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REMOTELY ALMOST PERIODIC SOLUTIONS TO PARABOLIC
BOUNDARY VALUE INVERSE PROBLEMS

Fenglin Yang and Chuanyi Zhang

Abstract. Some properties of remotely almost periodic functions are studied.
The existence and uniqueness of remotely almost periodic solution to Parabolic
Inverse Problems for a type of boundary value problem are established. Sta-
bility of the solution is discussed.

1. INTRODUCTION

Sarason in [12] proposed the space RAP(R) of remotely almost periodic func-
tions. This is a C∗subalgebra of C(R), the space of bounded, continuous, complex-
valued functions f on R with the supremum norm ‖f‖ = sup{|f(x)| : x ∈ R}.
Comparing with the space AP(R) of almost periodic functions, RAP(R) is a quite
large space (see [12, 19]). AP(R) and some of its generalizations have many appli-
cations to the theory of differential equations (e.g., [10, 13, 14, 16-18] and references
therein). It is reasonable to believe that RAP(R) has applications in this aspect
too. The present paper is denoted to this. The central question is to investigate the
remotely almost periodic solution of parabolic boundary value inverse problems.

To this end, we need first to extend the space RAP(R) to a more general setting.
Let J ∈ {R, Rn}. Let C(J) (respectively, C(J×Ω), where Ω ⊂ Rm) denote the C∗-
algebra of bounded continuous complex-valued functions on J (respectively J ×Ω).
For f ∈ C(J) (respectively, C(J × Ω)) and s ∈ J , the translate of f by s is the
function Rsf(t) = f(t+s) (respectively, Rsf(t, Z) = f(t+s, Z), (t, Z) ∈ J ×Ω).
Let

dist∞(f, g) = lim sup
|t|→∞

|f(t)− g(t)|
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Definition 1.1.

(1) Afunctionf∈C(J) is called remotely almost periodic if for every ε>0 the set

T (f, ε) = {τ ∈ J : dist∞(Rτf, f) < ε}
is relatively dense in J . Denote by RAP(J) the set of all such functions.
The number (vector) τ is called remote ε-translation number (vector) of f .

(2) A function f ∈ C(J ×Ω) is said to be remotely almost periodic in t ∈ J and
uniform on compact subsets of Ω if f(·, Z) ∈ RAP(J) for each Z ∈ Ω and
is uniformly continuous on J ×K for any compact subset K ⊂ Ω. Denote by
RAP(J × Ω) the set of all such functions. For convenience, such functions
are also called uniformly remotely almost periodic.

(3) Let X be a Banach space and let C(J, X) be the space of bounded continuous
functions from J to X . If we replace C(J) in (1) by C(J, X) then we get the
definition of RAP(J, X).

As in [12], we always assume that f ∈ RAP(J) is uniformly continuous.
In the next sections, we will present some properties of remotely almost periodic

functions. The main results are in Section 3, where a type of boundary value
problem is investigated. The results in Section 3 are probably new even for the
almost periodic functions.

2. SOME PROPERTIES

The following proposition can be proved in the same way as Corollary 1.1.4 in
[16], or Theorem 1.8 in [5] and Theorem 1.16 in [6].

Proposition 2.1. Let f ∈ RAP(J) (RAP(J × Ω)) be such that ∂f/∂xi is
uniformly continuous on J . Then ∂f/∂x i ∈ RAP(J) (RAP(J × Ω)).

Proposition 2.2. Let fi ∈ RAP(J), i = 1, 2, · · · , m. Then for every ε > 0
the set

T (f1, f2, · · · , fm, ε) = {τ ∈ J : dist∞(Rτfi, fi) < ε, i = 1, 2, · · · , m}

is relatively dense in J .

Proof. The main result in [12] shows that RAP(R) is the closed subalgebra
of C(R) generated by AP(R) and SO(R), the slowly oscillating function space
consisting of the functions ϕ such that Raϕ(x) − ϕ(x) → 0 as |x| → ∞ for
all a ∈ R. Without difficulty this result can been generalized to Rn. Thus, if
f ∈ RAP(J) then for ε > 0 there exist g1, g2 ∈ AP(J) and ϕ1, ϕ2 ∈ SO(J)
such that ‖f − g1 + ϕ1 + g2ϕ2]‖ < ε/4. If ϕ2 = 0 then any ε-translation number
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of g1 is a remote ε-translation number of f . In the case that ϕ2 �= 0. Let δ =
min{ε/4, ε/(4‖ϕ2‖)} and let τ be a δ-translation number common to g1 and g2.
We show that τ is a remote ε/4-translation number of g1 +ϕ1 + g2ϕ2 and therefore
is a remote ε-translation number of f . In fact,

|g2(t + τ)ϕ2(t + τ) − g2(t)ϕ2(t)|
≤ |g2(t + τ)ϕ2(t + τ) − g2(t + τ)ϕ2(t)| + |g2(t + τ)ϕ2(t) − g2(t)ϕ2(t)|

‖g2‖|ϕ2(t + τ) − ϕ2(t)| + ‖ϕ2‖‖Rτg2 − g2‖
and so

dist∞(Rτg2ϕ2 − g2ϕ2) ≤ ‖ϕ2‖‖Rτg2 − g2‖ < ‖ϕ2‖δ < ε/4.

Now we show the proposition. By the fact we just showed, for fi ∈ RAP(J)
there exist gi1, gi2 ∈ AP(J), ϕi1, ϕi2 ∈ SO(J), and δi > 0 such that any δi-
translation number τ common to gi1 and gi2 is a remote ε-translation number of
fi. Let δ = min{δi : 1 ≤ i ≤ n}. Since the set of δ-translation number common
to gij : i = 1, 2, · · · , n, j = 1, 2 is relatively dense in J , so is the set of remote
ε-translation number common to fi : i = 1, 2, · · · , n.

The proof is complete.

For H = (h1, h2, · · · , hn) ∈ C(R)n, suppose that H(t) ∈ Ω for all t ∈ R.
Define H × ι → Ω × R by

H × ι(t) = (h1(t), h2(t), · · · , hn(t), t) (t ∈ R).

The following proposition shows the remote almost periodicity of the composite.

Proposition 2.3. Let f ∈ RAP(R × Ω). If H ∈ RAP(R)n and H(t) ∈ Ω
for all t ∈ R then f ◦ (H × ι) ∈ RAP(R).

Proof. Without loss of generality, we may assume that Ω is bounded and closed
because the set {H(t) : t ∈ R} is bounded in Cn.

Let ε > 0. The uniform continuity of f implies that there exists ε > δ > 0 such
that

|f(Z1, t)− f(Z2, t)| <
ε

2
(t ∈ R, |Z1 − Z2| < δ, Z1, Z2 ∈ Ω).

Since f ∈ RAP(R × Ω) and H ∈ RAP(R)n, we have, for any remote δ/2-
translation number τ common to f and H ,

lim sup
|t|→∞

|f ◦ H × ι(t + τ) − f ◦ H × ι(t)|
≤ lim sup

|t|→∞
|f(H(t + τ), t + τ) − f(H(t + τ), t)|

+ lim sup
|t|→∞

|f(H(t + τ), t)− f(H(t), t)| < ε.
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The proof is complete.

In the sequel we will use the notations: Rm
T = Rm × (0, T ), ‖F‖T = sup{

|F (x, t)| : x ∈ R
n, 0 ≤ t ≤ T}. F ∈ RAP(Rn × R

m
T ) means that F (x(1), x(2), t)

is remotely almost periodic in x(1) ∈ Rn and uniformly for (x(2), t) ∈ Rm
T ; F ∈

RAP(Rn×R
m) means that F (x(1), x(2)) is remotely almost periodic in x(1) ∈ R

n

and uniformly for x(2) ∈ Rm.
Let

Z(x, t; ξ, s) =
1

(2
√

π(t − s))n+m
exp{−

∑
(xi − ξi)2

4(t − s)
} (x, ξ ∈ R

n+m)

be the fundamental solution of heat equation [7].

Proposition 2.4. Let T > 0. If ϕ ∈ RAP(Rn × R
m) and

u(x, t; s) =
∫

Rn+m

ϕ(ξ)Z(x, t; ξ, s)dξ

then for each fixed s ∈ [0, T ), u ∈ RAP(Rn × Rm × [s, T ]).

Proof. Let τ ∈ Rn be a remote ε/3-translation vector of ϕ.

(2.1)

u(x(1) + τ, x(2), t; s)− u(x(1), x(2), t; s)

=
∫

Rn+m

ϕ(ξ(1), ξ(2))[Z(x(1) + τ, x(2), t; ξ(1), ξ(2), s)

−Z(x(1), x(2), t; ξ(1), ξ(2), s)]dξ(1)dξ(2)

=
∫

Rn+m

[ϕ(x(1) + τ + ξ(1), x(2)

+ξ(2)) − ϕ(x(1) + ξ(1), x(2) + ξ(2))]Z(θ, t; ξ, s)dξ

=
(∫ −A

−∞
+
∫ A

−A
+
∫ ∞

A

)
[ϕ(x(1) + τ + ξ(1), x(2) + ξ(2))

−ϕ(x(1) + ξ(1), x(2) + ξ(2))]Z(θ, t; ξ, s)dξ

where θ ∈ R
n+m is the zero vector and by

∫ b
a F (ξ)dξ we mean that

∫ b

a
F (ξ)dξ =

∫
[a,b]n+m

F (ξ)dξ =
∫ b

a
· · ·
∫ b

a
F (ξ1, ξ2, · · · .ξn+m)dξ1dξ2 · · ·dξn+m.

Note that
∫

Rn+m Z(θ, t; ξ, s)dξ = 1, there exists an A > 0 such that for (ξ(1), ξ(2)) ∈
[−A, A]n+m,
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lim sup
|x(1)|→∞

|ϕ(x(1) + τ + ξ(1), x(2) + ξ(2)) − ϕ(x(1) + ξ(1), x(2) + ξ(2))| < ε/3

and
2‖ϕ‖

∫ ∞

A
Z(θ, t; ξ, s)dξ < ε/3.

It follows from (2.1) that

lim sup
|x(1)|→∞

|u(x(1) + τ, x(2), t; s)− u(x(1), x(2), t; s)| < ε,

where t ∈ [s, T ] and x(2) ∈ B with B a bounded subset of R
m. This shows that

every remote ε/3-translation vector of ϕ is a remote ε-translation vector of u and
therefore, u ∈ RAP(Rn × R

m × [s, T ]). The proof is complete.

Proposition 2.5. Let ϕ, ∂ϕ/∂xi ∈ RAP(Rn × R
m) and let u be as in

Proposition 2.4. Then ∂u/∂xi ∈ RAP(Rn × Rm × [s, T ]).

Proof. Note that

∂u(x, t; s)
∂xi

=
∫

Rn+m

ϕ(ξ)
∂Z(x, t; ξ, s)

∂xi
dξ

= −
∫

Rn+m
ϕ(ξ)

∂Z(x, t; ξ, s)
∂ξi

dξ =
∫

Rn+m

∂ϕ(ξ)
∂ξi

Z(x, t; ξ, s)dξ.

By Proposition 2.4 we get the conclusion.

Proposition 2.6. If f(x, t) ∈ RAP(Rn × Rm
T ) and

u(x, t) =
∫ t

0

ds

∫
Rn+m

f(ξ, s)Z(x, t; ξ, s)dξ

then u and ∂u(x, t)/∂xi (i = 1, 2, · · · , n + m) are all in RAP(Rn × Rm
T ). The

proof is similar to that of Proposition 2.4, so we omit it.

3. A TYPE OF BOUNDARY VALUE PROBLEM

We will keep the notations in the last section and at the same time, introduce
the following new notations:

x = (x1, x2, · · · , xn−1) ξ = (ξ1, ξ2, · · · , ξn−1)

and
X = (x, xn) ζ = (ξ, ξn) Dn = {X ∈ R

n : xn > 0}.
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In this section, we always assume: f , fxnxn ∈ RAP(Rn−1 × DT0), h(x, t) ≥
const > 0, h, (∆h − ht) ∈ RAP(Rn−1

T0
), ϕ, ϕxnxn ∈ RAP(Rn−1 × D), ϕ ∈

C3(Rn−1 × D), and g, (∆g − gt) ∈ RAP(Rn−1
T0

).
Let

G(X, t; ζ, τ) = Z(X, t; ξ, ξn, τ) + Z(X, t; ξ,−ξn, τ)

be the Green’s function for the boundary value problems [8, 15].
The following estimates are easily obtained:

∥∥∥∥
∫ t

0
ds

∫
Dn

G(X, t; ζ, s)dζ

∥∥∥∥ ≤ m1(T )

∥∥∥∥
∫ t

0
ds

∫
Rn−1

Z(X, t; ξ, 0, s)dξ

∥∥∥∥≤ m2(T )

∥∥∥∥
∫ t

0
ds

∫
Rn

∂Z(X, t; ζ, s)
∂xn

dζ

∥∥∥∥ ≤ m3(T ),

where mi(T ) (i = 1, 2, 3) are positive and increasing for T ≥ 0 and mi(T ) → 0 as
T → 0.

To show the main results of this section, the following lemmas are needed. The
first lemma is Lemma 3.1 on P15 in [9].

Lemma 3.1. Let ϕ, φ and χ be real, continuous functions on [0, T ] with χ ≥ 0.
If

ϕ(t) ≤ φ(t) +
∫ t

0
χ(s)ϕ(s)ds (t ∈ [0, T ])

then

ϕ(t) ≤ φ(t) +
∫ t

0

χ(s)φ(s) exp{
∫ t

s

χ(ρ)dρ}ds (t ∈ [0, T ]).

Lemma 3.2. Let ϕ be a continuous function on [0, T ]. If φ, χ1 and χ2 are
nondecreasing and nonnegative on [0, T ] and

(3.0) ϕ(t) ≤ φ(t) + χ1(t)
∫ t

0

ϕ(s)ds + χ2(t)
∫ t

0

ϕ(s)√
t − s

ds (t ∈ [0.T ])

then
ϕ(t) ≤ φ(t)[1 + tχ1(t) + 2

√
tχ2(t)]etχ(t)

where
χ(t) = tχ2

1(t) + 4
√

tχ1(t)χ2(t) + πχ2
2(t).
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Proof. Replacing ϕ(s) in the two integrals of (3.0) by the expression of the
right hand side in (3.0), changing the integral order of the resulting inequality, and
making use of the monotonicity of φ, χ1 and χ2, one gets

ϕ(t) ≤ φ(t)[1+tχ1(t)+2
√

tχ2(t)]+[tχ2
1(t)+4

√
tχ1(t)χ2(t)+πχ2

2(t)]
∫ t

0
ϕ(s)ds.

Apply Lemma 3.1 to get the conclusion.

Lemma 3.3. Let F (X, t) ∈ RAP(Dn
T ), φ(x, t), q(x, t) ∈ RAP(Rn−1

T ) and
ϕ ∈ RAP(Dn). Then the equation


ut − ∆u + qu = F (X, t) (X, t) ∈ Dn

T

u(X, 0) = ϕ(X) X ∈ Dn

uxn(x, 0, t) = φ(x, t) (x, t) ∈ R
n−1
T

has a unique solution u, u is in RAP(D n
T ) and satisfies

‖u‖T ≤ K(T )[T‖F‖T + ‖ϕ‖+
√

T

2
‖φ‖T ]

where K(T ) = 2(1 + T‖q‖T eT ‖q‖T ).

One sees that K(T ) depends on ‖q‖T only and is bounded near zero.

Proof. The existence and uniqueness of the solution come from Theorem 5.3
on P320 in [11].

As [8, 15], the solution u can be written as

u(X, t) =
∫

Dn

ϕ(ζ)G(X, t; ζ, 0)dζ +
∫ t

0
ds

∫
Dn

F (ζ, s)G(X, t; ζ, s)dζ

−
∫ t

0
ds

∫
Dn

q(ξ, s)u(ζ, s)G(X, t; ζ, s)dζ

−2
∫ t

0
ds

∫
Rn−1

φ(ξ, s)Z(X, t; ξ, 0, s)dξv(x, t)

−
∫ t

0
ds

∫
Dn

q(ξ, s)u(ζ, s)G(X, t; ζ, s)dζ.

So,

‖u‖t ≤ 2‖ϕ‖+ 2
∫ t

0
‖F‖sds + 2

∫ t

0

‖φ‖s√
t − s

ds + 2
∫ t

0
‖q‖s‖u‖sds.

By Lemma 3.1 one gets the desired inequality.
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Now we show that u ∈ RAP(Dn
T ). As the proof of Propositions 2.4 and 2.6,

one gets v ∈ RAP(Dn
T ).

u(x + τ, xn, t) − u(x, xn, t) = v(x + τ, xn, t)− v(x, xn, t)

−
∫ t

0
ds

∫
Dn

q(ξ, s)u(ζ, s)[G(x+ τ, xn, t; ζ, s)− G(x, xn, t; ζ, s)]dζ

= v(x + τ, xn, t)−v(x, xn, t) −
∫ t

0
ds

∫
Dn

[q(x+τ+ξ, s)u(x+τ+ξ, xn+ξn, s)

−q(x + ξ, s)u(x + ξ, xn + ξn, s)]G(θ, t; ζ, s)dζ

= v(x + τ, xn, t)− v(x, xn, t)

−
∫ t

0
ds

∫
Dn

[q(x+τ+ξ, s)−q(x+ξ, s)]u(x+τ+ξ, xn+ξn, s)G(θ, t; ζ, s)dζ

−
∫ t

0

ds

∫
Dn

[u(x+τ+ξ, xn+ξn, s)−u(x+ξ, xn+ξn, s)]q(x+ξ, s)G(θ, t; ζ, s)dζ.

Note that ∣∣∣∣
∫

Dn

q(ξ, s)G(θ, t; ζ, s)dζ

∣∣∣∣ ≤ B‖q‖s

where B is a constant.
As the proof of Proposition 2.4, for ε > 0 there exists A > 0 such that∣∣∣∣
∫ t

0
ds

∫
Dn

[q(x + τ+ξ, s)−q(x+ξ, s)]u(x+τ+ξ, xn+ξn, s)G(θ, t; ζ, s)dζ

∣∣∣∣
≤
∫ t

0
ds

(∫
(Rn−1\[−A,A]n−1)×R+

+
∫

[−A,A]n−1×R+

)

|[q(x + τ + ξ, s).− q(x + ξ, s)]u(x + τ + ξ, xn + ξn, s)G(θ, t; ζ, s)|dζ

≤ ε +
∫ t

0
ds

∫
[−A,A]n−1×R+

|q(x + τ + ξ, s)

−q(x + ξ, s)]u(x + τ + ξ, xn + ξn, s)G(θ, t; ζ, s)|dζ.

Therefore,

dist∞(Rτu, u)t ≤ dist∞(Rτv, v)t + B · dist∞(Rτq, q)t + ε

+B

∫ t

0

dist∞(Rτu, u)s‖q‖sds,

where
dist∞(Rτq, q)t = sup

s∈[0,t]
dist∞(q(·+ τ, s), q(·, s)).
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By Lemma 3.1, one has

dist∞(Rτu, u)t ≤ m[dist∞(Rτv, v)t + B · dist∞(Rτq, q)t + ε],

where m is a constant. This means that u∈RAP(Dn
T ). The proof is complete.

Consider the following problem:

Problem 3.1. Find functions u ∈ RAP(Rn−1 × DT ) and q ∈ RAP(Rn−1
T )

such that


ut − ∆u + q(x, t)u = f(X, t) (X, t) ∈ Dn
T (3.1)

u(X, 0) = ϕ(X) X ∈ Dn (3.2)

uxn(x, 0, t) = g(x, t) (x, t) ∈ R
n−1
T (3.3)

u(x, a, t) = h(x, t) (x, t) ∈ R
n−1
T a ∈ (0,∞). (3.4)

One sees that

(3.5) h(x, 0) = ϕ(x, a) ϕxn(x, 0) = g(x, 0) x ∈ R
n−1,

(3.6)
ht(x, 0) = ut|xn=a,t=0 = [∆u− qu + f(X, t)]xn=a,t=0

= ∆ϕ(X)|xn=a − q(x, 0)ϕ(x, a)+ f(x, a, 0)

and

(3.7) gt(x, 0) = utxn |xn=0,t=0 = ∆ϕxn(X)|x=0− q(x, 0)ϕxn(x, 0)+fxn(x, 0, 0)

It follows from (3.6) and (3.7) that

(3.8)
ϕxn(x, 0)∆ϕ(X)|xn=a + f(x, a, 0)ϕxn(x, 0)− ht(x, 0)ϕxn(x, 0)

= ϕ(x, a)∆ϕxn(X)|xn=0 + fxn(x, 0, 0)ϕ(x, a)− gt(x, 0)ϕ(x, a)

Let V (X, t) = uxn(X, t) and W (X, t) = Vxn(X, t). We have the following
two more problems for V and W respectively.

Problem 3.2. Find functions V ∈ RAP(Rn−1 × DT ) and q ∈ RAP(Rn−1
T )

such that


Vt − ∆V + q(x, t)V = fxn(X, t) (X, t) ∈ Dn
T (3.9)

V (X, 0) = ϕxn(X) X ∈ Dn (3.10)

V (x, 0, t) = g(x, t) (x, t) ∈ R
n−1
T (3.11)

Vxn(x, a, t) = ht − ∆h + qh − f(x, a, t) (x, t) ∈ R
n−1
T (3.12)
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Problem 3.3. Find functions W ∈ RAP(Rn−1 × DT ) and q ∈ RAP(Rn−1
T )

such that


Wt − ∆W + q(x, t)W = fxnxn(X, t) (X, t) ∈ Dn
T (3.13)

W (X, 0) = ϕxnxn(X) X ∈ Dn (3.14)

Wxn(x, 0, t) = gt − ∆g + qg − fxn(x, 0, t) (x, t) ∈ R
n−1
T (3.15)

W (x, a, t) = ht − ∆h + hq − f(x, a, t) (x, t) ∈ R
n−1
T (3.16)

Lemma 3.4. Problems 3.1, 3.2 and 3.3 are equivalent each other.

Proof. The existence and uniqueness of solution (V, q) of Problem 3.2 can be
easily obtained from that of solution (u, q) of Problem 3.1. Conversely let (V, q) be
solution of Problem 3.2, we show that Problem 3.1 has a unique solution (u, q). The
uniqueness comes from the uniqueness of equations (3.1)-(3.3). For the existence,
let

(3.17) u(X, t) =
∫ xn

a
V (x, y, t)dy + h(x, t).

Obviously, u(X, t) ∈ RAP(Rn−1 × DT ) and satisfies (3.4). Also u satisfies (3.3)
because uxn(x, 0, t) = V (x, 0, t) = g(x, t). By (3.5) and (3.10) one sees that (3.2)
is true. Finally we show that u satisfies (3.1) and therefore, along with q, constitutes
solution of Problem 3.1. In fact,

ut − ∆u + qu

= ht − ∆h + qh +
∫ xn

a
[Vt(x, y, t)− ∆V (x, y, t) + qV (x, y, t)]dy

+
∫ xn

a

∂2

∂y2
V (x, y, t)dy − ∂2

∂xn
2

∫ xn

a
V (x, y, t)dy

= ht − ∆h + qh + f(X, t)− f(x, a, t) + Vxn(X, t)− Vxn(x, a, t)− Vxn(X, t)

= f(X, t) (by (3.12)).

Thus, we have shown the equivalence of Problems 3.1 and 3.2. Replacing (3.17)
by the function

V (X, t) =
∫ xn

0
W (x, y, t)dy + g(x, t)

the equivalence of Problems 3.2 and 3.3 can be proved similarly. The proof is
complete.
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By Lemma 3.4, to solve Problem 3.1 we only need to solve Problem 3.3. By
(3.13)-(3.15) we have the integral equation about W :

(3.18)

W (X, t)

=
∫

Dn

ϕξnξn(ζ)G(X, t; ζ, 0)dζ+
∫ t

0
ds

∫
Dn

fξnξn(ζ, s)G(X, t; ζ, s)dζ

−
∫ t

0
ds

∫
Dn

q(ξ, s)W (ζ, s)G(X, t; ζ, s)dζ

−2
∫ t

0
ds

∫
Rn−1

[gs − ∆g + qg − fξn(ξ, 0, s)]Z(X, t; ξ, 0, s)dξ.

Rewrite (3.16) as

(3.19) q = Lq = h−1(x, t)[∆h− ht + f(x, a, t) + W (x, a, t)],

where W is determined by (3.18).
One can directly test that Problem 3.3 is equivalent to (3.18)-(3.19).
Note that for a given q(x, t) ∈ RAP(Rn−1

T ), Lemma 3.3 shows that equations
(3.13)-(3.15) (or equivalently, (3.18)) have a unique solution W ∈ RAP(Rn−1 ×
DT ). Thus, (3.19) does define an operator L. Therefore, we only need to show that
integral equation (3.19) has a unique solution q and q ∈ RAP(Rn−1

T ). That is, L

has a fixed point in RAP(Rn−1
T ). Let

(3.20)

{∥∥∆h−ht+f(x, a, t)
∥∥

T0
+2
∥∥ϕξnξn

∥∥+∥∥∥∥
∫ t

0

ds

∫
Dn

fξnξn(ζ,s)G(x,a,t;ζ, s)dζ

∥∥∥∥
T0

+2
∥∥∥∥
∫ t

0

ds

∫
Rn−1

[∆g−gs+fξn(ξ, 0, s)]Z(x, a, t; ξ, 0, s)dξ

∥∥∥∥
T0

}
‖h−1‖T0=

M

2
.

Set B(M, T ) = {q ∈ RAP(Rn−1
T ) : ‖q‖T ≤ M} where T ≤ T0. If q ∈ B(M, t)

then by Lemma 3.3, W (X, t) is in RAP(Rn−1 × DT ) and so, by (3.19) Lq is in
RAP(Rn−1

T ) with

‖Lq‖T ≤ M

2
+ ‖h−1‖T0[2m2(T )‖g‖T0 + m1(T )‖W‖T ]M.

(3.18) gives the estimate
‖W‖T ≤ ‖2ϕξnξn‖ + 2m2(T0)‖gt − ∆g − fxn(x, 0, t)‖T0 + 2Mm2(T0)‖g‖T0

+m1(T0)‖fxnxn‖T0 + Mm1(T )‖W‖T .

Choose t0 < T0 such that when T ≤ t0 one has 1 < 2(1 − Mm1(T )). It follows
that

‖W‖T ≤ 2{2‖ϕxnxn‖+2m2(T0)‖gt−∆g−fxn(x, 0, t)‖T0+2Mm2(T0)‖g‖T0

+m1(T0)‖fxnxn‖T0}.
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Choose T1 ≤ t0 such that when T ≤ T1 one has

2‖h−1‖T0{m2(T )‖g‖T0+m1(T )(2‖ϕxnxn‖+2m2(T0)‖gt−∆g−fxn(x, 0, t)‖T0

+2Mm2(T0)‖g‖T0 + m1(T0)‖fxnxn‖)} < 1
2

and therefore, ‖Lq‖T ≤ M .
Let q1, q2 ∈ B(M, T ). By (3.19), ‖Lq1−Lq2‖T ≤ ‖h−1‖T‖W1−W2‖T . Note

that the function W = W1 − W2 is the solution of the following problem


Wt − ∆W + qW = W2(q2 − q1) (X, t) ∈ Dn
T

W (X, 0) = 0 X ∈ Dn

Wxn(x, 0, t) = (q2 − q1)g(x, t) (x, t) ∈ R
n−1
T .

So, by Lemma 3.3 one has

‖W‖T ≤ K(T )(
√

T

2
‖q1 − q2‖T‖g‖T + T‖q1 − q2‖T‖W2‖T ).

Choose T2 < t0 such that for T ≤ T2, ‖h−1‖T0‖W1 − W2‖T ≤ 1
2‖q1 − q2‖T .

Now, set T ≤ min{T1, T2}. Then L is a contraction from B(M, T ) into itself and
therefore, has a unique fixed point. Thus, we have shown

Theorem 3.5. Let functions f , g, h, and ϕ be as above. Then for small T
Problem 3.3 has a unique solution (W, q) in Rn

T with W ∈ RAP(Rn−1×DT ) and
q ∈ RAP(Rn−1

T ).

Let (W i, qi) (i = 1.2) be the solutions of Problem 3.3 in Dn
T for the functions

f i, gi, hi and ϕi. Set h0 = h1−h2, f0 = f1−f2, ϕ0 = ϕ1−ϕ2 and g0 = g1−g2.
For the stability of the solution, we have the following

Theorem 3.6. For 0 ≤ t ≤ T , one has
‖q1 − q2‖t

≤ c1‖h0‖t + c2‖g0‖t + c3‖f0
xnxn

‖t + c4‖ϕ0
xnxn

‖
+c5‖h0

t − ∆h0 − f0(x, a, t)‖t + c6‖g0
t − ∆g0 − f0

xn
(x, 0, t)‖t,

where ci (1 ≤ i ≤ 6) depends on t, ‖h−1
1 ‖t, ‖g1‖t, ‖f1

xnxn
‖t, ‖ϕ1

xnxn
‖, ‖q1‖t, ‖q2‖t

and ‖g1
t − ∆g1 − f1

xn
(x, 0, t)‖t.

Proof. By (3.16),

q1 − q2 = (h1)−1[∆h0 − h0
t + f0(x, a, t)− q2h

0 + W1 − W2].
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So,

(3.21)
‖q1 − q2‖t

≤ ‖(h1)−1‖t[‖∆h0−h0
t +f0(x, a, t)‖t+‖q2‖t‖h0‖t+‖W1−W2‖t].

Note that the function W = W1 − W2 is the solution of the problem


Wt − ∆W + q2W = f0
xnxn

− W1(q1 − q2) (X, t) ∈ Dn
T

W (X, 0) = ϕ0
xnxn

(X) X ∈ Dn

Wxn(x, 0, t) = g0
t − ∆g0 + q2g

0 − f0
xn

(x, 0, t) + (q1 − q2)g1 (x, t) ∈ R
n−1
T .

Use a formula similar to (3.18) and Lemma 3.2 for function W , one gets

‖W‖t

≤
{

t‖f0
xnxn

‖t+‖ϕ0
xnxn

‖+2

√
t

π
‖q2‖t‖g0‖t+2

√
t

π
‖g0

t −∆g0−f0
xn

(x, 0, t)‖t

+‖W1‖t

∫ t

0
‖q1 − q2‖sds +

‖g1‖t√
π

∫ t

0

‖q1 − q2‖s√
t − s

ds

}
exp{

∫ t

0
‖q2‖ρdρ}}.

Apply Lemma 3.2 and (3.21), one gets the desired conclusion with

c1 = φ(t)‖(h1)−1‖t‖q2‖t

c2 = 2φ(t)

√
t

π
‖(h1)−1‖t‖q2‖t exp{

∫ t

0

‖q2‖sds}

c3 = tφ(t)‖(h1)−1‖t exp{
∫ t

0

‖q2‖sds

c4 = φ(t)‖(h1)−1‖t exp{
∫ t

0

‖q2‖sds

c5 = φ(t)‖(h1)−1‖t

c6 = 2φ(t)

√
t

π
‖(h1)−1‖t exp{

∫ t

0
‖q2‖sds},

where
φ(t) = (1 + tχ1(t) + 2

√
tχ2(t))etχ(t)

χ(t) = tχ2
1(t) + 4

√
tχ1(t)χ2(t) + πχ2

2(t)

χ1(t) = ‖(h1)−1‖tΦ(t) exp{
∫ t

0
‖q2‖sds}

χ2(t) = π−1/2‖(h1)−1‖t‖g1‖t exp{
∫ t

0
‖q2‖sds}
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and Φ(t) is majorant of ‖W1‖t. Specially, one can assume that

Φ(t) =
(
‖ϕ1

xnxn
‖ + t‖f1

xnxn
‖t +

∫ t
0

‖g1
s−∆g1−f1

xn
(x,0,s)‖√

π(t−s)
ds

)
exp{∫ t

s ‖q1‖sds}.

The proof is complete.

Corollary 3.7. Under the conditions in Theorem 3.6, the solution of Problem
3.3 is unique.
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