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A COMPLETELY STATIONARY MARKOV CHAIN WITH
INFINITE STATE SPACE∗

Y. H. Wang and Linggi Tang

Abstract. We introduce an infinite dimension completely stationary
ergodic Markov chain; investigate its properties; establish a sufficient
condition that the Markov property of a Markov chain is preserved by
its induced multi-state sequence and finally derive the limiting distri-
bution of the sum of the Markov chain. It is the simplest, nontrivial,
infinite dimension Markov chain which possesses all the nice properties -
stationarity, irreducibility, positive recurrency, aperiodicity, . . ., etc.

1. Introduction

The completely stationary Markov Bernoulli model introduced by Edwards
(1960) was extended to a (k + 1)-dimension, k ≥ 1, multi-state one by Wang
and Yang (1995). It was shown in that paper that the whole (k+1)-dimension
Markov chain could be completely specified by the initial probability and the
correlation coefficient of two consecutive variables.

In this paper we extend this Markov model to the infinite state space case,
investigate its properties and derive some relevant theorems. In Section 2,
we present a completely stationary infinite dimension Markov chain which
depends only on its initial probability and the correlation coefficient of two
consecutive variables, and prove that it is ergodic. In Section 3, we obtain a
sufficient condition that the Markov property of a Markov chain is preserved by
its induced multi-state sequence. Finally, we derive the limiting distribution
of the partial sum of the sequence.
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2. A Completely Stationary Infinite Dimension Markov Chain

2.1. The model and its properties
Denote X = {Xi; i = 1, 2, . . .} to be a Markov chain with state space

S = {0, 1, 2, . . .} and stationary transition matrix P = (pij) defined by

pij = πδij + (1− θ)pj, (i, j ∈ S),(1)

where δij is the Kronecker delta, p = {pi : pi ≥ 0, i ∈ S}, with
∑
i∈S

pi = 1, is

its initial probability. (In the sequel we shall call this Markov chain “model
(1)”.)

This Markov chain has the following properties:

(a) Because p = pP, it is completely stationary. That is

P (Xi = j) = pj, (i ∈ S; i ≥ 1).(2)

(b) It can be shown that the parameter π is the correlation coefficient of Xi

and Xi+1, for all i ≥ 1. Thus this Markov chain is completely specified
by its initial probability p and the correlation coefficient π. It is a
natural extension of a given sequence of iid discrete random variables to
a Markov dependent one with a specified correlation coefficient between
two consecutive variables.

(c) The n-th power Pn = (p(n)
ij ) of P is of the form

p
(n)
ij = πnδij + (1− πn)pj, (i, j ∈ S).(3)

It follows that the correlation coefficient of Xi and Xi+m is πm, for all
i, and m ≥ 1. Hence if π < 1 the Markov chain is asymptotically
independent.

(d) It follows from (a) or (c) that the limit

lim
n→∞

Pn = P,

exists with all the rows of P identical to the initial probability p. Thus
the mean recurrent time µj of state j is 1/pj, for all j ∈ S.

(e) We shall show later that all the truncated sequences

X ′n = min{Xn, k}, k ≥ 1,

are also completely stationary Markov chains.
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Proposition. If the parameters in the transition matrix P are such that
0 ≤ π < 1, and pi > 0 for all i ≥ 0, then the Markov chain is ergodic.

Proof. Evidently, it is irreducible and aperiodic. Fix j ∈ S. With Pn =
(p(n)
ij ) having the form (3), it follows that

∞∑
n=0

p
(n)
jj ≥ pj

∞∑
n=1

(1− π) =∞.

Thus, by Corollary (4) on page 202 in Grimmett and Stirzaker (1992), state j
is persistent. Now

p
(n)
jj = πn + (1− πn)pj → pj > 0, as n→∞.(4)

By Theorem (9) on page 203 in Grimmett and Stirzaker (1992), state j is
positive persistent, which proves that state j is ergodic.

Since ergodicity is a class property, we conclude the proof.

2.2. Remarks:

1). It is well known that for an irreducible aperiodic Markov chain with
stationary transition matrix Q, there is a unique solution to the equation
p = qQ, where q = {qi; qi ≥ 0, i ∈ S}, with

∑
i∈S

qi = 1. If the process

is initiated with probability q then the resultant Markov chain is completely
stationary. But the model (1) is quite different. For one, in the model (1),
the initial probability p is incorporated in the transition matrix P, not simply
a solution to the equation p = pP. For the other, it involves less parameters
than a regular stationary model. For example, let us take Edwards’ Markov
Bernoulli model as an illustration. In his model, the whole chain is completely
specified by only two parameters; p = P (X0 = 1) and π. While a two-state
stationary Markov chain usually involves three parameters. In fact, the model
(1) is the smallest class of stationary Markov chain containing the iid model.

2). In the literature, the Markov chain is often regarded as the simplest
generalization of the independence model. But it is interesting to note that
Aki (1985) came up with a non-Markovian generalization of the iid Bernoulli
model.

3). If we let pi = e−λλi/i!, for all i ≥ 0, in the model (1), then we
have an ergodic “Markov-Poisson” process with pre-assigned correlation coef-
ficient between two consecutive variables. Likewise, we can easily construct
ergodic “Markov-geometric” process, “Markov-Pascal” (Markov-negative bi-
nomial) process, etc. based on the model (1). Thus, as already stated in
section 2.1 - c), that the model (1) can be regarded as an extention of an i.i.d.
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sequence of discrete random variables to a Markov dependent sequence with
specific correlation coefficient between two consecutive variables.

3. An Induced Markov Chain

Given a sequence of Markov chain X = {Xi} with state space S, a natural
question to raise is whether “the sequence of indicator functions {I{Xi∈B}} of
a proper subset B of S is also a Markov chain?”. The answer in general is no.
(See Wang and Yang (1995).) For example, consider the transition matrix

0 1 2
0
1
2

 a α b
c d e
f α g

 .

(All letters represent distinct positive numbers with row sums equal 1.) It is
easy to check that the only sequences of indicator variables {I{Xi∈B}} which
preserve the Markovian property are when B = {1} or {0, 2}, no matter what
is the initial probability.

In this section we consider the problem in a more general setting than
in Wang and Yang (1995) and a sufficient condition is found for a sequence
of induced random variables of a Markov chain to preserve the Markovian
property.

Let B = {B0, B1, B2, . . .} be a sequence, finite or infinite, of non-empty
proper subsets of the state space S. We say that B constitutes a partition of
S, if Bj are mutually exclusive with union equal to S. Define a sequence of
multi-state random variables T = {Ti; i ≥ 1} by

Ti =
∞∑
j=0

j1{Xi∈BJ},(5)

where 1A is the indicator variable of A. Thus Ti takes values 0, 1, 2, . . ..

Theorem 1. Let X = {Xi, i = 1, 2, . . .} be a Markov chain with state
space S = {0, 1, 2, . . .} stationary transition matrix P = (pij) and initial prob-
abilities pj = P (X1 = j), i, j ∈ S. Let B = {B0, B1, B2, . . .} be a partition of
S. Then the sequence of random variables T = {Ti; i ≥ 1} defined by (5) is a
Markov chain if

pij = p`j (i, ` ∈ BS, j ∈ Bt; s, t = 0, 1, 2, . . . , s 6= t).(6)

Moreover, the transition matrix Q = (qst) of T is qst =
∑
j∈Bt

p`j, ` ∈ BS,

with initial probabilities qs =
∑
i∈Bs

pi, s, t = 0, 1, 2, . . ., and, if X is completely

stationary, so is T .
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Proof. For s 6= t, s, t, ji−1, . . . , j1 ∈ {0, 1, 2, . . . , }, i ≥ 1, condition (6)
implies

P{Ti+1 = t|Ti = s, Ti−1 = ji−1, . . . , T1 = j1}

= P{Xi+1 ∈ Bt|Xi ∈ BS , Xi−1 ∈ Bji−1 , . . . , X1 ∈ Bj1}

=
∑
`∈BS

P{Xi = `|Xi ∈ BS , Xi−1 ∈ Bji−1 , . . . , X1 ∈ Bj1}P{Xi+1 ∈ Bt|Xi = `}

= P{Xi+1 ∈ Bt|Xi = `} (` ∈ BS).

(7)

For s = t, condition (6) leads to

P{Ti+1 = s|Ti = s, Ti−1 = ji−1, . . . , T1 = j1}

= 1−
∑
t 6=S

P{Ti+1 = t|Ti = s, Ti−1 = ji−1, . . . , T1 = j1}

= 1−
∑
t 6=S

P{Xi+1 ∈ Bt|Xi = `} (` ∈ BS)

= P{Xi+1 ∈ BS|Xi = `} (` ∈ BS).

(8)

Now, for ` ∈ BS, the last expressions in (7) and (8) equal

P{Xi+1 ∈ Bt|Xi = `} =
∑
V ∈Bt

p`V = qst = P{Ti+1 = t|Ti = s}.

And the initial probabilities

qs = P (T1 = s) = P (X1 ∈ BS) =
∑
i∈BS

pi,

as required.
This proves the first two parts of the theorem. The last part is obvious

and its proof is skipped.

A special case of transition matrices satisfying condition (6) is

pij = αjδij + βj (1− δij) (i, j ∈ S).(9)

That is the off diagonal entries of each column are all identical. Thus, in
this particular case, for any proper subset B of S, the sequence of indicator
functions {I{Xi∈B}} is also a Markov chain. Evidently, the model (1) is a
special case of (9), and hence of (6).

The next corollary shows that if we start with an infinite dimensional com-
pletely stationary Markov chain, we can induce a sequence of finite dimensional
completely stationary Markov sequence.
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Corollary 1. Let X = {Xi; i = 1, 2, . . .} be the completely stationary
Markov chain defined by the transition matrix (1). Let B = {B0, B1, . . . , Bk},
k ≥ 1, be a partition of S. Then the sequence of (k + 1)-dimensional random
variables T = {Ti; i ≥ 1} defined by (5) is again a completely stationary
Markov chain with transition matrix Pk = (qij)

qij = πδij + (1− π)qj, (i, j = 0, 1, . . . , k),(10)

and initial probability q = {qi; i = 0, 1, . . . , k}, where qi =
∑
j∈Bi

pj.

It follows from Corollary 1 that for the model (1):

(1) All the sequences of indicator variables of non-trivial subsets of the state
space S reduce to the Edwards’ Markov Bernoulli sequences.

(2) As stated earlier that all the truncated sequences X ′n = min(Xn, k), for
k ≥ 1, are also completely stationary Markov chains.

In view of Theorem 1, another generalization of the Edwards Markov
Bernoulli sequence can be done as follows:

For a sequence of partition B = {B0, B1, B2, . . . , } of S, finite or infinite,
denote

Yij = 1{Xi∈Bj} (i = 1, 2, . . . ; i = 0, 1, 2, . . . , ).

Then
∞∑
j=0

Yij = 1 for all i ≥ 1. Define a sequence of binary random vectors

Y = {Yi; i ≥ 1} by Yi = (Yi0, Yi1, Yi2, . . .). Then Yi takes values in the set

S = {(s0, s1, s2, . . . , ) : sj = 0 or 1 with
∞∑
j=0

sj = 1}.

By Theorem 1, if X is a completely stationary Markov chain defined by (1),
then so is Y. Since the two events {Yij = 1} and {Ti = j} are identical for all
i and j, the next corollary follows right from Theorem 1.

Corollary 2. The sequence of binary random vectors Y is a completely
stationary Markov chain with state space S.

4. A Limit Theorem

In this section we derive the infinite dimension version of the main theorem
in Wang (1981). The limit conditions in this section are
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npj → λj > 0, j ≥ 1, and λ =
∞∑
j=1

λj <∞, (n→∞).(11)

Let 1 ≤ k < ∞, and consider the partition B = {B0, B1, . . . , Bk}, where
Bi = {i} for i = 0, 1, . . . , k− 1 and Bk = {i : i ≥ k}. Then by Corollary 1, the
sequence of (k + 1)-dimensional random variables T = {Ti; i ≥ 1} defined by
(5) is a truncated sequence and hence is a completely stationary Markov chain
with transition matrix Pk defined by (10) with qi = pi for i = 0, 1, . . . , k−1, and
qk =

∑
i≥k

pi. (For brevity, the dependence of T on k is suppressed hereafter.)

Denote Snk = T1 + · · ·+ Tn. Then by Corollary II in Wang and Yang (1995),
see also Hsiau (1997) Lemma 3.2, the pgf Gnk(s) = E(sSnk) can be written as

Gnk(s) = (1, s1, . . . , sk)Rn−1(s)q (0 ≤ s ≤ 1),

where

R(s) =


π + (1− π)q0 (1− π)q1s · · · · · · (1− π)qksk

(1− π)q0 [π + (1− π)q1]s · · · · · · (1− π)qksk

· · · · · · · · · · · · · · · · · · · · · · · ·
(1− π)q0 (1− π)q1s · · · · · · [π + (1− π)qk]sk

 .
The next lemma was proved in Wang and Tang (1997) and we state it here

for later reference. If k = 1, this lemma reduces to the main theorem in Wang
(1981).

Lemma. In the model (1), under the limit conditions (11), for all 1 ≤
k <∞, we have

lim
n→∞

Gnk(s) = exp

−(1− π)
k∑
j=1

λ′j

(
1− (1− π)sj

1− πsj
) , (0 ≤ s ≤ 1),(12)

where λ′j = λj for 1 ≤ j < k and λ′k =
∑∞
i=k λi .

Let Sn = X1 + X2 + · · · + Xn. Denote Gn(s) = (sSn), the pgf of Sn and
φ(s) a pgf defined by

φ(s) =
∞∑
j=1

(πj/λ)
(

(1− π)sj

1− πsj
)
,

where λ =
∞∑
j=1

λj <∞.
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Theorem 2. For the model (1), if the parameters pj satisfy the limit
conditions (11), then the distribution of Sn converges to a compound Poisson
distribution with Poisson parameter (1 − π)λ, and compounding distribution
whose pgf is φ(s) which is the pgf of the mixture of infinitely many geometric-
type distributions. That is,

lim
n→∞

Gn(s) = exp{−(1− π)λ[1− φ(s)]}.

Proof. We first define a truncated sequence Y = {Yik : i = 1, 2, . . .} by
Yik = min(Xi, k), where k ≥ 1 is a positive integer. Then, by the Lemma, the
pgf of the partial sum Snk = Y1k + · · ·+ Ynk converges to

exp{−(1− π)λ′k [1− φ′k(s)]} exp

{
−(1− π) ∧k

(
1− (1− π)sk

1− πsk

)}
,(13)

where ∧k =
∑
j≥k

λj, λ
′
k =

∑
j≤k−1

λj and

φ′k(s) =
k−1∑
j=1

(λj/λ′k)
(

(1− π)sj

1− πsj
)
.

(Note that (13) is the same as (12), but in a seemingly different form.)
Since ∧k → 0;λ′k → λ and φ′k(s)→ φ(s) for 0 ≤ s ≤ 1, as k →∞,

lim
k→∞

lim
n→∞

Gnk(s) = exp{−(1− π)λ[1− φ(s)]}.

Finally, the sequence of functions {Gnk(s)} satisfies 0 ≤ Gnk(s) ≤ 1 for all
n, k ≥ 1 and 0 ≤ s ≤ 1, we conclude the proof by noting

lim
n→∞

Gn(s) = lim
n→∞

lim
k→∞

Gnk(s) = lim
k→∞

lim
n→∞

Gnk(s).
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