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q-EXTENSIONS OF SOME RELATIONSHIPS BETWEEN THE
BERNOULLI AND EULER POLYNOMIALS

Qiu-Ming Luo and H. M. Srivastava*

Abstract. The main object of this paper is to give q-extensions of several
explicit relationships of H. M. Srivastava and Á. Pintér [Appl. Math. Lett.
17 (2004), 375-380] between the Bernoulii and Euler polynomials. We also
derive several other formulas in series of Carlitz’s q-Stirling numbers of the
second kind.

1. INTRODUCTION AND DEFINITIONS

Throughout this paper, we make use of the following notations. First of all, C

denotes the set of complex numbers and

N0 := N ∪ {0} (N := {1, 2, 3, · · ·})

denotes the set of nonnegative integers.
For q ∈ C (|q| < 1), the q-shifted factorial (λ; q)µ is defined by (see, for

details, [2] and [15]; see also [33, p. 346 et seq.])

(1.1) (λ; q)µ =
∞∏

j=0

(
1 − λqj

1 − λqµ+j

)
(q, λ, µ ∈ C; |q| < 1),

so that

(1.2) (λ; q)n =

{
1 (n = 0)

(1 − λ)(1− λq) · · ·(1− λqn−1) (n ∈ N),
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(1.3) (λ; q)∞ =
∞∏

j=0

(1 − λqj)

and

(1.4) lim
q→1

{
(qλ; q)n

(qµ; q)n

}
=

(λ)n

(µ)n
(n ∈ N0; µ /∈ Z0 := {0,−1,−2, · · ·}),

where (λ)ν denotes the Pochammer symbol (or the shifted factorial) defined, in
terms of the familiar Gamma function, by

(1.5) (λ)ν =
Γ(λ+ν)

Γ(λ)
=

{
1 (ν=0; λ ∈ C \ {0})
λ(λ+1) · · · (λ+n−1) (ν=n ∈ N; λ ∈ C).

The q-number [λ]q, the q-number factorial [λ]q! and the q-number shifted
factorial ([λ]q)n are defined by

(1.6) [0]q = 0 and [λ]q =
1 − qλ

1 − q
(q �= 1; λ ∈ C \ {0}),

(1.7) [0]q! = 1 and [n]q! = [1]q[2]q[3]q · · · [n]q (n ∈ N)

and

(1.8) ([λ]q)n = [λ]q[λ + 1]q · · · [λ + n − 1]q (n ∈ N; λ ∈ C),

respectively. Clearly, we have the following limit cases:

(1.9) lim
q→1

{[λ]q} = λ, lim
q→1

{[n]q!} = n! and lim
q→1

{([λ]q)n} = (λ)n,

where the Pochhammer symbol (λ)n is given by (1.5).
Over seven decades ago, Carlitz extended the classical Bernoulli and Euler

polynomials and numbers (see, for example, [36]) and introduced the q-Bernoulli
and the q-Euler polynomials as well as the q-Bernoulli and the q-Euler numbers (see
[3, 4] and [5]). There are numerous recent investigations on this subject by, among
many other authors, Cenki et al. ([6, 7] and [8]), Choi et al. ([10] and [11]), Kim
et al. ([16-22] and [23]), Ozden and Simsek [26], Ryoo et al. [27], Simsek ([28,
29] and [30]) and Srivastava et al. [35].

We first recall here the definitions of the q-Bernoulli and the q-Euler polynomials
of higher order as follows (see [3-5, 10] and [11]).

Definition 1. (q-Bernoulli Polynomials of Order α). For q, α ∈ C (|q| < 1),
the q-Bernoulli polynomials B

(α)
n;q (x) of order α in qx are defined by means of the

following generating function:

(1.10) (−t)α
∞∑

n=0

([α]q)n

[n]q!
qn+xe[n+x]qt =

∞∑
n=0

B(α)
n;q (x)

tn

n!
.
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Obviously, we have (see Definitions 5 and 6 below)

(1.11) lim
q→1

{
B(α)

n;q (x)
}

= B(α)
n (x) and lim

q→1

{
B(α)

n;q

}
= B(α)

n .

We also write

(1.12) Bn;q(x) := B(1)
n;q(x) (n ∈ N0)

for the ordinary q-Bernoulli polynomials Bn;q(x).

Definition 2. (q-Bernoulli Numbers of Order α). For q, α ∈ C (|q| < 1), the
q-Bernoulli numbers B

(α)
n;q of order α are defined by

(1.13) B(α)
n;q := B(α)

n;q (0) .

We also write

(1.14) Bn;q := Bn;q(0) (n ∈ N0)

for the ordinary q-Bernoulli numbers.

Definition 3. (q-Euler Polynomials of Order α). For q, α ∈ C (|q| < 1), the
q-Euler polynomials E

(α)
n;q (x) of order α in qx are defined by means of the following

generating function:

(1.15) 2α
∞∑

n=0

([α]q)n

[n]q!
(−1)nqn+xe[n+x]qt =

∞∑
n=0

E(α)
n;q (x)

tn

n!
.

Obviously, we have (see Definitions 5 and 6 below)

(1.16) lim
q→1

{
E(α)

n;q (x)
}

= E(α)
n (x) and lim

q→1

{
E(α)

n;q

}
= E(α)

n .

We also write

(1.17) En;q(x) := E(1)
n;q(x) (n ∈ N0)

for the ordinary q-Euler polynomials En;q(x).

Definition 4. (q-Euler Numbers of Order α). For q, α ∈ C (|q| < 1), the
q-Euler numbers E

(α)
n;q (x) of order α are defined by

(1.18) E(α)
n;q := 2nE(α)

n;q

(α

2

)
.
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We also write

(1.19) En;q := 2nEn;q

(
1
2

)
(n ∈ N0)

for the ordinary q-Euler numbers En;q.

Definition 5. (Bernoulli and Euler Polynomials of Order α). The classical
Bernoulli polynomials B

(α)
n (x) and the classical Euler polynomials E

(α)
n (x) of order

α in x are defined by means of the following generating functions (see, for details,
[1], [13], [25] and [32]; see also the recent works by Garg et al. [14] and Lin et
al. [24]):

(1.20)
(

z

ez − 1

)α

exz =
∞∑

n=0

B(α)
n (x)

zn

n!
(|z| < 2π; 1α := 1)

and

(1.21)
(

2
ez + 1

)α

exz =
∞∑

n=0

E(α)
n (x)

zn

n!
(|z| < π; 1α := 1).

Clearly, we have

(1.22) Bn (x) := B(1)
n (x) and En (x) := E(1)

n (x) (n ∈ N0)

for the ordinary Bernoulli polynomials Bn (x) in x and the ordinary Euler polyno-
mials En (x) in x, respectively.

Definition 6. (Bernoulli and Euler Numbers of Order α). The classical Bernoulli
numbers B

(α)
n and the classical Euler numbers E

(α)
n of order α are defined by

(1.23) B(α)
n := B(α)

n (0) and E(α)
n := 2nEn

(α

2

)
,

respectively.

We next recall the following elegant results of Srivastava and Pintér [34] given
by Theorem A.

Theorem A. (Srivastava and Pintér [34, p. 379, Theorem 1; p. 380, Theorem
2]). Each of the following relationships holds true:

(1.24)

B(α)
n (x + y)

=
n∑

k=0

(
n

k

)(
B

(α)
k (y) +

k

2
B

(α−1)
k−1 (y)

)
En−k(x) (n ∈ N0; α ∈ C)
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and

(1.25)

E(α)
n (x + y)

=
n∑

k=0

2
k+1

(
n

k

)(
E

(α−1)
k+1 (y)−E

(α)
k+1(y)

)
Bn−k(x) (n ∈ N0; α ∈ C).

An interesting special case occurs when we set α = 1 in the assertion (1.24) of
Theorem A and then let y → 0. Noting that

(1.26) B(0)
n (x) = xn and B1 = −1

2
,

we are thus led to Cheon’s main result stated here as Theorem B.

Theorem B. (Cheon [9, p. 368, Theorem 3]). The following relationship holds
true:

(1.27) Bn(x) =
n∑

k=0
(k �=1)

(
n

k

)
BkEn−k(x) (n ∈ N0).

In the present paper, we investigate q-extensions of Theorem A and Theorem B,
which are based esentially upon series rearrangement techniques and several lemmas
which we prove in the next section. Some formulas involving Carlitz’s q-Stirling
numbers of the second kind are also considered.

The paper is organized as follows: In Section 2, we give some lemmas and other
necessary preliminaries. In Section 3, we study the aforementioned q-extensions of
Theorem A and Theorem B. Finally, in Section 4, we provide other related results
involving series of Carlitz’s q-Stirling numbers of the second kind.

2. A SET OF LEMMAS AND OTHER PRELIMINARIES

In this section, we provide some basic formulas and results for the q-Bernoulli
polynomials B

(α)
n;q (x) and the q-Euler polynomials E

(α)
n;q (x) of order α, which will

be needed to prove our main results (Theorem 1 and Theorem 2).
From the generating function (1.10) and (1.15), it is not difficult to deduce

Lemma 1 and Lemma 2 below. The proofs are fairly straightforward and will be
omitted here.

Lemma 1. (Difference Equations). Each of the following difference equations
holds true for the q-Bernoulli polynomials B

(α)
n;q (x) and the q-Euler polynomials

E
(α)
n;q (x) :



246 Qiu-Ming Luo and H. M. Srivastava

(2.1) qα−1B(α)
n;q (x + 1)− B(α)

n;q (x) = nB
(α−1)
n−1;q (x) (n ∈ N \ {1})

and

(2.2) qα−1E(α)
n;q (x + 1) + E(α)

n;q (x) = 2E(α−1)
n;q (x) (n ∈ N \ {1}),

respectively.

Lemma 2. (Addition Theorems). Each of the following addition theorems holds
true for the q-Bernoulli polynomials B

(α)
n;q (x) and the q-Euler polynomials E

(α)
n;q (x) :

(2.3) B(α)
n;q (x + y) =

n∑
k=0

(
n

k

)
B

(α)
k;q (x)q(k−α+1)y[y]n−k

q

and

(2.4) E(α)
n;q (x + y) =

n∑
k=0

(
n

k

)
E

(α)
k;q (x)q(k+1)y[y]n−k

q ,

respectively.

Upon setting y = 1 in (2.3) and (2.4), we get

(2.5) B(α)
n;q (x + 1) =

n∑
k=0

(
n

k

)
qk−α+1B

(α)
k;q (x)

and

(2.6) E(α)
n;q (x + 1) =

n∑
k=0

(
n

k

)
qk+1E

(α)
k;q (x),

respectively. By combining (2.1) and (2.5), we can obtain the following formula:

(2.7) B(α−1)
n;q (x) =

1
n + 1

[
n+1∑
k=0

(
n + 1

k

)
qkB

(α)
k;q (x)− B

(α)
n+1;q(x)

]
.

Similarly, by combining (2.2) and (2.6), we can obtain the following formula:

(2.8) E(α−1)
n;q (x) =

1
2

[
n∑

k=0

(
n

k

)
qk+αE

(α)
k;q (x) + E(α)

n;q (x)

]
.

Putting α = 1 in (2.7) and (2.8), and noting that

B(0)
n;q(x) = E(0)

n;q(x) = qx[x]nq ,
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we arrive at the following expansions:

(2.9) qx[x]nq =
1

n + 1

[
n+1∑
k=0

(
n + 1

k

)
qkBk;q(x) − Bn+1;q(x)

]

and

(2.10) qx[x]nq =
1
2

[
n∑

k=0

(
n

k

)
qk+1Ek;q(x) + En;q(x)

]
.

Obviously, these last results (2.9) and (2.10) provide q-extensions of the following
familiar expansions (see [25, p. 26] and [34, p. 378, Eq. (29)]):

(2.11) xn =
1

n + 1

n∑
k=0

(
n + 1

k

)
Bk(x)

and

(2.12) xn =
1
2

[
n∑

k=0

(
n

k

)
Ek(x) + En(x)

]
,

respectively.

We next define the polynomials B
(α)
n;q;y(x) and E

(α)
n;q;y(x) in qx as follows:

(2.13) B(α)
n;q;y(x + 1) =

n∑
k=0

(
n

k

)
q(k−α+1)yB

(α)
k;q (x)

and

(2.14) E(α)
n;q;y(x + 1) =

n∑
k=0

(
n

k

)
q(k+1)yE

(α)
k;q (x),

which, in conjunction with (2.5) and (2.6), yield the following relationships:

(2.15) B
(α)
n;q;1(x) = B(α)

n;q (x) and E
(α)
n;q;1(x) = E(α)

n;q (x),

respectively. We also write

(2.16) Bn;q;y(x) := B1
n;q;y(x) and En;q;y(x) := E1

n;q;y(x).

Both (2.5) and (2.13) provide q-extensions of the following well-known formula:

(2.17) B(α)
n (x + 1) =

n∑
k=0

(
n

k

)
B

(α)
k (x).
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On the other hand, both (2.6) and (2.14) are q-extensions of the well-known formula:

(2.18) E(α)
n (x + 1) =

n∑
k=0

(
n

k

)
E

(α)
k (x).

The following special values of B
(α)
n;q;y(x) and E

(α)
n;q;y(x) are easily derivable

from (2.13) and (2.14):

(2.19) B(0)
n;q;y(x) = E(0)

n;q;y(x) = qx+y−1(1 + qy[x − 1]q)n.

(2.20)
B

(�)
0;q;y(x) = qx+y−1δ�,0 (� ∈ N0)

and
B(�)

n;q;y(x) = 0 (n ∈ {0, 1, 2, · · · , �− 1})
and

(2.21) E
(α)
0;q;y(x) =

2αqx+y−1

(−q; q)α
,

where δm,n denotes the Kronecker symbol.

Lemma 3. (Recurrence Relationships). The polynomials B
(α)
n;q;y(x) and E

(α)
n;q;y(x)

in qx satisfy the following difference relationships:

(2.22) qα−1B(α)
n;q;y(x + 1) − B(α)

n;q;y(x) = nB
(α−1)
n−1;q;y(x) (n ∈ N \ {1})

and

(2.23) qα−1E(α)
n;q;y(x + 1) + E(α)

n;q;y(x) = 2E(α−1)
n;q;y (x) (n ∈ N0).

Proof. By making use of (2.1) and (2.13), we find that

(2.24)

qα−1B(α)
n;q;y(x + 1) − B(α)

n;q;y(x)

=
n∑

k=0

(
n

k

)
q(k−α+1)y

[
qα−1B

(α)
k;q (x) − B

(α)
k;q (x − 1)

]

=
n∑

k=0

k

(
n

k

)
q(k−α+1)yB

(α−1)
k−1;q (x − 1)

= n

n−1∑
k=0

(
n − 1

k

)
q(k−α+1)yB

(α−1)
k;q (x− 1)

= nB
(α−1)
n−1;q;y(x),
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which proves the assertion (2.22) of Lemma 3. Similarly, by applying (2.2) and
(2.14), we can prove the assertion (2.23) of Lemma 3. The proof of Lemma 3 is
thus completed.

In their limit cases when q → 1, (2.1) and (2.2), as well as (2.22) and (2.23),
would obviously reduce to the difference formulas for the corresponding ordinary
Bernoulli and Euler polynomials of order α. Thus, in their present q-cases, the
formulas (2.1) and (2.2), and the formulas (2.22) and (2.23), are analogous to the
following well-known difference formulas:

(2.25) B(α)
n (x + 1)− B(α)

n (x) = nB(α−1)
n (x) (n ∈ N \ {1})

and

(2.26) E(α)
n (x + 1) + E(α)

n (x) = 2E(α−1)
n (x) (n ∈ N0),

respectively.

3. q-EXTENSIONS OF Theorem A AND Theorem B

In this section, we first present some appropriate q-extensions of Theorem A
and Theorem B.

Theorem 1. Each of the following relationships holds true:

B(α)
n;q (x + y) =

n∑
k=0

(
n

k

)[
1
2

(
q(k−α)xB

(α)
k;q (y) + qn−k−x−α+2B

(α)
k;q;x(y)

)

+
1
2

kqn−k−x−α+2B
(α−1)
k−1;q;x(y)

]
En−k;q(x) (n ∈ N0; α ∈ C)(3.1)

and

(3.2)

E(α)
n;q (x + y) =

n∑
k=0

1
k + 1

(
n

k

)
[
qn−k−x−α+1

(
2E

(α−1)
k+1;q;x(y) − E

(α)
k+1;q;x(y)

)
− q(k+1)xE

(α)
k+1;q(y)

]

Bn−k;q(x) +
2αqy(qn+1 − 1)
(n + 1)(−q; q)α

Bn+1;q(x) (n ∈ N0; α ∈ C)

for the q-Bernoulli polynomials B
(α)
n;q (x) and the q-Euler polynomials E

(α)
n;q (x),

respectively.
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Proof. In our proof of the relationship (3.1), we apply (2.3) (with x and y

interchanged) and make suitable substitutions from (2.10). We thus find that

(3.3)

B(α)
n;q (x + y)

=
n∑

k=0

(
n

k

)
q(k−α+1)xB

(α)
k;q (y)[x]n−k

q

=
1
2

n∑
k=0

(
n

k

)
q(k−α)xB

(α)
k;q (y)

[
n−k∑
j=0

(
n − k

j

)
qj+1Ej;q(x) + En−k;q(x)

]

=
1
2

n∑
k=0

(
n

k

)
q(k−α)xB

(α)
k;q (y)En−k;q(x)

+
1
2

n∑
k=0

(
n

k

)
q(k−α)xB

(α)
k;q (y)

n−k∑
j=0

(
n − k

j

)
qj+1Ej;q(x)

=
1
2

n∑
k=0

(
n

k

)
q(k−α)xB

(α)
k;q (y)En−k;q(x)

+
1
2

n∑
j=0

(
n

j

)
qj+1Ej;q(x)

n−j∑
k=0

(
n − j

k

)
q(k−α)xB

(α)
k;q (y)

=
1
2

n∑
k=0

(
n

k

)
q(k−α)xB

(α)
k;q (y)En−k;q(x)

+
1
2

n∑
k=0

(
n

k

)
qn−k+1En−k;q(x)

k∑
j=0

(
k

j

)
q(j−α)xB

(α)
j;q (y)

=
1
2

n∑
k=0

(
n

k

)(
q(k−α)xB

(α)
k;q (y) + qn−k−x+1B

(α)
k;q;x(y + 1)

)
En−k;q(x).

In the above process leading eventually to (3.3), we have inverted the order of
summation and applied the following elementary combinatorial identity:

(3.4)
(

µ

λ

)(
λ

ν

)
=
(

µ

ν

)(
µ − ν

µ − λ

)
(λ, µ, ν ∈ C).

Finally, in light of the recurrence relationship (2.22) asserted by Lemma 3, we
obtain the q-relationship as asserted by Theorem 1.

In a similar manner, we can prove the q-relationship (3.2). This completes our
proof of Theorem 1.

Remark 1. Taking α = 1 in (3.1) and noting (2.15) and (2.16), we obtain
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(3.5)
Bn;q(x + y) =

n∑
k=0

(
n

k

)[
1
2

(
q(k−1)xBk;q(y) + qn−k−x+1Bk;q;x(y)

)

+
1
2

kqn−k+y (1 + qx[y − 1]q)k−1

]
En−k;q(x),

which is a q-extension of the following known result (see [34, p. 379, Equation
(37)]):

(3.6) Bn(x + y) =
n∑

k=0

(
n

k

)(
Bk(y) +

1
2

kyk−1

)
En−k(x).

Theorem 2. The following relationship holds true:

(3.7)
Bn;q(x) =

n∑
k=0

(
n

k

)[
1
2

(
q(k−1)xBk;q + qn−k−x+1Bk;q;x(0)

)

+
1
2

kqn−k(1 − qx−1)k−1

]
En−k;q(x).

Proof. Letting y = 0 in (3.5), we can easily deduce the relationship (3.7)
asserted by Theorem 2. This completes the proof of Theorem 2.

Remark 2. By setting α = 1 in the assertion (3.2) of Theorem 1, we get

(3.8)

En;q(x + y) =
n∑

k=0

1
k + 1

(
n

k

)(
2qn−k+y−1(1 + qx[y − 1]q)k+1

−qn−k−xEk+1;q;x(y) − q(k+1)xEk+1;q(y)

)
Bn−k;q(x)

+
2qy(qn+1 − 1)
(n + 1)(q + 1)

Bn+1;q(x),

which is a q-extension of the following known result (see [34, p. 380, Equation
(39)])

(3.9) En(x + y) =
n∑

k=0

2
k + 1

(
n

k

)(
yk+1 − Ek+1(y)

)
Bn−k(x).

If, in the q-result (3.9), we further put y = 0, we have

(3.10)
En;q(x) =

n∑
k=0

1
k+1

(
n

k

)(
2qn−k−1(1−qx−1)k+1−qn−k−xEk+1;q;x(0)

−q(k+1)xEk+1;q(0)

)
Bn−k;q(x)+

2(qn+1−1)
(n+1)(q+1)

Bn+1;q(x),
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which is a q-extension of the another known result (see [34, p. 380, Equation (40)])

(3.11) En(x) = −
n∑

k=0

2
k + 1

(
n

k

)
Ek+1(0)Bn−k(x).

4. FORMULAS INVOLVING THE q-STIRLING NUMBERS OF THE SECOND KIND

In this section, we propose to derive several formulas for the q-Bernoulli
polynomials B

(α)
n;q (x) and the q-Euler polynomials E

(α)
n;q (x) of order α in series

of the q-Stirling numbers of the second kind, which are defined below.
The q-binomial coefficient

[λ
n

]
q

defined by

(4.1)
[
λ

0

]
q

=1 and
[
λ

n

]
q

=
[λ]q[λ − 1]q · · · [λ − n + 1]q

[n]q!
(n ∈ N; λ ∈ C),

so that

(4.2)
[
n

k

]
q

=
(q; q)n

(q; q)n−k(q; q)k
(n, k ∈ N0),

satisfies each of the following relationships:

(4.3)
[
n

k

]
q

=
[

n

n−k

]
q

(n, k ∈ N0; 0�k � n) and
[
n

k

]
q

=0 (n, k∈N0; n < k)

(4.4)
[
λ

n

]
q

=
[
λ − 1
n − 1

]
q

+ qn

[
λ − 1

n

]
q

(n ∈ N; λ ∈ C).

The familiar Stirling numbers S(n, k) of the second kind are defined by means
of the following expansion (see [12, p. 207, Theorem B]):

(4.5) xn =
n∑

k=0

(
x

k

)
k!S(n, k),

so that

(4.6) S(n, 0) = δn,0, S(n, 1) = S(n, n) = 1 and S(n, n− 1) =
(

n

2

)
.

Analogous to the definition (4.5), the q-Stirling numbers Sq(n, k) of the second
kind were defined by Carlitz as follows (see [3, p. 989, Equation (3.1)]):

(4.7) [x]nq =
n∑

k=0

Sq(n, k)[k]q!
[
x

k

]
q

q(
k
2).
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These q-Stirling numbers Sq(n, k) of the second kind are known to satisfy each of
the following relationships (see [3, p. 990, Equations (3.2) and (3.5)]):

(4.8) Sq(n + 1, k) = Sq(n, k − 1) + [k]qSq(n, k)

and

(4.9)

Sq(n, k) =
q−(k

2)

[k]q

k∑
j=0

(−)j q(
j
2)
[
k

j

]
q

[k − j]nq

=
1

[k]q!

k∑
j=0

(−1)k−j q
1
2
j(j−2k+1)

[
k

j

]
q

[j]nq

= (q − 1)k−n
n∑

j=k

(−1)n−j

(
n

j

)[
j

k

]
q

.

Obviously, we have [cf. Equation (4.6)]

(4.10) Sq(n, 0)=δn,0, Sq(n, 1)=Sq(n, n) = 1 and Sq(n, n − 1)=
n − [n]q
1 − q

.

Now, by applying (2.3) and (2.4), and making appropriate substitutions from
(4.7) as in the proof of Theorem 1, we can obtain Theorem 3 below.

Theorem 3. Each of the following relationships holds true for the q-Stirling
numbers Sq(n, k) of the second kind:

(4.11)
B

(α)
n;q (x + y) =

n∑
k=0

[k]q!
[
x

k

]
q

n−k∑
j=0

(
n

j

)

· q(j−α+1)x+(k
2)B(α)

j;q (y)Sq(n−j, k) (α ∈ C; n∈N0)

and

(4.12)
E

(α)
n;q (x + y) =

n∑
k=0

[k]q!
[
x

k

]
q

n−k∑
j=0

(
n

j

)

· q(j+1)x+(k
2)E(α)

j;q (y)Sq(n − j, k) (α ∈ C; n ∈ N0).

Upon setting y = 0 in (4.11) and y = α
2 in (4.12), we obtain the following corollary.

Corollary 1. Each of the following explicit representations:

(4.13)
B

(α)
n;q (x) =

n∑
k=0

[k]q!
[
x

k

]
q

n−k∑
j=0

(
n

j

)

· q(j−α+1)x+(k
2)B(α)

j Sq(n − j, k) (α ∈ C; n ∈ N0)
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and

(4.13)
E

(α)
n;q (x) =

n∑
k=0

[k]q!
[
x − α

2

k

]
q

n−k∑
j=0

(
n

j

)
E

(α)
j

2j

q(j+1)(x−α
2
)+(k

2)Sq(n − j, k) (α ∈ C; n ∈ N0)

holds true in terms of the q-Stirling numbers S q(n, k) of the second kind.

Remark 3. Upon setting α = 1 in the assertions (4.13) and (4.14) of Corollary
1, we are led fairly easily to Corollary 2 below.

Corollary 2. Each of the following explicit representations:

(4.15) Bn;q(x) =
n∑

k=0

[k]q!
[
x

k

]
q

n−k∑
j=0

(
n

j

)
qjx+(k

2)Bj;qSq(n − j, k)

and

(4.16) En;q(x) =
n∑

k=0

[k]q!
[
x − 1

2

k

]
q

n−k∑
j=0

(
n

j

)
Ej;q

2j
q(j+1)(x−1

2
)+(k

2)Sq(n − j, k)

holds true in terms of the q-Stirling numbers S q(n, k) of the second kind.

Finally, in their limit case when q → 1, these last results (4.15) and (4.16) would
reduce to the following (presumably known) formulas for the classical Bernoulli
polynomials Bn(x) and the classical Euler polynomials En(x), respectively:

(4.17) Bn(x) =
n∑

k=0

k!
(

x

k

) n−k∑
j=0

(
n

j

)
BjS(n − j, k)

and

(4.18) En(x) =
n∑

k=0

k!
(

x − 1
2

k

) n−k∑
j=0

(
n

j

)
Ej

2j
S(n− j, k).
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