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LOCAL CONDITION FOR PLANAR GRAPHS OF MAXIMUM DEGREE

6 TO BE TOTAL 8-COLORABLE

Nicolas Roussel

Abstract. Recently Sun et al [X.-Y. Sun, J.-L. Wu, Y.-W. Wu, J.-F. Hou, Total

colorings of planar graphs without adjacent triangles, Discrete Math 309:202-

206 (2009)] proved that planar graphs with maximum degree six and with

no adjacent triangles are total 8-colorable. This results implies that if every
vertex of a planar graph of maximum degree six is missing either a 3-cycle
or a 4-cycle, then the graph is total 8-colorable. In this paper we strengthen
that condition by showing that if every vertex of a planar graph of maximum

degree six is missing some kv-cycle for kv ∈ {3, 4, 5, 6, 7,8}, then the graph
is total 8-colorable.

1. INTRODUCTION

A total k-coloring of a graph G = (V, E) is a coloring of V ∪E using at most

k colors such that no two adjacent or incident elements get the same color. The
total chromatic number of G, denoted by χ′′(G) is the smallest integer k such that

G has a total k-coloring. It is clear that χ′′(G) ≥ ∆ + 1 where ∆ is the maximum

degree of G. Vizing conjectured [8] that χ′′(G) ≤ ∆ + 2 for every graph G. This
conjecture was verified for planar graphs with maximum degree ∆ ≤ 5 [4], for
planar graphs with ∆ ≥ 8 [3], and for planar graphs with ∆ = 7 [6]. Therefore
the only remaining case for planar graphs is when ∆ = 6. We are interested in
finding sufficient conditions for a planar graph of maximum degree 6 to be total
8-colorable. All graphs are assumed to be simple and with no loop. Recently,
Sun et al. [7] proved that every planar graph with maximum degree 6 and with
no adjacent triangles is total 8-colorable. This result implies that if G is a planar

graph of maximum degree 6 such that for every vertex v, there exists an integer
kv ∈ {3, 4} so that v is not incident to any kv-cycle, then G is total 8-colorable. In
this paper we give a stronger statement:
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Theorem 1. Let G be a planar graph of maximum degree 6. If for every vertex
v, there exists an integer kv ∈ {3, 4, 5, 6, 7, 8} so that v is not incident to any
kv-cycle, then G is total 8-colorable.

2. PROPERTIES OF A MINIMAL COUNTEREXAMPLE

Assume to the contrary that Theorem 1 is false. Let H be a counterexample

with minimum number of edges and vertices, that is H verifies the following four

properties:

1. H is a planar graph of maximum degree 6;
2. For every vertex v of H , there exists an integer kv ∈ {3, 4, 5, 6, 7, 8} so that

v is not incident to any kv-cycle;

3. H is not total 8-colorable;
4. |V (H)|+ |E(H)| is minimum subject to (1), (2), (3).

In this section we will deduce structural properties of H . In the next section
we will use a discharging procedure to find a contradiction and therefore prove the

theorem.

Lemma 1. H is connected.

Assume to the contrary that H is not connected. All connected components

of H are planar. If all connected components are total 8-colorable, then so is H .
Therefore H must have a connected component, say G, that is not total 8-colorable.
If G has maximum degree at most 5, then by [4], G is total 7-colorable, and hence
total 8-colorable. So G must have maximum degree 6. Therefore properties (1) and
(3) are true for G. Moreover property (2) is true for G. But |V (G)| + |E(G)| <
|V (H)|+ |E(H)|, contradicting property (4) for H .

Lemma 2. If v is a vertex of H , then H \ {v} is total 8-colorable.

Let G = H \ {v} be obtained from H by deleting vertex v. Clearly |V (G)|+
|E(G)| < |V (H)|+ |E(H)|, therefore one of properties (1), (2), (3) must be false
for G. Clearly, G is a planar graph. If G has maximum degree less than 6, then
by previous results [4], G is total 7-colorable, and therefore total 8-colorable. So
assume property (1) is true for G. To prove that property (3) is false for G, that is
G is total 8-colorable, it is enough to prove that property (2) is true for G, which is

straightforward, since if G had a vertex v adjacent to cycles of length 3, 4, 5, 6, 7, 8,
then adding a vertex and edges to the graph would not change that fact, which

contradicts property (2) for H . Note that here we consider cycles, and not faces of
H .
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Similarly, we have the following lemma:

Lemma 3. If e is an edge of H , then H \ {e} is total 8-colorable.

Lemma 4. H is 2-connected.

Assume to the contrary that H is not 2-connected. Let v be a separating vertex
of H . Let H1, H2, . . .Hk be the components of H \{v}, where we assume, without
loss of generality, that v has at most 3 neighbors in H1. Let G1 be the subgraph of

H induced by V (H1)∪{v} and G2 = G \V (H1), such that G1, G2 are connected.

By assumption, dG1(v) ≤ 3. If property (1) is not verified by G1 (respectively, G2),

then G1 (respectively, G2) is total 8-colorable by previous remarks. Property (2)
is clearly verified by G1 and G2. Therefore, by minimality of H , we can assume

that G1 and G2 admit total colorings l1 and l2 using the colors 1, 2, 3, 4, 5, 6, 7, 8.
Without loss of generality, assume l1(v) = l2(v) = 1 and the edges incident to v
in G1 are colored by l1 using (possibly) colors 2, 3, 4 in that order. Similarly the
edges incident to v in G2 are colored by l2 using (possibly) colors 8, 7, 6, 5, 4, 3 in
that order. A coloring of H is easily obtained by superimposing the two colorings

l1 and l2.

Corollary 1. H has no vertex of degree 1.

Lemma 5. H has no vertex of degree 2.

Assume to the contrary that H has a vertex u of degree 2 and let v be one of

its neighbors. Let G = H \ {uv}. By Lemma 3, G admits a total coloring using

eight colors. After we have uncolored u, there are at least 8 − 1 − 6 = 1 colors
available for uv. After we have colored uv with an available color, there are at
least 8 − 4 = 4 colors available for u, hence u can be colored too. This gives a

total coloring of H with eight colors.

Lemma 6. If u and v are adjacent vertices of H and d(u) = 3 then d(v) = 6.

Assume to the contrary that H has two adjacent vertices u, v with d(u) = 3
and d(v) ≤ 5. By Lemma 3, H \ {uv} admits a total coloring using eight colors.
After we have uncolored u, there are at least 8− 2− 5 = 1 colors available for uv.
After we have colored uv with an available color, there are at least 8−6 = 2 colors
available for u, hence u can be colored too. This gives a total coloring of H with

eight colors.

Lemma 7. H has no triangle incident to a vertex of degree 3.

Assume to the contrary that H has a triangle uvw with d(v)=3. By Lemma 6,
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d(u) = d(w) = 6. Let G = H \ {uv}. By Lemma 3, G admits a total coloring

using colors 1, 2, . . . , 8. After we have uncolored v, we put back the edge uv.
Suppose no color is available for uv. Then all the colors are used by the incident

edges and vertices. Without loss of generality, the coloring is as shown in Figure

1. Suppose we can change the color of the edge vw. Then we can color uv with

color 6. If not, then all the colors are used by the vertices and edges incident to
vw. Without loss of generality, in Figure 1, {a, b, c, d, e} = {1, 2, 3, 4, 8}. After we
have uncolored uw, we color uv with color 5, and uw with color 7. There are now
at least 8 − 6 = 2 colors available for v, hence v can be colored too. This gives a

total coloring of H using eight colors.

Fig. 1. Illustration for the proof of Lemma 7.

Lemma 8. H has no triangle incident to two vertices of degree 4.

Assume to the contrary that H has a triangle uvw with d(u) = d(v) = 4. Let
G = H \ {uv}. By Lemma 3, G admits a total coloring using colors 1, 2, . . . , 8.
After we have uncolored v, we put back the edge uv. There are at least 8−4−3 = 1
colors available for uv. After we have colored uv, only the vertex v needs to be
colored. Suppose no color is available for v. Then all colors are used by the incident
vertices and edges. Without loss of generality, the coloring is as shown in Figure

2. If color 8 does not appear on the edges incident to u, then recolor the edge uv
with color 8 and color v with color 1. If one of the edges incident to u is colored

8, then uncolor vertex u and color vertex v with color 2. After we have colored v,
there are at least 8− 7 = 1 colors available for u, hence u can be colored too. This

gives a total coloring of H with eight colors.

Definition 1. A triangle uvw is called an (a, b, c)-triangle if d(u) = a, d(v) =
b, d(w) = c.
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Lemma 9. H has no (4, 5, 5)-triangle.

Assume to the contrary that H has a (4, 5, 5)-triangle uvw with d(u) = 4. The
proof is in two steps. First we show that H has a total 8-coloring with only u
uncolored. Then we extend such a coloring to the whole graph.

Fig. 2. Illustration for the proof of Lemma 8.

Fig. 3. Illustration for the proof of Lemma 9.

Let G = H \ {uw}. By Lemma 3, G admits a total coloring using colors

1, 2, . . . , 8. After we have uncolored u, our purpose is to color edge uw. Suppose
no color is available for edge uw. Then all colors are used by incident vertices and

edges. Without loss of generality, the coloring is as shown in Figure 3. Suppose we

can change the color of the edge uv. Then we can color uw with color 8. If not,
then all the colors are used by the vertices and edges incident to uv. Without loss
of generality, in Figure 3, {a, b, c, d} = {1, 2, 3, 5}. After we have uncolored vw,
we color uw with color 4 and finally vw with 6. Now only u is uncolored.

Thus we have a total 8-coloring of H in which only u is uncolored. Suppose
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no color is available for vertex u. Then all colors are used by incident vertices and

edges. Without loss of generality, the coloring is as shown in Figure 4. Suppose we

can change the color of the edge uv or uw. Then we can color u. If not, then all

the colors are used by the vertices and edges incident to edges uv and uw. Without
loss of generality, in Figure 4, {6, 7, 8} ⊂ {a, b, c, d} and {5, 7, 8} ⊂ {d, e, f, g}.
If we can change the color of v, then we can color u. So we may assume v has
seven forbidden colors.

Fig. 4. Illustration for the proof of Lemma 9.

Fig. 5. Illustration for the proof of Lemma 9.

Suppose d ∈ {7, 8}, say d = 8. Then {6, 7} ⊂ {a, b, c} and {5, 7} ⊂ {e, f, g}.
Without loss of generality, we may assume that {6, 7} = {b, c} and {5, 7} = {f, g}.
If {a, e} = {1, 2} then we can safely interchange the colors of the edges uv and
vw and color u with color 4. Now assume {a, e} 6= {1, 2}. Then we can recolor
vw with a color from {1, 2} \ {a, e}. From now on we assume d ∈ {1, 2}, say
d = 1, so that {e, f, g} = {5, 7, 8} and {a, b, c} = {6, 7, 8}, as shown in Figure 5.
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If there exists a color α ∈ {1, 2} \ {A, B, C}, we can recolor vw with a color of

{1, 2} different from α, recolor v with α and color u with 5. Otherwise, {1, 2} ⊂
{A, B, C}. Now recall v has 7 forbidden colors, thus {A, B, C} = {1, 2, 3}.
Consequently, we can interchange safely the colors of uv and uw, recolor v with
color 4 and finally u with color 5.

3. PROOF OF THEOREM 1

For the proof of Theorem 1, we will use a discharging procedure. Assume H
is a minimum counterexample. Fix a plane drawing of the graph H and let F (H)
be the set of faces of H . The initial charge c0 of the vertices and faces of H are as

following:

• If v is a vertex, then c0(v) = d(v)− 4.
• If f is a face, then c0(f) = `(f)− 4.

The discharging process is divided into three rounds.

• First round: Every 6-vertex gives 1/3 to every adjacent 3-vertex.

• Second round: Every vertex with positive charge after the first round dis-
tributes its remaining charge evenly among the incident 3-faces. Every 5+-

face distributes its charge evenly among the adjacent 3-faces and the adjacent
4-faces.

• Third round: Every 3-face and 4-face with positive charge after the sec-
ond round distributes its remaining charge evenly among the adjacent 3-faces
whose charge is negative after the second round.

We now derive a contradiction by showing that the final charge of each vertex and

face of H is non-negative (as the total charge is negative by Euler’s formula).

Lemma 10. Every vertex and 4+-face in H has non-negative final charge.

It suffices to show that every vertex has non-negative charge after the first round

and that every 4+-face has non-negative initial charge. By Lemma 6, every vertex

of degree 3 is adjacent to three vertices of degree 6, therefore the charge of the
vertices of degree 3 is zero after the first round. The 6-vertices are adjacent to at
most six 3-vertices. So they have non-negative charge after the first round. All
4+-faces and 4-vertices and 5-vertices have non-negative initial charge.

It remains to show that 3-faces have non-negative final charges. A 6-vertex
v incident to six 3-faces, five 3-faces, or four consecutive 3-faces is called a big
6-vertex. Other 6-vertices are called small 6-vertices.
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Lemma 11. Let f be a 3-face incident to a 6-vertex v. If v is big, then f has

non-negative final charge.

It suffices to show that f has non-negative charge at some point.

• Suppose v is incident to six 3-faces. By our assumption, for each vertex u,

there is an integer ku ∈ {3, 4, 5, 6, 7, 8} such that u is not incident to any ku-

cycle. If u is a neighbor of v, then u is incident to cycles of length 3, 4, 5, 6, 7.
Therefore ku = 8. This implies that f is adjacent to a 9+-face. Therefore f
receives at least 5/9 from the 9+-face. By Lemma 8, f is incident to another

5+-vertex, say u. Since u is adjacent to at most three 3-vertices, the charge of
u after the first round is at least 1. Hence f receives 1/3 from v and receives

at least 1/5 from u. Therefore the total charge received by f in the first two
rounds is at least 5/9 + 1/3 + 1/5 = 49/45. So f has a non-negative final
charge.

• If v is incident to five 3-faces, then the argument is similar and we omit the
details.

Suppose v is incident to four consecutive 3-faces f1, f2, f3, f4. Then every vertex

incident to one of these four 3-faces is incident to cycles of length 3, 4, 5, 6. This
implies that kv ∈ {7, 8}.

• Suppose v is incident to four consecutive 3-faces and kv = 7. Then f is

adjacent to a 7+-face and receives at least 3/7 from that face and receives at
least 5/12 from v since v is adjacent to at most one 3-vertex. By Lemma 8, f
is incident to another 5+-vertex and receives at least 1/5 from that 5+-vertex.

Therefore the total charge received by f in the first two rounds is at least

3/7 + 5/12 + 1/5 = 439/420. So f has non-negative final charge.

• Suppose v is incident to four consecutive 3-faces f1, f2, f3, f4 (in that order)

and kv 6= 7, so that kv = 8. Then the two other faces incident to v must be

9+-faces.

– If one of f1, f4 is adjacent to another 3-face, then each of f2 and f3 is

adjacent to a 9+-face, for otherwise one neighbor of v is contained in

cycles of lengths 3, 4, 5, 6, 7, 8, contrary to our assumption. Now each
fi (i = 1, 2, 3, 4) receives at least 5/12 from v and at least 5/9 from its
adjacent 9+-face. By Lemma 8, each fi is incident to another 5+-vertex

and receives at least 1/5 from that 5+-vertex. Therefore the total charge

received by each fi in the first two rounds is at least 5/9+5/12+1/5 =
211/180. So f has non-negative final charge.

– If none of f1, f4 is adjacent to another 3-face distinct from f2, f3, then

each of f1, f4 is adjacent to two 9+-faces, for otherwise v or one of its

neighbors would be adjacent to cycles of length 3, 4, 5, 6, 7, 8. These
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9+-faces give at least 10/9 to f1, f4 who also receive at least 5/12 from
v. By Lemma 8, they are incident to another 5+-vertex and receive at

least 1/5 from it. Therefore the total charge that f1, f4 receive in the

first two rounds is at least 10/9+5/12+1/5 = 5/3. In the third round
of discharge they give at least 2/3 to f2, f3 (assuming that the charge

of f2, f3 after the second round is negative). These faces receive at

least 5/12 from v. Therefore the total charge received by f2, f3 is at

least 2/3+5/12 = 13/12. Their final charge is non-negative. So f has
non-negative final charge.

In the remaining, we assume that f is a 3-face which is not incident to any big
6-vertex.

Remark 1. Every 5-vertex incident to f sends charge at least 1/5 to f . Every

small 6-vertex incident to f sends charge at least 4/9 to f .

A 5-vertex has initial charge 1. It is clear from the discharging rules that this
vertex sends charge at least 1/5 to every incident 3-face. A 6-vertex v has initial
charge 2. If v is incident to k 3-faces, k = 1, 2, 3, then it is adjacent to at most
6 − k − 1 vertices of degree 3. So the charge sent from v to f is at least

min
k

(2− (6− k − 1)/3)/k = min
k

((k + 1)/3k) = 4/9.

If v is incident to four 3-faces, then since the four 3-faces are not consecutive, v is
not adjacent to any 3-vertex and gives 1/2 to each incident 3-face.

In particular, we have the following:

Lemma 12. Every (5+, 6, 6)-face has non-negative final charge.

By Lemmas 7 and 8, f is incident to no 3-vertex and at most one 4-vertex. By
Lemma 9, f is not a (4, 5, 5)-face. We finish the proof by considering each of the
following cases: f is a (5, 5, 5)-face, or a (5, 5, 6)-face or a (4, 5+, 6)-face.

Lemma 13. Every (5, 5, 5)-face has non-negative final charge.

Let f = uvw be a (5, 5, 5)-face. In the second round, f receives at least

1/5+1/5+1/5 = 3/5 from its incident vertices. If f is adjacent to a 7+-face, this

face gives at least another 3/7 to f in the second round, and so f has non-negative
final charge. We may assume that f is adjacent to three 6−-faces.

• Suppose f is adjacent to three 3-faces. Then at most one of the faces adjacent
to f is adjacent to another 3-face (and, in this case, to exactly one), for
otherwise u is contained in cycles of lengths 3, 4, 5, 6, 7, 8. Therefore we can
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assume u is incident to at most four 3-faces and v, w to exactly three 3-faces.
Let f ′ = vwu′ be the 3-face adjacent to f . We can easily see that f ′ is
adjacent to two 8+-faces, and receives at least 1/2 from each of them in the
second round. The vertex u′ must be a 5+-vertex by Lemma 9, and it is easy

to see that f ′ receives at least 1/3 from each of u′, v, w during the second

round. In the third round, f ′ gives 1 to f . So f has non-negative final charge.
We can now assume that f is adjacent to at most two 3-faces.

• Suppose f is adjacent to two 3-faces f1, f2. Let f3 be the other face adjacent

to f .

– If f3 is a 4-face, then none of f1, f2, f3 is adjacent to another 3-face.
Therefore f receives at least 1/2 + 1/2 + 1/3 from its incident vertices
in the second round. So f has non-negative final charge.

– If f3 is not a 4-face, then it is a 7+-face. Hence f receives at least 3/5
in the first round and 3/7 in the second round, so f has non-negative
final charge.

• Suppose f is adjacent to exactly one 3-face f1. Let f2, f3 be the other faces

adjacent to f .

– Suppose f2 is a 4-face and f3 is a 4-face or 5-face. Then u is incident
to cycles of length 3, 4, 5, 6, 7, 8, contrary to our assumption.

– Suppose f2 is a 6+-face. Then f receives at least 1/3+1/4+1/4 from
its incident vertices and at least 1/3 from f2 in the second round. So f

has non-negative final charge.

– Suppose f2, f3 are 5-faces. Then f receives at least 1/3 + 1/4 + 1/4
from its incident vertices and at least 1/5 from each of f2, f3 in the

second round. So f has non-negative final charge.

• Suppose f is not adjacent to any 3-face. Then f receives at least 1/3+1/3+
1/3 from its incident vertices in the second round. So f has non-negative
final charge.

Lemma 14. Every (5, 5, 6)-face has non-negative final charge.

Let f = uvw be a (5, 5, 6)-face with d(u) = d(v) = 5. In the second round, f
receives at least 1/5+1/5+4/9 = 38/45 from its incident vertices. If f is adjacent

to a 5+-face, this face gives another 1/5 to f in the second round, and so f has
non-negative final charge. We may assume that f is adjacent to three 4−-faces.

• Suppose f is adjacent to three 3-faces. Then at most one of the faces adjacent
to f is adjacent to another 3-face, for otherwise u is contained in cycles of
lengths 3, 4, 5, 6, 7, 8. Therefore we can assume u is incident to at most three

3-faces and v to at most four 3-faces. Therefore f receives at least 1/3 from
u, 1/4 from v and 4/9 from w. So f has non-negative final charge.
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• Suppose f is adjacent to two 3-faces. Then none of the faces adjacent to f

is adjacent to another 3-face. Therefore we can assume u and v are incident
to at most three 3-faces. Therefore f receives at least 1/3 from u, 1/3 from
v and 4/9 from w. So f has non-negative final charge.

• Suppose f is adjacent to exactly one 3-face. Then u is incident to cycles of
length 3, 4, 5, 6, 7, 8, contrary to our assumption.

• Suppose f is adjacent to no 3-face. Then f receives at least 1/3 from u, 1/3
from v, 4/9 from w. So f has non-negative final charge.

Lemma 15. Every (4, 5+, 6)-face has non-negative final charge.

Suppose f = uvw is a (4, 5+, 6)-face with d(u) = 4 and d(w) = 6. If f

is adjacent to a 7+-face, then it receives at least 29/45 from its incident vertices
and at least 3/7 from its incident 7+-face in the third round. Its final charge is

non-negative.

• Suppose f is adjacent to a (4, 5+, 6)-face f1 and a (4, 5+, 6)-face f2 and a

(4+, 5+, 6+)-face f3. If none of f1, f2, f3 is adjacent to a 3-face g distinct

from f , then every face adjacent to f1, f2, f3 and distinct from f is an 8+-

face. At most one of f1, f2, f3 may be adjacent to a 3-face g 6= f . Then

every face adjacent to f1, f2, f3 and distinct from f and g is a 9+-face.

A (4+, 5+, 6)-face adjacent to two 3-faces and a 8+-face receives at least

4/9 + 1/5+ 1/2 = 103/90 in the second round. A (4+, 5+, 6)-face adjacent
to a 3-face and two 8+-faces receives at least 4/9 + 1/4 + 1 = 61/36 in the
second round. So at least two faces of f1, f2, f3 receive at least 61/36 in the
second round and give back 25/36 each to f in the third round. So f has

non-negative final charge.

• Suppose f is adjacent to two 3-faces f1, f2. Let f3 be the other face adjacent

to f .

– If f3 is a 4-face, then f1, f2 are both adjacent to two 9+-faces. They

receive 61/36 in the second round and give back 25/36 each to f in the
third round. So f has non-negative final charge.

– If f3 is not a 4-face, then it is a 7+-face. So f has non-negative final
charge.

• Suppose f is adjacent to exactly one 3-face f1. Let f2, f3 be the other faces

adjacent to f .

– If one of f2, f3, say f2 is a 4-face, then f3 is a 8+-face. So f has
non-negative final charge.

– If f2, f3 are both 5+-faces, then f receives at least 29/45 from its

incident vertices in the second round and at least 2/5 from its incident
5+-faces in the second round. So f has non-negative final charge.
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• Suppose f is not adjacent to any 3-face.

– If f is adjacent to at least two 4-faces, say f1, f2, then none of them

is adjacent to a 3-face or two 4-faces, for otherwise u is incident to
cycles of length 3, 4, 5, 6, 7, 8, contrary to our assumption. Hence, each
of f1, f2 is adjacent to two 5+-faces. Hence each of them receives a

minimum charge of 2× 1/5 = 2/5 during the second round. Then each
of them gives at least 2/5 to f in the third round. The face f receives
at least 29/45 during the second round. So f has non-negative final
charge.

– If f is adjacent to at least two 5+-faces, f receives at least 29/45 from
its incident vertices and at least 2/5 from its incident 5+-faces in the

second round. So f has non-negative final charge.
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