theorem 2, to find the C\R-characteristic region of (10) is to find
the dual set of order 0 of the envelope G described by (21). By (22), we see that the
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properties of the curve G are dependent on the function T (λ|A,B, C, σ). Hence, in
view of Lemmas 12 and 13, we have to consider the two cases C < 0 and C > 0.

4.1. The case where C < 0

We have assumed that b ∈ R\{0} and τ, δ and σ are pairwise distinct real
numbers such that τ > δ and σ > 0. When C < 0, the real numbers σ, τ, δ and b
can be broken exactly into the following six cases:

(b1) σ > τ > δ > 0 and b < 0;

(b2) τ > σ > δ > 0 and b > 0;

(b3) τ > δ > σ > 0 and b < 0;

(b4) σ > τ > 0 > δ and b > 0;

(b5) τ > σ > 0 > δ and b < 0;

(b6) σ > 0 > τ > δ and b < 0.

The parametric functions x(λ) and y(λ) defined by (21) have several elementary
properties. First,

(28) lim
λ→−∞

(x(λ), y(λ)) =





(+∞,−∞) if (b1), (b2) or (b3) holds

(0,+∞) if (b4) holds

(0,+∞) if (b5) holds

(0, 0) if (b6) holds

,

and

(29) lim
λ→+∞

(x(λ), y(λ)) =





(−∞,+∞) if (b1) or (b6) holds

(−∞, 0) if (b2) holds

(0, 0) if (b3) holds

(+∞,−∞) if (b4) holds

(+∞, 0) if (b5) holds

.

Theorem 3. Suppose condition (b1) or (b2) holds (that is, σ > τ > δ > 0 and
b < 0, or τ > σ > δ > 0 and b > 0). Let the parametric curve G be defined by

x(λ) = Γ(λ; δ, τ) and y(λ) = Γ(λ; τ, δ) for λ ∈ R as in (21). Let Ω−
0 , Ω−

1 and

Ω−
2 be defined by (18), and the function T (λ|A,B, C, σ) be defined by (11) where

A,B and C are defined by (23), (24) and (25) respectively.

(i) If (A,B) ∈ Ω−
0 ∪Ω−

1 , then (x, y) is a point of the C\R-characteristic region
of (10) if, and only if, (x, y) ∈ ∧(G).
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(ii) If (A,B) ∈ Ω−
2 , then (x, y) is a point of the C\R-characteristic region of

(10) if, and only if, (x, y) ∈ ∧(G1)⊕∧(G3), where G1 is the part of the

parametric curve G restricted to the interval (−∞, r1] andG3 is the part of

the parametric curveG restricted to the interval [r2,+∞) and r1 as well as r2
are the (only) real roots of T (λ|A,B, C, σ) arranged in the order r1<r2.

Proof. If (A,B) ∈ Ω−
0 ∪Ω−

1 , then the function T (λ|A,B, C, σ) ≥ 0 for λ ∈ R
by Lemma 12. So x′(λ) < 0 for λ ∈ R\Σ(A,B, C, σ) by (22). SinceΣ(A,B, C, σ)
is finite, by (28) and (29), the curve G is the graph of the smooth function y = G(x)
over R by Lemma 10. By (22)-(27), we may then see that G is strictly decreasing

and strictly concave. Furthermore, −G ∼ H+∞ by G′(+∞) = −∞ and Lemma

2. Assume (b1) holds, we have G(−∞) = +∞ and G′(−∞) = 0. By Lemma 2,
−G ∼ H−∞. By Lemma 3, the dual set of order 0 of G is ∧(G) (see Figure 11(a)).
Assume (b2) holds, we have G(−∞) = 0 and G′(−∞) = 0. Then the asymptote
of G at −∞ exists. By Theorem 3.19 in [4], the dual set of order 0 of G is ∧(G)
(see Figure 12(a)).

Fig. 11. σ > τ > δ > 0 and b < 0.

Fig. 12. σ > τ > δ > 0 and b < 0.

If (A,B) ∈ Ω−
2 , then there are exactly two real roots r1 and r2 of T (λ|A,B, C, σ)

such that T (λ|A,B, C, σ) > 0 on R\[r1, r2] and T (λ|A,B, C, σ) < 0 on (r1, r2)
by Lemma 12. So x′(λ) < 0 on R\[r1, r2] and x′(λ) > 0 on (r1, r2) by (22).
The curve G is composed of three pieces G1, G2 and G3 restricted respectively
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to (−∞, r1], (r1, r2) and [r2,+∞). By (22)-(27) and Lemmas 2 and 10, G1 is

the graph of a function y = G1(x) which is strictly decreasing, strictly concave,
and smooth over [x(r1),+∞) such that −G1 ∼ H+∞; G2 is the graph of a func-

tion y = G2(x) which is strictly decreasing, strictly convex, and smooth over
(x(r1), x(r2)); and G3 is the graph of a function y = G3(x) which is strictly
decreasing, strictly concave, and smooth over (−∞, x(r2)]. Furthermore,

G
(v)
1 (x(r1)) = G

(v)
2 (x(r1)+) and G(v)

2 (x(r2)−) = G
(v)
3 (x(r2)), v = 0, 1.

Assume (b1) holds, we have −G3 ∼ H−∞ by Lemma 2, G3(−∞) = +∞ and

G′
3(−∞) = 0. By Theorem A.14 in [4], the intersection of the dual sets of order

0 of G1, G2 and G3 is ∧(G1) ⊕ ∧(G3) (see Figure 11(b)). Assume (b2) holds.
Then the asymptote of G3 at −∞ exists since G3(−∞) = 0 and G′

3(−∞) = 0.
By Theorem A.16 in [4], the intersection of the dual sets of order 0 of G1, G2 and

G3 is ∧(G1) ⊕ ∧(G3) (see Figure 12(b)). Hence, the dual set of order 0 of G is

∧(G1) ⊕ ∧(G3). The proof is complete.

Theorem 4. Suppose the condition (b3) holds (that is, τ > δ > σ > 0 and
b < 0). Let the parametric curve G be defined by x(λ) = Γ(λ; δ, τ) and y(λ) =
Γ(λ; τ, δ) for λ ∈ R as in (21). Let Ω−

0 , Ω−
1 and Ω−

2 be defined by (18), and
the function T (λ|A,B, C, σ) be defined by (11) where A,B and C are defined by
(23), (24) and (25) respectively.

(i) If (A,B) ∈ Ω−
0 ∪Ω−

1 , then (x, y) is a point of the C\R-characteristic region
of (10) if, and only if, (x, y) ∈ ∧(G)⊕ ∧(Θ0).

(ii) If (A,B) ∈ Ω−
2 , then (x, y) is a point of the C\R-characteristic region of

(10) if, and only if, (x, y) ∈ ∧(G1)⊕ ∧(G3)⊕ ∧(Θ0), where G1 is the part

of the parametric curve G restricted to the interval (−∞, r1] and G3 is the

part of the parametric curve G restricted to the interval [r2,+∞) and r1 as
well as r2 are the (only) real roots of T (λ|A,B, C, σ) arranged in the order
r1 < r2.

Fig. 13.
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Proof. If (A,B) ∈ Ω−
0 ∪Ω−

1 , then the function T (λ|A,B, C, σ) ≥ 0 for λ ∈ R
by Lemma 12. As in the proof of Theorem 3, we may then see that the curve G is
the graph of the function y = G(x) which is strictly decreasing, strictly concave and
smooth over (0,+∞) such that −G ∼ H+∞. Since G

′(0+) = 0 and G(0+) = 0,
we see that LG|0 = Θ0, where for the definition of LG|0 see (9). By Theorem 3.11

in [4], the dual set of order 0 of G is ∧(G) ⊕ ∧(Θ0) (see Figure 13(a)).

If (A,B) ∈ Ω−
2 , then there are exactly two real roots r1 and r2 of T (λ|A,B, C, σ)

such that T (λ|A,B, C, σ) > 0 on R\[r1, r2] and T (λ|A,B, C, σ) < 0 on (r1, r2)
by Lemma 12. The curve G is composed of three pieces G1, G2 and G3 restricted

respectively to (−∞, r1], (r1, r2) and [r2,+∞). Similarly, G1 is the graph of a

function y = G1(x) which is strictly decreasing, strictly concave, and smooth over
[x(r1),+∞) such that −G1 ∼ H+∞; G2 is the graph of a function y = G2(x)
which is strictly decreasing, strictly convex, and smooth over (x(r1), x(r2)); and G3

is the graph of a function y = G3(x) which is strictly decreasing, strictly concave,
and smooth over (0, x(r2)] such that G′

3(0
+) = 0 and G3(0+) = 0. Furthermore,

LG3 |0 = Θ0,

G
(v)
1 (x(r1)) = G

(v)
2 (x(r1)+) and G(v)

2 (x(r2)−) = G
(v)
3 (x(r2)), v = 0, 1.

By Theorem A.13 in [4], the intersection of the dual sets of order 0 of G1, G2 andG3

is ∧(G1)⊕∧(G3)⊕∧(Θ0). So the dual set of order 0 of G is ∧(G1)⊕∧(G3)⊕∧(Θ0)
(see Figure 13(b)). The proof is complete.

Theorem 5. Suppose the condition (b4) holds (that is, σ > τ > 0 > δ and
b > 0). Let the parametric curve G be defined by x(λ) = Γ(λ; δ, τ) and y(λ) =
Γ(λ; τ, δ) for λ ∈ R as in (21). Let Ω−

0 , Ω−
1 and Ω−

2 be defined by (18), and
the function T (λ|A,B, C, σ) be defined by (11) where A,B and C are defined by
(23), (24) and (25) respectively.

(i) If (A,B) ∈ Ω−
0 ∪Ω−

1 , then (x, y) is a point of the C\R-characteristic region
of (10) if, and only if, (x, y) ∈ ∨(G).

(ii) If (A,B) ∈ Ω−
2 , then (x, y) is a point of the C\R-characteristic region of

(10) if, and only if, (x, y) ∈ ∨(G1) ⊕ ∨(G3χ(0,+∞)), where G1 is the part

of the parametric curve G restricted to the interval (−∞, r1] and G3 is the

part of the parametric curve G restricted to the interval [r2,+∞) and r1 as
well as r2 are the (only) real roots of T (λ|A,B, C, σ) arranged in the order
r1 < r2.

Proof. Suppose (A,B) ∈ Ω−
0 ∪ Ω−

1 . As in the proof of Theorem 3, we may

then see that the curve G is the graph of the function y = G(x) which is strictly
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decreasing, strictly convex and smooth over (0,+∞) such that G(0+) = +∞ and

G ∼ H+∞. Since G
′(0+) = −∞ and Lemma 2, we see that G ∼ H0+ . By Theorem

3.15 in [4], the dual set of order 0 of G is ∨(G) (see Figure 14(a)).

Fig. 14.

If (A,B) ∈ Ω−
2 , then there are exactly two real roots r1 and r2 of T (λ|A,B, C, σ)

such that T (λ|A,B, C, σ) > 0 on R\[r1, r2] and T (λ|A,B, C, σ) < 0 on (r1, r2)
by Lemma 12. Then the curve G is composed of three pieces G1, G2 and G3

restricted respectively to (−∞, r1], (r1, r2) and [r2,+∞). As in the proof of The-
orem 3, we may then see that the curve G1 is the graph of a function y = G1(x)
which is strictly decreasing, strictly convex, and smooth over [x(r1),+∞) such that
G1(0+) = +∞ and G1 ∼ H0+; G2 is the graph of a function y = G2(x) which
is strictly decreasing, strictly concave, and smooth over (x(r2), x(r1)); G3 is the

graph of a function y = G3(x) which is strictly decreasing, strictly concave, and
smooth over [x(r2),+∞) such that G3 ∼ H+∞ Furthermore,

G
(v)
1 (x(r1)) = G

(v)
2 (x(r1)−) and G(v)

2 (x(r2)+) = G
(v)
3 (x(r2)), v = 0, 1.

By Theorem A.15 in [4], the intersection of the dual sets of order 0 of G1, G2 andG3

is ∨(G1)⊕∨(G3χ(0,+∞)). So the dual set of order 0 of G is ∨(G1)⊕∨(G3χ(0,+∞))
(see Figure 14(b)). The proof is complete.

Theorem 6. Suppose the condition (b5) holds (that is, τ > σ > 0 > δ and

b < 0). Let the parametric curve G be defined by x(λ) = Γ(λ; δ, τ) and y(λ) =
Γ(λ; τ, δ) for λ ∈ R as in (21). Let Ω−

0 , Ω−
1 and Ω−

2 be defined by (18), and
the function T (λ|A,B, C, σ) be defined by (11) where A,B and C are defined by
(23), (24) and (25) respectively.

(i) If (A,B) ∈ Ω−
0 ∪Ω−

1 , then (x, y) is a point of the C\R-characteristic region
of (10) if, and only if, (x, y) ∈ ∨(G)⊕ ∧(Θ0χ(−∞,0]).

(ii) If (A,B) ∈ Ω−
2 , then (x, y) is a point of the C\R characteristic region of

(10) if, and only if, (x, y) ∈ ∨(G1)⊕∨(G3χ(0,+∞)), or (x, y) ∈ ∧(G2χ(−∞,0])
⊕∧(Θ0χ(−∞,0]),, where G1 is the part of the parametric curve G restricted to

the interval (−∞, r1], G2 is the part of the parametric curve G restricted to
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the interval (r1, r2) and G3 is the part of the parametric curve G restricted

to the interval [r2,+∞) and r1 as well as r2 are the (only) real roots of
T (λ|A,B, C, σ) arranged in the order r1 < r2.

Proof. Suppose (A,B) ∈ Ω−
0 ∪ Ω−

1 . As in the proof of Theorem 3, we

may then see then the curve G is the graph of the function y = G(x) which is
strictly decreasing, strictly convex and smooth over (0,+∞) such that G(0+) =
+∞, G(+∞) = 0, G ∼ H0+ and G′(+∞) = 0. So the asymptote of G at +∞
exists and is just Θ0. By Theorem 3.13 in [4], the dual set of order 0 of G is

∨(G) ⊕ ∧(Θ0χ(−∞,0]) (see Figure 15(a)).

Fig. 15.

If (A,B) ∈ Ω−
2 , then there are exactly two real roots r1 and r2 of T (λ|A,B, C, σ)

such that T (λ|A,B, C, σ) > 0 on R\[r1, r2] and T (λ|A,B, C, σ) < 0 on (r1, r2)
by Lemma 12. Then the curve G is composed of three pieces G1, G2 and G3

restricted respectively to (−∞, r1], (r1, r2) and [r2,+∞). We may further see that
the G1 is the graph of a function y = G1(x) which is strictly decreasing, strictly
convex, and smooth over (0, x(r1)] such that G1(0+) = +∞ and G1 ∼ H0+ ; G2

is the graph of a function y = G2(x) which is strictly decreasing, strictly con-
cave, and smooth over (x(r2), x(r1)); G3 is the graph of a function y = G3(x)
which is strictly decreasing, strictly convex, and smooth over [x(r2),+∞) such that
G′

3(+∞) = 0 and G3(+∞) = 0. Furthermore, the the asymptote of G3 at +∞
exists and is just Θ0, and

G
(v)
1 (x(r1)) = G

(v)
2 (x(r1)−) and G(v)

2 (x(r2)+) = G
(v)
3 (x(r2)), v = 0, 1.

By Theorem A.17 in [4], the intersection of the dual sets of order 0 of G1, G2 and

G3 is

(
∨(G1) ⊕ ∨(G3χ(0,+∞))

)
∪

(
∧(G2χ(−∞,0])⊕ ∧(Θ0χ(−∞,0])

)
.

So the dual set of order 0 of G is the set above (see Figure 15(b)). The proof is

complete.
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Theorem 7. Suppose the condition (b6) holds (that is, σ > 0 > τ > δ and

b < 0). Let the parametric curve G be defined by x(λ) = Γ(λ; δ, τ) and y(λ) =
Γ(λ; τ, δ) for λ ∈ R as in (21). Let Ω−

0 , Ω−
1 and Ω−

2 be defined by (18), and
the function T (λ|A,B, C, σ) be defined by (11) where A,B and C are defined by
(23), (24) and (25) respectively.

(i) If (A,B) ∈ Ω−
0 ∪Ω−

1 , then (x, y) is a point of the C\R-characteristic region
of (10) if, and only if, (x, y) ∈ ∧(G)⊕ ∧(Θ0χ{0}).

(ii) If (A,B) ∈ Ω−
2 , then (x, y) is a point of the C\R-characteristic region of

(10) if, and only if, (x, y) ∈ ∧(G1)⊕∧(G3χ(−∞,0])⊕∧(Θ0χ{0}), where G1

is the part of the parametric curve G restricted to the interval (−∞, r1] and
G3 is the part of the parametric curve G restricted to the interval [r2,+∞)
and r1 as well as r2 are the (only) real roots of T (λ|A,B, C, σ) arranged
in the order r1 < r2.

Proof. Suppose (A,B) ∈ Ω−
0 ∪Ω−

1 . As in the proof of Theorem 3, the curve G

is the graph of the function y = G(x) which is strictly decreasing, strictly concave
and smooth function over (−∞,0) such that −G ∼ H−∞ and −G ∼ H0− . By

Theorem 3.14 in [4], the dual set of order 0 of G is ∧(G)⊕∧(Θ0χ{0}) (see Figure
16(a)).

Fig. 16.

If (A,B) ∈ Ω−
2 , then there are exactly two real roots r1 and r2 of T (λ|A,B, C, σ)

such that T (λ|A,B, C, σ) > 0 on R\[r1, r2] and T (λ|A,B, C, σ) < 0 on (r1, r2)
by Lemma 12. The curve G is composed of three pieces G1, G2 and G3 re-

stricted respectively to (−∞, r1], (r1, r2) and [r2,+∞). We may further see that
G1 is the graph of a function y = G1(x) which is strictly decreasing, strictly
concave, and smooth over [x(r1), 0) such that −G1 ∼ H0−; G2 is the graph of

a function y = G2(x) which is strictly decreasing, strictly convex, and smooth
over (x(r1), x(r2)); G3 is the graph of a function y = G3(x) which is strictly
decreasing, strictly concave, and smooth over (−∞, x(r2)] such that −G3 ∼ H−∞.

Furthermore,

G
(v)
1 (x(r1)) = G

(v)
2 (x(r1)+) and G(v)

2 (x(r2)−) = G
(v)
3 (x(r2)), v = 0, 1.
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By Lemma 9, the intersection of the dual sets of order 0 of G1, G2 and G3 is

∧(G1)⊕ ∧(G3χ(−∞,0]) ⊕ ∧(Θ0χ{0}). So the dual set of order 0 of G is ∧(G1) ⊕
∧(G3χ(−∞,0]) ⊕ ∧(Θ0χ{0}) (see Figure 16(b)). The proof is complete.

4.2. The case where C > 0

We have assumed that b ∈ R\{0} and τ, δ and σ are pairwise distinct real
numbers such that τ > δ and σ > 0. Since C > 0, the real numbers σ, τ, δ and b
can be broken exactly into the following six cases:

(a1) σ > τ > δ > 0 and b > 0;

(a2) τ > σ > δ > 0 and b < 0;

(a3) τ > δ > σ > 0 and b > 0;

(a4) σ > 0 > τ > δ and b > 0;

(a5) σ > τ > 0 > δ and b < 0;

(a6) τ > σ > 0 > δ and b > 0.

The parametric functions x(λ) and y(λ) defined by (21) have several elementary
properties. First,

(30) lim
λ→−∞

(x(λ), y(λ)) =





(+∞,−∞) if one of (a1), (a2) and (a3) holds

(0, 0) if (a4) holds

(0,+∞) if one of (a5) and (a6) holds

,

and

(31) lim
λ→+∞

(x(λ), y(λ)) =





(+∞,−∞) if one of (a1) and (a4) holds

(+∞, 0) if (a2) holds

(0, 0) if (a3) holds

(−∞,+∞) if (a5) holds

(−∞, 0) if (a6) holds

.

Theorem 8. Suppose the condition (a1) holds (that is, σ > τ > δ > 0 and
b > 0). Then the C\R-characteristic region of (10) is empty.

Proof. Recall that the sets Ω+
1 , Ω+

2 and Ω+
3 are defined by (19), and the

function T (λ|A,B, C, σ) defined by (11) where A,B and C are defined by (23),

(24) and (25) respectively. If (A,B) ∈ Ω+
1 ∪ Ω+

2 , then by Lemma 13, there
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is a real root r of T (λ|A,B, C, σ) such that T (λ|A,B, C, σ) ≤ 0 on (−∞, r)
and T (λ|A,B, C, σ) ≥ 0 on (r,+∞). So x′(λ) < 0 on (−∞, r)\Σ(A,B, C, σ)
and x′(λ) > 0 on (r,+∞)\Σ(A,B, C, σ) by (22). The curve G is composed

of two pieces G1 and G2 restricted respectively to (−∞, r) and [r,+∞). Since
Σ(A,B, C, σ) is finite, by (30), (31) and Lemma 10, the curve G1 is the graph of

the smooth function y = G1(x) over (x(r),+∞) and the curve G2 is the graph of

the smooth function y = G2(x) over [x(r),+∞). By (22)-(27) and Lemma 2, G1

is strictly decreasing and strictly concave such that −G1 ∼ H+∞ and G2 is strictly

decreasing and strictly convex such that G2 ∼ H+∞. Furthermore,

G
(v)
1 (x(r)+) = G

(v)
2 (x(r)), v = 0, 1.

By Lemma 4, the intersection of dual sets of order 0 of G1 and G2 is empty. So
the dual set of order 0 of G is empty (see Figure 17).

Fig. 17.

If (A,B) ∈ Ω+
3 , then by Lemma 13, there are exactly three real roots r1, r2 and

r3 of T (λ|A,B, C, σ) such that T (λ|A,B, C, σ) < 0 on (−∞, r1) ∪ (r2, r3) and
T (λ|A,B, C, σ)> 0 on (r1, r2) ∪ (r3,+∞). So x′(λ) < 0 on (−∞, r1) ∪ (r2, r3)
and x′(λ) > 0 on (r1, r2) ∪ (r3,+∞) by (22). The curve G is composed of four

pieces G1, G2, G3 and G4 restricted respectively to (−∞, r1), [r1, r2), [r2, r3] and
(r3,+∞). By (22)-(27), Lemma 2 and Lemma 10, the curve G1 is the graph of the

function y = G1(x) which is strictly decreasing, strictly concave and smooth over
(x(r1),+∞) such that −G1 ∼ H+∞; the curve G2 is the graph of the function y =
G2(x) which is strictly decreasing, strictly convex and smooth over [x(r1), x(r2));
the curve G3 is the graph of the function y = G3(x) which is strictly decreasing,
strictly concave and smooth over [x(r3), x(r2)] and the curve G4 is the graph of the

function y = G4(x) which is strictly decreasing, strictly convex and smooth over
(x(r3),+∞) such that G4 ∼ H+∞. Furthermore,

G
(v)
1 (x(r1)+) = G

(v)
2 (x(r1)), G

(v)
2 (x(r2)−)

= G
(v)
3 (x(r2)) and G

(v)
3 (x(r3)) = G

(v)
4 (x(r3)+), v = 0, 1.



420 Shao-Yuan Huang and Sui-Sun Cheng

So LG3|x(r3)(x) = LG4|x(r3)(x) for x ∈ R where for definitions of LG3|x(r3) and

LG4 |x(r3) see (8) and (9). By Lemma 8, the intersection of the dual sets of order 0 of
G1, G2 and G3 is ∧(G1)⊕ ∧(G3)⊕∧(LG3 |x(r3)) (see Figure 18(a)). By Theorem
3.11 in [4], the dual set of order 0 of G4 is ∨(G4) ⊕ ∨(LG4|x(r3)) (see Figure
18(b)). The intersection of the two dual sets above, in view of the distribution

maps in Figure 18, is empty. Hence, the intersection of dual sets of order 0 of
G1, G2, G3, G4 is empty. The proof is complete.

Fig. 18. Intersection of the dual sets of order 0 in (a) and (b) to yield (c).

Theorem 9. Suppose the condition (a2) or (a3) holds (that is, τ > σ > δ > 0
and b < 0, or τ > δ > σ > 0 and b > 0). Let the parametric curve G be defined
by x(λ) = Γ(λ; δ, τ) and y(λ) = Γ(λ; τ, δ) for λ ∈ R as in (21). Let Ω+

1 , Ω+
2 and

Ω+
3 be defined by (19), and the function T (λ|A,B, C, σ) be defined by (11) where

A,B and C are defined by (23), (24) and (25) respectively.

(i) If (A,B) ∈ Ω+
1 ∪Ω+

2 , then (x, y) is a point of the C\R-characteristic region
of (10) if, and only if, (x, y) ∈ ∧(G1) ⊕ ∧(Θ0), where G1 is the part of the

parametric curve G restricted to the interval (−∞, r] and r is the real root
of T (λ|A,B, C, σ) which is not its extremal point.

(ii) If (A,B) ∈ Ω+
3 , then (x, y) is a point of the C\R-characteristic region of

(10) if, and only if, (x, y) ∈ ∧(G1)⊕ ∧(G3)⊕ ∧(Θ0), where G1 is the part

of the parametric curve G restricted to the interval (−∞, r1) and G3 is the

part of the parametric curve G restricted to the interval [r2, r3] and r1, r2
and r3 are the (only) real roots of T (λ|A,C,B, σ) arranged in the order
r1 < r2 < r3.

Proof. Let

η =

{
+∞ if τ > σ > δ > 0 and b < 0

0 if τ > δ > σ > 0 and b > 0
.

If (A,B) ∈ Ω+
1 ∪Ω+

2 , then by Lemma 13, there is a real root r of T (λ|A,B, C, σ)
such that T (λ|A,B, C, σ) ≤ 0 on (−∞, r) and T (λ|A,B, C, σ) ≥ 0 on (r,+∞).



Oscillation of Functional Differential Equations 421

So by (22) x′(λ) < 0 on (−∞, r)\Σ(A,B, C, σ) and x′(λ) > 0 on (r,+∞)\
Σ(A,B, C, σ). The curve G is composed of two pieces G1 and G2 restricted

respectively to (−∞, r] and (r,+∞). As in the proof of Theorem 8, we may then
see that the curve G1 is the graph of the function y = G1(x) which is strictly
decreasing, strictly concave and smooth over [x(r),+∞) such that −G1 ∼ H+∞
and the curve G2 is the graph of the function y = G2(x) which is strictly decreasing,
strictly convex and smooth over (x(r), η) such that G′

2(η) = 0. Furthermore,

G
(v)
1 (x(r)) = G

(v)
2 (x(r)+), v = 0, 1.

Assume (a2) holds, we see that Θ0 is the asymptote of G2 at +∞. By Theorem A.8
in [4], the intersection of the dual sets of order 0 of G1 and G2 is ∧(G1)⊕ ∧(Θ0)
(see Figure 19(a)). Assume (a3) holds, we see that LG2|0 = Θ0. By Lemma 5, the

intersection of the dual sets of order 0 of G1 and G2 is ∧(G1)⊕∧(Θ0) (see Figure
19(b)). Hence, the dual set of order 0 of G is ∧(G1)⊕ ∧(Θ0)

τ > σ > δ > 0 and b < 0 τ > δ > σ > 0 and b > 0

Fig. 19.

If (A,B) ∈ Ω+
3 , by Lemma 13, then there are exactly three real roots r1, r2 and

r3 of T (λ|A,B, C, σ) such that T (λ|A,B, C, σ) < 0 on (−∞, r1) ∪ (r2, r3) and
T (λ|A,B, C, σ)> 0 on (r1, r2) ∪ (r3,+∞). So x′(λ) < 0 on (−∞, r1) ∪ (r2, r3)
and x′(λ) > 0 on (r1, r2) ∪ (r3,+∞) by (22). The curve G is composed of four

pieces G1, G2, G3 and G4 restricted respectively to (−∞, r1), [r1, r2), [r2, r3] and
(r3,+∞). As in the proof of Theorem 8, we may then see that the curve G1 is the

graph of the function y = G1(x) which is strictly decreasing, strictly concave and
smooth over (x(r1),+∞) such that −G1 ∼ H+∞; the curve G2 is the graph of the

function y = G2(x) which is strictly decreasing, strictly convex and smooth over
[x(r1), x(r2)); the curve G3 is the graph of the function y = G3(x) which is strictly
decreasing, strictly concave and smooth over [x(r3), x(r2)] and the curve G4 is the

graph of the function y = G4(x) which is strictly decreasing, strictly convex and
smooth over (x(r3), η) such that G′

4(η) = 0. Furthermore,

G
(v)
1 (x(r1)+) = G

(v)
2 (x(r1)), G

(v)
2 (x(r2)−)

= G
(v)
3 (x(r2)) and G

(v)
3 (x(r3)) = G

(v)
4 (x(r3)+), v = 0, 1.
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So LG3|x(r3)(x) = LG4 |x(r3)(x) for x ∈ R. By Lemma 8, the intersection of the
dual sets of order 0 of G1, G2 and G3 is ∧(G1)⊕∧(G3)⊕∧(LG3|x(r3)) (see Figures
20(a) and 21(a)). Assume (a2) holds, we see that Θ0 is the asymptote of G4 at

+∞. By Theorem 3.10 in [4], the dual set of order 0 of G4 is

(32)
(
∨(G4) ⊕ ∨(LG4 |x(r3))

)
∪

(
∧(LG4 |x(r3)) ⊕ ∧(Θ0)

)
.

(see Figure 20(b)) The intersection of the two sets ∧(G1) ⊕ ∧(G3) ⊕ ∧(LG3|x(r3))
and (32), in view of the distribution maps in Figure 20, is ∧(G1)⊕∧(G3)⊕∧(Θ0).
Assume (a3) holds, we see that LG4 |0 = Θ0. By Theorem 3.1 in [4], the dual set
of order 0 of G4 is

Fig. 20. In case τ > σ > δ > 0 and b < 0, intersection of the dual sets of order 0 in
(a) and (b) to yield (c).

(33)
(
∨(G4)⊕ ∨(LG4 |x(r3)) ⊕ ∨(Θ0)

)
∪

(
∧(LG4 |x(r3)) ⊕ ∧(Θ0)

)
.

(see Figure 21(b)). The intersection of the two sets ∧(G1)⊕∧(G3)⊕∧(LG3|x(r3))
and (33), in veiw of the distribution maps in Figure 21, is ∧(G1)⊕∧(G3)⊕∧(Θ0).
Hence, the intersection of dual sets of order 0 of G1, G2, G3, G4 is ∧(G1)⊕∧(G3)⊕
∧(Θ0). The proof is complete.

Fig. 21. In case τ > δ > σ > 0 and b > 0, intersection of the dual sets of order 0 in
(a) and (b) to yield (c).

Theorem 10. Suppose the condition (a4) holds (that is, σ > 0 > τ > δ

and b > 0). Let the parametric curve G be defined by x(λ) = Γ(λ; δ, τ) and
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y(λ) = Γ(λ; τ, δ) for λ ∈ R as in (21). Let Ω+
1 , Ω+

2 and Ω+
3 be defined by (19),

and the function T (λ|A,B, C, σ) be defined by (11) where A,B and C are defined
by (23), (24) and (25) respectively.

(i) If (A,B) ∈ Ω+
1 ∪Ω+

2 , then (x, y) is a point of the C\R-characteristic region
of (10) if, and only if, (x, y) ∈ ∨(G2χ[0,+∞)), where G2 is the part of the

parametric curve G restricted to the interval (r,+∞) and r is the real root
of T (λ|A,B, C, σ) which is not its extremal point.

(ii) If (A,B) ∈ Ω+
3 , then (x, y) is a point of the C\R-characteristic region of

(10) if, and only if, (x, y) ∈ ∨(G2χ[0,+∞)) ⊕ ∨(G4χ[0,+∞)), where G2 is

the part of the parametric curve G restricted to the interval [r1, r2] and G4

is the part of the parametric curve G restricted to the interval (r3,+∞) and
r1, r2 and r3 are the (only) real roots of T (λ|A,B, C, σ) arranged in the
order r1 < r2 < r3.

Proof. If (A,B) ∈ Ω+
1 ∪ Ω+

2 , then by Lemma 13, there is a real root r of

T (λ|A,B, C, σ) such that T (λ|A,B, C, σ)≤ 0 on (−∞, r) and T (λ|A,B, C, σ)≥
0 on (r,+∞). The curve G is composed of two pieces G1 and G2 restricted respec-

tively to (−∞, r] and (r,+∞). As in the proof of Theorem 8, we may then see that
the curve G1 is the graph of the function y = G1(x) which is strictly decreasing,
strictly concave and smooth function over [x(r), 0) and the curve G2 is the graph

of the function y = G2(x) which is strictly decreasing, strictly convex and smooth
function over (x(r),+∞) such that G2 ∼ H+∞. Furthermore,

G
(v)
1 (x(r)) = G

(v)
2 (x(r)+), v = 0, 1.

Since G′
1(0

−) = −∞, by Lemma 2, we see that −G1 ∼ H0−. By Theorem A.1 in

[4], the intersection of the dual sets of order 0 of G1 and G2 is ∨(G2χ[0,+∞)). So
the dual set of order 0 of G is ∨(G2χ[0,+∞)) (see Figure 22).

Fig. 22.

If (A,B) ∈ Ω+
3 , then by Lemma 13, there are exactly three real roots r1, r2

and r3 of T (λ|A,B, C, σ) such that T (λ|A,B, C, σ) < 0 on (−∞, r1) ∪ (r2, r3)
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and T (λ|A,B, C, σ)> 0 on (r1, r2)∪ (r3,+∞). The curve G is composed of four
pieces G1, G2, G3 and G4 restricted respectively to (−∞, r1), [r1, r2], (r2, r3] and
(r3,+∞). Similarly, we may then see that the curve G1 is the graph of the func-

tion y = G1(x) which is strictly decreasing, strictly concave and smooth function
over (x(r1), 0) such that −G1 ∼ H0− ; the curve G2 is the graph of the function

y = G2(x) which is strictly decreasing, strictly convex and smooth function over
[x(r1), x(r2)]; the curve G3 is the graph of the function y = G3(x) which is strictly
decreasing, strictly concave and smooth function over [x(r3), x(r2)) and the curve
G4 is the graph of the function y = G4(x) which is strictly decreasing, strictly
convex and smooth function over (x(r3),+∞) such that G4 ∼ H+∞. Furthermore,

Fig. 23. Intersection of the dual sets of order 0 in (a) and (b) to yield (c).

G
(v)
1 (x(r1)+) = G

(v)
2 (x(r1)), G

(v)
2 (x(r2))

= G
(v)
3 (x(r2)−) and G(v)

3 (x(r3)) = G
(v)
4 (x(r3)+), v = 0, 1.

So LG1 |x(r1)(x) = LG2 |x(r1)(x) for x ∈ R. By Lemma 8, then the intersection of
the dual sets of order 0 of G2, G3 and G4 is ∨(G2) ⊕ ∨(G4) ⊕ ∨(LG2 |x(r1)) (see
Figure 25(a)). By Theorem 3.5 in [4], then the dual set of order 0 of G1 is

(
∧(G1) ⊕ ∧(LG1|x(r1)) ⊕ ∧(Θ0χ{0})

)
∪

(
∨(LG1 |x(r1)χ[0,+∞))

)
.

(see Figure 25(b)). The intersection of the two resultant sets, in veiw of the distribu-

tion maps in Figure 25, is ∨(G2χ[0,+∞)) ⊕ ∨(G4χ[0,+∞)). Hence, the intersection
of dual sets of order 0 of G1, G2, G3, G4 is ∨(G2χ[0,+∞)) ⊕ ∨(G4χ[0,+∞)). The
proof is complete.

Theorem 11. Suppose the condition (a5) holds (that is, σ > τ > 0 > δ
and b < 0). Let the parametric curve G be defined by x(λ) = Γ(λ; δ, τ) and
y(λ) = Γ(λ; τ, δ) for λ ∈ R as in (21). Let Ω+

1 , Ω+
2 and Ω+

3 be defined by (19),
and the function T (λ|A,B, C, σ) be defined by (11) where A,B and C are defined
by (23), (24) and (25) respectively.

(i) If (A,B) ∈ Ω+
1 ∪Ω+

2 , then (x, y) is a point of the C\R-characteristic region
of (10) if, and only if, (x, y) ∈ ∧(G2χ(−∞,0]), where G2 is the part of the
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parametric curve G restricted to the interval (r,+∞) and r is the real root
of T (λ|A,B, C, σ) which is not its extremal point.

(ii) If (A,B) ∈ Ω+
3 , then (x, y) is a point of the C\R-characteristic region of

(10) if, and only if, (x, y) ∈ ∧(G2χ(−∞,0]) ⊕ ∧(G4χ(−∞,0]), where G2 is

the part of the parametric curve G restricted to the interval [r1, r2] and G4

is the part of the parametric curve G restricted to the interval (r3,+∞) and
r1, r2 and r3 are the (only) real roots of T (λ|A,B, C, σ) arranged in the
order r1 < r2 < r3.

Proof. If (A,B) ∈ Ω+
1 ∪ Ω+

2 , then by Lemma 13, there is a real root r of

T (λ|A,B, C, σ) such that T (λ|A,B, C, σ)≤ 0 on (−∞, r) and T (λ|A,B, C, σ)≥
0 on (r,+∞). The curve G is composed of two pieces G1 and G2 restricted re-

spectively to (−∞, r] and (r,+∞). As in the proof of Theorem 8, we may then
see that the curve G1 is the graph of the function y = G1(x) which is strictly
decreasing, strictly convex and smooth over (0, x(r)] and the curve G2 is the graph

of the function y = G2(x) which is strictly decreasing, strictly concave and smooth
over (−∞, x(r)) such that −G2 ∼ H−∞. Furthermore,

G
(v)
1 (x(r)) = G

(v)
2 (x(r)−), v = 0, 1.

Since G′
1(0

−) = −∞, by Lemma 2, we see that G1 ∼ H0− . By Lemma 7, the
intersection of the dual sets of order 0 of G1 and G2 is ∧(G2χ(−∞,0]). So the dual
set of order 0 of G is ∧(G2χ(−∞,0]) (see Figure 24).

Fig. 24.

If (A,B) ∈ Ω+
3 , then by Lemma 13, there are exactly three real roots r1, r2

and r3 of T (λ|A,B, C, σ) such that T (λ|A,B, C, σ) < 0 on (−∞, r1) ∪ (r2, r3)
and T (λ|A,B, C, σ) > 0 on (r1, r2) ∪ (r3,+∞). The curve G is composed of

four pieces G1, G2, G3 and G4 restricted respectively to (−∞, r1), [r1, r2], (r2, r3]
and (r3,+∞). We may further see that the curve G1 is the graph of the function

y = G1(x) which is strictly decreasing, strictly convex and smooth over (0, x(r1))
such that G1 ∼ H0−; the curve G2 is the graph of the function y = G2(x) which is
strictly decreasing, strictly concave and smooth over [x(r2), x(r1)]; the curve G3 is
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the graph of the function y = G3(x) which is strictly decreasing, strictly convex and
smooth over (x(r2), x(r3)] and the curve G4 is the graph of the function y = G4(x)
which is strictly decreasing, strictly concave and smooth over (−∞, x(r3)) such that
−G4 ∼ H−∞. Furthermore,

G
(v)
1 (x(r1)−) = G

(v)
2 (x(r1)), G

(v)
2 (x(r2))

= G
(v)
3 (x(r2)+) and G(v)

3 (x(r3)) = G
(v)
4 (x(r3)−), v = 0, 1.

So LG1|x(r1)(x) = LG2 |x(r1)(x) for x ∈ R. By Lemma 8, the intersection of the
dual sets of order 0 of G2, G3 and G4 is ∧(G2)⊕∧(G4)⊕∧(LG2 |x(r1)) (see Figure
25(a)). By Theorem 3.6 in [4], the dual set of order 0 of G1 is

(
∨(G1) ⊕ ∨(LG1 |x(r1)χ(0,+∞))

)
∪

(
∧(LG1 |x(r1)χ(−∞,0])

)
.

(see Figure 25(b)). The intersection of the two resultant sets, in view of the distribu-

tion maps in Figure 25, is ∧(G2χ(−∞,0]) ⊕ ∧(G4χ(−∞,0]). Hence, the intersection
of dual sets of order 0 of G1, G2, G3, G4 is ∧(G2χ(−∞,0]) ⊕ ∧(G4χ(−∞,0]). The
proof is complete.

Fig. 25. Intersection of the dual sets of order 0 in (a) and (b) to yield (c).

Theorem 12. Suppose the condition (a6) holds (that is, τ > σ > 0 > δ
and b > 0). Let the parametric curve G be defined by x(λ) = Γ(λ; δ, τ) and
y(λ) = Γ(λ; τ, δ) for λ ∈ R as in (21). Let Ω+

1 , Ω+
2 and Ω+

3 be defined by (19),
and the function T (λ|A,B, C, σ) be defined by (11) where A,B and C are defined
by (23), (24) and (25) respectively.

(i) If (A,B) ∈ Ω+
1 ∪ Ω+

2 , then (x, y) is a point of the C\R-characteristic
region of (10) if, and only if, (x, y) ∈ ∨(G1) ⊕ ∨(Θ0χ(0,+∞)), or (x, y) ∈
∧(G2χ(−∞,0]), where G1 is the part of the parametric curve G restricted to
the interval (−∞, r] and G2 is the part of the parametric curve G restricted
to the interval (r,+∞) and r is the real root of T (λ|A,B, C, σ) which is not
its extremal point.

(ii) If (A,B) ∈ Ω+
3 , then (x, y) is a point of the C\R-characteristic region

of (10) if, and only if, (x, y) ∈ ∨(G1) ⊕ ∨(G3χ(0,+∞)) ⊕ ∨(Θ0χ(0,+∞)),
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or (x, y) ∈ ∧(G2χ(−∞,0]) ⊕ ∧(G4χ(−∞,0]), where G1 is the part of the

parametric curve G restricted to the interval (−∞, r1] and G2 is the part of

the parametric curve G restricted to the interval (r1, r2) and G3 is the part

of the parametric curve G restricted to the interval [r2, r3) and G4 is the

part of the parametric curve G restricted to the interval [r3,+∞) and r1,
r2 and r3 are the (only) real roots of T (λ|A,B, C, σ) arranged in the order
r1 < r2 < r3.

Proof. If (A,B) ∈ Ω+
1 ∪ Ω+

2 , then by Lemma 13, there is a real root r of

T (λ|A,B, C, σ) such that T (λ|A,B, C, σ)≤ 0 on (−∞, r) and T (λ|A,B, C, σ)≥
0 on (r,+∞). The curve G is composed of two pieces G1 and G2 restricted re-

spectively to (−∞, r] and (r,+∞). As in the proof of Theorem 8, we may then
see that the curve G1 is the graph of the function y = G1(x) which is strictly
decreasing, strictly convex and smooth over (0, x(r)] such that G1 ∼ H0− and the

curve G2 is the graph of the function y = G2(x) which is strictly decreasing, strictly
concave and smooth over (−∞, x(r)) such that G′

2(−∞) = 0. and G2(−∞) = 0.
Furthermore,

G
(v)
1 (x(r)) = G

(v)
2 (x(r)−), v = 0, 1.

By Theorem A2 in [4], the intersection of the dual sets of order 0 of G1 and G2 is

(
∨(G1) ⊕ ∨(Θ0χ(0,+∞))

)
∪

(
∧(G2χ(−∞,0])

)

which is the dual set of order 0 of G (see Figure 26).

Fig. 26.

If (A,B) ∈ Ω+
3 , then by Lemma 13, there are exactly three real roots r1, r2

and r3 of T (λ|A,B, C, σ) such that T (λ|A,B, C, σ) < 0 on (−∞, r1) ∪ (r2, r3)
and T (λ|A,B, C, σ) > 0 on (r1, r2) ∪ (r3,+∞). The curve G is composed of

four pieces G1, G2, G3 and G4 restricted respectively to (−∞, r1), [r1, r2), [r2, r3]
and (r3,+∞). We may further see that the curve G1 is the graph of the function

y = G1(x) which is strictly decreasing, strictly convex and smooth over (0, x(r1))
such that G1 ∼ H0−; the curve G2 is the graph of the function y = G2(x) which is
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strictly decreasing, strictly concave and smooth over (x(r2), x(r1)]; the curve G3 is

the graph of the function y = G3(x) which is strictly decreasing, strictly convex and
smooth over [x(r2), x(r3)] and the curve G4 is the graph of the function y = G4(x)
which is strictly decreasing, strictly concave and smooth over (−∞, x(r3)) such
that G′

4(−∞) = 0. and G4(−∞) = 0. Furthermore,

G
(v)
1 (x(r1)−) = G

(v)
2 (x(r1)), G

(v)
2 (x(r2)+)

= G
(v)
3 (x(r2)) and G

(v)
3 (x(r3)) = G

(v)
4 (x(r3)−), v = 0, 1.

So LG1|x(r1)(x) = LG2 |x(r1)(x) for x ∈ R. By Theorem A.5 in [4], the inter-
section of the dual sets of order 0 of G1 and G2 is

(
∨(G1) ⊕ ∨(LG2|x(r2))χ(0,+∞)

)
∪

(
∧(G2χ(−∞,0]) ⊕ ∧(LG2|x(r2)χ(−∞,0])

)
.

(see Figure 27(a)). By Lemma 6, the dual set of order 0 of G3 and G4 is

(
∨(G3) ⊕ ∨(LG3|x(r2)) ⊕ ∨(Θ0)

)
∪

(
∧(G4) ⊕ ∧(LG3|x(r2))

)
.

(see Figure 27(b)). The intersection of the two resultant sets, in view of the distri-

bution maps in Figure 27, is

(
∨(G1) ⊕ ∨(G3χ(0,+∞))⊕ ∨(Θ0χ(0,+∞))

)
∪

(
∧(G2χ(−∞,0])⊕ ∧(G4χ(−∞,0])

)
.

which is the desired dual set of order 0. The proof is complete.

Fig. 27. Intersection of the dual sets of order 0 in (a) and (b) to yield (c).

5. EXAMPLES

Although we have given the exact conditions for the absence of real roots of

the function Q defined by (10), these conditions may require further specifications

since parametric curves may be involved. We illustrate how these details can be

taken care of in several different cases.

Example 1. Assume 1/3 ≤ b ≤ 7/5, p < (1 − 7b)/3 and q < −(1 + 2b)/3.
Then every solution of the differential equation

(34) u′(t) + b(u′(t+ 2) + 2u(t+ 2) + u(t)) + pu(t+ 1) + qu(t+ 4) = 0
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is oscillatory.

Proof. The characteristic equation of our differential equation is

Q(λ) = λ+ b+ (bλ+ 2b)e2λ + peλ + qe4λ, for λ ∈ R.

We have A = 5/(2b)− 2, B = 5/2 and C = −2/b. Let the curve S be defined by

ψ(λ) = 0.5e2λ − 1
b

+
λ

2
and ϕ(λ) = −λ− 0.5 +

1
b
e−2λ,

for λ ∈ R. Then ψ(0) = 0.5 − 1/b and ϕ(0) = −0.5 + 1/b. By the assumption
1/3 < b < 7/5, we see that ψ(0) ≤ A and ϕ(0) ≤ B (see Figure 28(a)). Since S

is strictly decreasing, (A,B) ∈ Ω−
0 ∪ Ω−

1 . By Theorem 3, Q(λ) has no real roots
if, and only if, (p, q) ∈ ∧(G) where G is the curve defined by

x(λ) =
−1
3

{
e−λ(4λ+ 4b− 1) + eλb(2λ+ 3)

}
and y(λ)

=
1
3

{
e−4λ(λ+ b− 1)− e−2λb(λ+ 3)

}
,

for λ ∈ R. Note that p < (1 − 7b)/3 = x(0) and q < −(1 + 2b)/3 = y(0) (see
Figure 28(b)). Since G is strictly decreasing, (p, q) ∈ ∧(G). The proof is complete.

Fig. 28.

Example 2. Suppose p < −2. Then every solution of the differential equation

(35) u′(t) + u(t) + (−u′(t+ 2) + u(t+ 2)) + pu(t+ 1) + qu(t+ 4) = 0

is oscillatory if, and only if, q ≤ 0.

Proof. The characteristic equation of our differential equation is

Q(λ) = λ+ 1 + (1− λ)e2λ + peλ + qe4λ, for λ ∈ R.

We have A = B = −0.5 and C = 2. Let the curve S be defined by

ψ(λ) =
1
2
eσλ + 1 − 2λ, ϕ(λ) = −λ− 1

2
− e−2λ, for λ ∈ R,



430 Shao-Yuan Huang and Sui-Sun Cheng

and λ∗ = 0.5 ln2. Then (ψ(λ∗), ϕ(λ∗)) = (2 − ln 2,−1 − 0.5 ln 2). The curve S
is composed of two pieces S1 and S2. S1 and S2 are the graphs of the functions

y = S1(x) over [x(λ∗),+∞) and y = S2(x) over (x(λ∗),+∞). Since −0.5 < 0 <
2− ln 2, the point (−0.5,−0.5) lies in the set Ω+

1 (see Figure 29(a)). Let G be the
parametric curve defined by

x(λ) =
−1
3

{
e−λ(4λ+ 3) + eλ(3− 2λ)

}
and y(λ) =

1
3
e−4λ(1 + e2λ)λ

for λ ∈ R. By Theorem 9, Q(λ) has no real roots if, and only if, (p, q) ∈ ∧(Θ0)⊕
∧(G1), where G1 is the part of the parametric curve G restricted to the interval

(−∞, r] and r is the real roots of T (λ|A,B, C, σ) = λ − 0.5 + (2λ − 0.5)e−2λ

which is not its extremal point. It is easy to see that the point of intersection of G1

and Θ0 is (−2, 0). Since G1 is strictly decreasing and p < −2, we see that

{∧(Θ0) ⊕ ∧(G1)} ∩ {(x, y) ∈ R2 : x < −2 and y ∈ R}

= {(x, y) ∈ R2 : x < −2 and y ≤ 0}.

Hence, every solution of the equation (35) is oscillatory if, and only if, q ≤ 0 (see
Figure 29(b)).

Fig. 29.

Example 3. Assume p<0 and q<0. Assume further that one of the following
conditions holds:

(1) σ > δ > τ > 0 and (δ + τ)/3 ≤ σ/2 ≤ δ + τ ;
(2) τ > δ > σ > 0;
(3) τ > σ > 0 > δ;
(4) σ > 0 > τ > δ.

Then every solution of

(36) u′(t) − u′(t+ σ) + pu(t+ δ) + qu(t + τ) = 0

is oscillatory.



Oscillation of Functional Differential Equations 431

Proof. The characteristic equation of our differential equation is

Q(λ) = λ− λeσλ + peδλ + qeτλ, for λ ∈ R.

By assumption, b = −1 < 0,

A =
δ + τ

(σ − δ)(σ − τ)
, B =

(δ + τ − 2σ)
(σ − δ)(τ − σ)

and C =
−δτ

(σ − δ)(σ − τ)
< 0.

Let the curve S be defined by

ψ(λ) =
1
σ
eσλ +

C

σ
− Cλ, ϕ(λ) = −λ− 1

σ
− C

σ
e−σλ

for λ ∈ R, and let the curve G be defined by

x(λ) =
e−λδ

δ − τ

{
τλ− 1 − eλσ[(τ − σ)λ− 1]

}
and y(λ)

=
e−λτ

τ − δ

{
δλ− 1 − eλσ[(δ − σ)λ− 1]

}
,

for λ ∈ R. We have that x(0) = y(0) = 0, and that ψ(0) = (C + 1)/σ and
ϕ(0) = −(C + 1)/σ.

Assume σ > δ > τ > 0 and (δ + τ)/3 ≤ σ/2 ≤ δ + τ hold. Then ψ(0) < A

and ϕ(0) < B (see Figure 30(a)). Since S is strictly decreasing, we see that

(A,B) ∈ Ω−
0 . By Theorem 3, the C\R-characteristic region of Q is ∧(G). Since

G is strictly decreasing and passes through the origin (0, 0), (p, q) ∈ ∧(G). The
proof of (i) is complete (see Figure 30(b)).

Fig. 30.
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The conditions (ii), (iii) and (iv) satisfy (b3), (b5) and (b6) respectively. We

observe that the curve G passes through the origin. Thus (A,B) ∈ Ω−
2 . Otherwise,

the curve G does not pass through the origin by Theorems 4, 6 and 7. By the same

Theorems again, in view of Figures 30(c), 30(d) and 30(e), the point (p, q) lies in
the C\R -characteristic region of Q. Hence, every solution of (36) is oscillatory.
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