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SOME MODIFIED EXTRAGRADIENT METHODS FOR COMMON
SOLUTIONS OF GENERALIZED EQUILIBRIUM PROBLEMS

AND FIXED POINTS OF NONEXPANSIVE MAPPINGS

Jian-Wen Peng and Ngai-Ching Wong*

Abstract. In this paper, we introduce some new iterative schemes based
on the extragradient method (and the hybrid method) for finding a common
element of the set of solutions of a generalized equilibrium problem, the set
of fixed points of a family of nonexpansive mappings, and the set of solutions
of the variational inequality for a monotone, Lipschitz continuous mapping
in Hilbert spaces. We obtain some strong convergence theorems and weak
convergence theorems. The results in this paper generalize, improve and unify
some well-known convergence theorems in the literature.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H with inner
product 〈·, ·〉 and induced norm ‖ · ‖. Let F be a bifunction from C × C into the
real line R and let B : C → H be a nonlinear mapping. Moudafi [5], Moudafi and
Thera [6], Peng and Yao [11-13], and Takahashi and Takahashi [18] considered the
following generalized equilibrium problem:

(1.1) Find x ∈ C such that F (x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

The set of solutions of (1.1) is denoted by GEP (C, F, B).
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If B = 0, the generalized equilibrium problem (1.1) reduces to the so-called
equilibrium problem. If F = 0, then (1.1) becomes the variational inequality
problem, i.e., to find x ∈ C such that

〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

The set of solutions of the variational inequality problem is denoted by V I(C, B).
The problem (1.1) is very general in the sense that it includes, as special cases,

optimization problems, variational inequalities, minimax problems, Nash equilib-
rium problem in noncooperative games; see for instance, [1, 5, 6, 11-13, 18] and
the references therein.

Recall that a mapping S : C → H is nonexpansive if there holds that

‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ C.

We denote the set of fixed points of S by Fix(S).
Several algorithms have been proposed for finding the solution of problem (1.1).

Moudafi [5] introduced an iterative scheme for finding a solution of problem (1.1),
which is also a fixed point of a nonexpansive mapping, and proved a weak conver-
gence theorem. Moudafi and Thera [6] introduced an auxiliary scheme for finding a
solution of problem (1.1) and obtained a weak convergence theorem. Peng and Yao
[11-13] introduced some iterative schemes for finding a common solution of problem
(1.1) and the variational inequality for a monotone, Lipschitz-continuous mapping,
which is also a fixed point of a family of nonexpansive mappings. Takahashi and
Takahashi [18] introduced an iterative scheme for finding a common element of the
set of solutions of problem (1.1) and the set of fixed points of a nonexpansive map-
ping in a Hilbert space, and proved a strong convergence theorem. Some methods
also have been proposed to solve the equilibrium problem when B = 0 in (1.1) ;
see, for instance, [2-4, 10, 14-17, 20] and the references therein.

Recently Nakajo, Shimoji and Takahashi [8], and Takahashi, Takeuchi and Kub-
ota [19] introduced and studied some iterative methods for finding a common fixed
point of a family of nonexpansive mappings satisfying the so-called NST-condition
(I), and obtained some strong convergence theorems in a Banach space or a Hilbert
space.

Inspired by the ideas in the [2-6, 8, 10-20] and the references therein, we intro-
duce some new iterative schemes based on the extragradient method (and the hybrid
method) for finding a common element of the set of solutions of a generalized equi-
librium problem, the set of fixed points of a family of nonexpansive mappings and
the set of solutions of the variational inequality for a monotone, Lipschitz-continuous
mapping. We obtain both strong convergence theorems and weak convergence the-
orems for the sequences generated by the corresponding processes. The results in
this paper generalize, improve and unify some well-known convergence theorems
in the literatures.
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2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H with
inner product 〈·, ·〉 and norm ‖ · ‖. Let symbols → and ⇀ denote strong and weak
convergence, respectively. For any x ∈ H , there exists a unique nearest point in C,
denoted by PC(x), such that

‖x − PC(x)‖ ≤ ‖x − y‖ for all y ∈ C.

The mapping PC is called the metric projection of H onto C. We know that PC is
a nonexpansive mapping from H onto C. Moreover,

z = PC(x) if and only if 〈x − z, z − y〉 ≥ 0, ∀y ∈ C.

A mapping A : C −→ H is called monotone if

〈Ax − Ay, x− y〉 ≥ 0, for all x, y ∈ C;

A is called α-inverse strongly monotone if α > 0 and

〈x− y, Ax− Ay〉 ≥ α‖Ax − Ay‖2, for all x, y ∈ C;

A is called k-Lipschitz continuous if k > 0 and

‖Ax − Ay‖ ≤ k‖x − y‖, for all x, y ∈ C.

For solving the equilibrium problem, let us assume that the bifunction F satisfies
the following conditions:
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t↓0

F (tz + (1 − t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, the scalar function y 	→ F (x, y) is convex and lower semi-
continuous.

Motivated by Nakajo, Shimoji and Takahashi [8] and Takahashi, Takeuchi and
Kubota [19], we give the following definitions: Let {Sn} and Γ be two families
of nonexpansive mappings of C into itself such that ∅ �= Fix(Γ) = ∩∞

n=1Fix(Sn),
where Fix(Γ) is the set of all common fixed points of mappings in Γ. Then, {Sn} is
said to satisfy the NST-condition (I) with Γ if for each bounded sequence {tn} ⊆ C,

lim
n→∞ ‖tn − Sntn‖ = 0 implies that lim

n→∞ ‖tn − Ttn‖ = 0 for all T ∈ Γ.

In particular, if Γ = {T}, i.e., Γ consists of exactly one mapping T , then {Sn} is
said to satisfy the NST-condition (I) with T .
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3. MAIN RESULTS

We now present the strong convergence of an iterative algorithm based on extra-
gradient method and hybrid method which solves the problem of finding a common
element of the set of solutions of a generalized equilibrium problem, the fixed point
set of a family of nonexpansive mappings and the set of solutions of the variational
inequality for a monotone, Lipschitz continuous mapping in a Hilbert space.

In the following, we always assume that C is a nonempty closed convex subset
of a real Hilbert space H . Let F be a bifunction from C × C into R satisfying
(A1)-(A4), let A be a monotone and k-Lipschitz continuous mapping of C into H ,
and let B be an α-inverse strongly monotone mapping of C into H . Let {Sn} and
Γ be families of nonexpansive mappings of C into itself such that

Ω = ∩∞
i=1Fix(Si) ∩ V I(C, A)∩ GEP (C, F, B) �= ∅

and ∩∞
i=1Fix(Si) = Fix(Γ). Assume also that {Sn} satisfies the NST-condition (I)

with Γ.

Theorem 3.1. Suppose {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [0, c] for

some c ∈ (0, 1), and {rn} ⊂ [γ, e] for some γ, e ∈ (0, 2α). Pick any x1 = x ∈ C

and set C1 = C. Let {xn}, {un}, {yn} and {zn} be sequences generated by the
scheme

(3.1)




F (un, y) + 〈Bxn, y − un〉 + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

zn = αnxn + (1 − αn)SnPC(un − λnAyn),

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x

for every n = 1, 2, . . .. Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PΩ(x).

Proof. First we note that under assumptions (A1)-(A4), it is held that for any
r > 0 and x ∈ H there is a unique q in C such that

F (u, y) +
1
r
〈y − u, u − x〉 ≥ 0, ∀y ∈ C

(see, e.g., [18, 1]). In particular, if we put r = rn and x = xn − rnBxn then we
can solve for un.

It is obvious that Cn is closed for every n = 1, 2, . . .. Since

Cn+1 = {z ∈ Cn : ‖zn − xn‖2 + 2〈zn − xn, xn − z〉 ≤ 0},
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we also have that Cn is convex for every n = 1, 2, . . ..
Next, we show by induction that Ω ⊆ Ci for i = 1, 2, . . .. From C1 = C, we

have Ω ⊆ C1. Suppose that Ω ⊆ Cn for some positive integer number n. Let
u ∈ Ω and let {Trn} be a sequence of mappings defined as in Lemma 2.2 in [17].
As u ∈ GEP (C, F, B), we have u = Trn(u − rnBu), and as u ∈ V I(C, A), we
have u = PC(u − λnAu). Putting tn = PC(un − λnAyn) for every n = 1, 2, . . ..
From un = Trn(xn − rnBxn) ∈ C and the proof of Theorem 3.1 in [13], we have

(3.2) ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2α)‖Bxn − Bu‖2 ≤ ‖xn − u‖2,

(3.3) ‖un−u‖2≤‖xn−u‖2−‖xn−un‖2+2rn〈Bxn−Bu, xn−un〉−r2
n‖Bxn−Bu‖2,

and

(3.4)

‖tn−u‖2

≤ ‖un−u‖2−‖un−yn‖2−‖yn−tn‖2+2λnk‖un−yn‖‖tn−yn‖
≤ ‖un−u‖2−‖un−yn‖2−‖yn−tn‖2+λn

2k2‖un−yn‖2+‖tn−yn‖2

= ‖un−u‖2+(λn
2k2−1)‖un−yn‖2.

Therefore from (3.2), (3.4), zn = αnxn + (1−αn)Sntn and u = Snu, we have

(3.5)

‖zn − u‖2

≤ αn‖xn − u‖2 + (1 − αn)‖Sntn − u‖2

≤ αn‖xn − u‖2 + (1 − αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1 − αn)[‖un − u‖2 + (λn
2k2 − 1)‖un − yn‖2]

≤ ‖xn − u‖2 + (1− αn)(λn
2k2 − 1)‖un − yn‖2

≤ ‖xn − u‖2,

for every n = 1, 2, . . ., and hence u ∈ Cn+1 . So, Ω ⊂ Ci for every i = 1, 2, . . ..
Let l0 = PΩx. From xn = PCnx and l0 ∈ Ω ⊂ Cn, we have

(3.6) ‖xn − x‖ ≤ ‖l0 − x‖
for every n = 1, 2, . . .. Therefore, {xn} is bounded. From (3.2), (3.4) and (3.5),
we also obtain that {un}, {tn} and {zn} are bounded. Since xn+1 ∈ Cn+1 ⊆ Cn

and xn = PCnx, we have

‖xn − x‖ ≤ ‖xn+1 − x‖
for every n = 1, 2, .... Therefore, limn→∞ ‖xn − x‖ exists.
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Since

‖xn+1 − xn‖2 = ‖xn+1 − PCnx‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2

for every n = 1, 2, .... This implies that

lim
n→∞ ‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn+1, we have ‖zn − xn+1‖ ≤ ‖xn − xn+1‖ and hence

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖ ≤ 2‖xn − xn+1‖
for every n = 1, 2, .... From limn→∞ ‖xn+1 − xn‖ = 0, we have ‖xn − zn‖ → 0.

For u ∈ Ω, from (3.5) we obtain

(3.7) ‖un − yn‖2 ≤ 1
(1− αn)(1− λn

2k2)
(‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.

Since ‖xn − zn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain
‖un − yn‖ → 0. By the same process as in (3.4), we also have

‖tn − u‖2

≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + 2λnk‖un − yn‖‖tn − yn‖
≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + ‖un − yn‖2 + λn

2k2‖tn − yn‖2

= ‖un − u‖2 + (λn
2k2 − 1)‖yn − tn‖2.

Then,

‖zn − u‖2 ≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)[‖un − u‖2 + (λn
2k2 − 1)‖yn − tn‖2]

≤ ‖xn − u‖2 + (1 − αn)(λn
2k2 − 1)‖yn − tn‖2.

and, rearranging as in (3.7), we obtain

‖tn − yn‖2 ≤ 1
(1− αn)(1− λn

2k2)
(‖xn − u‖+ ‖zn − u‖)‖xn − zn‖.

Since ‖xn − zn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain
‖tn −yn‖ → 0. As A is k-Lipschitz continuous, we have ‖Ayn −Atn‖ → 0. From
‖un − tn‖ ≤ ‖un − yn‖ + ‖yn − tn‖, we also have ‖un − tn‖ → 0.

From (3.5) and (3.2), we have

‖zn − u‖2 ≤ αn‖xn − u‖2 + (1− αn)[‖un − u‖2 + (λ2
nk2 − 1)‖un − yn‖2]
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≤ αn‖xn − u‖2 + (1 − αn)‖un − u‖2

≤ αn‖xn − u‖2 + (1 − αn)[‖xn − u‖2 + rn(rn − 2α)‖Bxn − Bu‖2]

= ‖xn − u‖2 + (1− αn)rn(rn − 2α)‖Bxn − Bu‖2.

Hence, we have

(1− c)γ(2α− e)‖Bxn − Bu‖2

≤ (1− αn)rn(2α − rn)‖Bxn − Bu‖2

≤ ‖xn − u‖2 − ‖zn − u‖2

≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.
Since ‖xn−zn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain

‖Bxn − Bu‖ → 0.
Then, by (3.5), (3.4) and (3.3), we get

‖zn − u‖2 ≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖un − u‖2

≤ αn‖xn − u‖2 + (1− αn)[‖xn − u‖2 − ‖xn − un‖2

+2rn〈Bxn − Bu, xn − un〉 − r2
n‖Bxn − Bu‖2]

≤ ‖xn−u‖2−(1−αn)‖xn−un‖2+(1−αn)2rn‖Bxn−Bu‖‖xn−un‖.

Hence,

(1 − c)‖xn − un‖2

≤ (1 − αn)‖xn − un‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 + (1− αn)2rn‖Bxn − Bu‖‖xn − un‖
≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖ + (1− αn)2rn‖Bxn − Bu‖‖xn − un‖.

Since ‖xn − zn‖ → 0, ‖Bxn − Bu‖ → 0 and the sequences {xn} and {zn} are
bounded, we obtain ‖xn − un‖ → 0. From ‖zn − tn‖ ≤ ‖zn − xn‖+ ‖xn − un‖+
‖un − tn‖ we have ‖zn − tn‖ → 0. From ‖tn −xn‖ ≤ ‖tn − un‖+ ‖xn − un‖ we
also have ‖tn − xn‖ → 0.

Since zn = αnxn + (1 − αn)Sntn, we have (1 − αn)(Sntn − tn) = αn(tn −
xn) + (zn − tn). Then

(1− c)‖Sntn − tn‖ ≤ (1− αn)‖Sntn − tn‖ ≤ αn‖tn − xn‖ + ‖zn − tn‖
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and hence ‖Sntn − tn‖ → 0. Since {Sn} satisfies the NST-condition (I) with Γ,
we have for all T ∈ Γ,

lim
n→∞ ‖Ttn − tn‖ = 0.

As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀

w. From ‖xn − un‖ → 0, we obtain that uni ⇀ w. From ‖un − tn‖ → 0, we
also obtain that tni ⇀ w. Since {uni} ⊂ C and C is closed and convex, we obtain
w ∈ C.

Now, we show that w ∈ Fix(Γ). Assume w /∈ Fix(Γ). Since tni ⇀ w and
w �= Tw for some T ∈ Γ, from the Opial condition (see [9]) we have

lim inf
i→∞

‖tni − w‖ < lim inf
i→∞

‖tni − Tw‖

≤ lim inf
i→∞

{‖tni − Ttni‖ + ‖Ttni − Tw‖}

≤ lim inf
i→∞

‖tni − w‖.

This is a contradiction. So, we get w ∈ Fix(Γ) = ∩∞
i=1Fix(Si). By exactly the same

argument in the proof of Theorem 3.1 in [13] we can show w ∈ GEP (C, F, B)
and w ∈ V I(C, A), which implies w ∈ Ω.

From l0 = PΩx, w ∈ Ω and (3.5), we have

‖l0 − x‖ ≤ ‖w − x‖ ≤ lim inf
i→∞

‖xni − x‖ ≤ lim sup
i→∞

‖xni − x‖ ≤ ‖l0 − x‖.

So, we obtain w = l0 and

lim
i→∞

‖xni − x‖ = ‖w − x‖.

From xni −x ⇀ w−x we have xni −x → w−x and hence xni → w. This implies
that xn → l0. It is easy to see un → l0, yn → l0 and zn → l0. The proof is now
complete. �

Combining the arguments in the proof of Theorem 3.1 and those in the proof
of Theorem 3.1 in [12] and Theorem 3.1 in [13], respectively, we can easily ob-
tain the following weak convergence theorem and strong convergence theorem for
the corresponding iterative algorithms based on the extragradient method (and CQ
method).

Theorem 3.2. Assume {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {βn} ⊂ [δ, ε] for

some δ, ε ∈ (0, 1), and {rn} ⊂ [d, e] for some d, e ∈ (0, 2α). Let {xn}, {un} and
{yn} be sequences generated by the scheme
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(3.8)




x1 = x ∈ C,

F (un, y) + 〈Bxn, y − un〉 + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

xn+1 = βnxn + (1− βn)SnPC(un − λnAyn)

for every n = 1, 2, . . .. Then, {xn}, {un} and {yn} converge weakly to w ∈ Ω,
where w = limn→∞ PΩxn.

Theorem 3.3. Assume {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [0, c] for

some c ∈ [0, 1] and {rn} ⊂ [γ, e] for some γ, e ∈ (0, 2α). Let {xn}, {un}, {yn}
and {zn} be sequences generated by the scheme

(3.9)




x1 = x ∈ C,

F (un, y) + 〈Bxn, y − un〉 + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

zn = αnxn + (1− αn)SnPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, . . .. Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PΩ(x).

Remark 3.4.

(i) It follows from Lemmas 3.1-3.12 in [8] and Lemmas 2.1-2.4 in [19] that
the NST-condition (I) with Γ of {Sn} contains many special cases. Hence,
we can easily obtain many interesting results by using Theorems 3.1-3.3.
For examples, let Sn = S for all n = 1, 2, ... in Theorem 3.3 and 3.2,
respectively, by Lemma 2.1 in [19], we get Theorem 4.4 in [11] without
the condition (B4) or (B2), and Theorem 3.1 in [12]. Let Sn = S for all
n = 1, 2, ... and B = 0 in Theorems 3.3 and 3.2, respectively, we recover
Theorems 3.1 and 4.1 in [16]. Let Sn be replaced by the W -mapping Wn

generated by Sn, Sn−1, . . . , S1 and ξn, ξn−1, ..., ξ1 in Theorems 3.3 and 3.2,
respectively, by Lemma 3.6 in [8], we recover Theorems 3.1 and 4.1 in [13].
Let F (x, y) = 0 for all x, y ∈ C, B = 0 and Sn = S for all n = 1, 2, ... in
Theorem 3.3, by Lemma 2.1 in [19], we recover Theorem 3.1 in [7].
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(ii) Let F (x, y) = 0 for all x, y ∈ C, A = B = 0 in Theorems 3.1 and 3.2,
respectively, we recover Theorems 3.3 and 3.4 in [19].

(iii) Since the α-inverse strongly monotonicity of A has been weakened by the
monotonicity and Lipschitz continuity of A, Theorems 3.1-3.3 extend, gener-
alize and improve Theorem 3.1 in [8], Theorem 3.1 in [15], Theorem 3.1 in
[14], Theorem 3.1 in [3], and Theorem 3 in [4].
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