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UNIFORM CLT FOR MARKOV CHAINS WITH A
COUNTABLE STATE SPACE∗

Tsung-Hsi Tsai

Abstract. We prove a uniform CLT for Markov chains for functions
dominated by a function in a L2-space. Using empirical process CLT’s
for stationary sequences satisfying a variety of mixing conditions one can
obtain similar results. However, our conditions are less restrictive than
those required for a mixing process application to these problems, and
an example is given to these differences.

1. Introduction

Let (S,G, P ) be a probability space and let F be a set of measurable
functions on S with an envelope function F finite everywhere. Let X1, X2, ...
be a strictly stationary sequence of random variables with distribution P , and
define the empirical measures Pn, based on {Xi}, as Pn = n−1∑n

i=1 δXi . We
say the uniform CLT holds over F , if n 1

2 (Pn − P ) converges in law, in the
space l∞(F) to a Gaussian process. l∞(F) is defined to be L∞(F , µ), where
µ is counting measure on F . Of course, l∞(F) is not separable unless F is a
finite set, but Giné and Zinn [8, p. 56] includes a suitable definition of weak
convergence in non-separable spaces.

Let V be a subspace of the space of measurable functions on S such that
F ⊆ V , and let ‖·‖ be a norm on V . Define the bracketing number of F with
respect to the norm ‖·‖ and V by letting, for ε > 0, N[ ](ε,F , ‖ · ‖) be the
minimal number of brackets [g1, h1], . . . , [gn, hn], with all gi, hi ∈ V, such that
for all f ∈ F there exists [gi, hi], for some i, 1 ≤ i ≤ n with gi ≤ f ≤ hi and
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‖hi − gi‖ < ε. Ossiander [14] proved that if {Xi} is i.i.d. and F ⊆ L2(S, P )
satisfies ∫ 1

0
(lnN[ ](ε,F , ‖·‖2))

1
2dε <∞,(1)

then the uniform CLT holds over F .
In the discrete space case, the Borisov-Durst theorem [5, p. 47] says that

for {Xi} i.i.d. on S = 3D{1, 2, 3, . . .} with distribution π, the following are
equivalent:
(a) the uniform CLT holds over F ,
(b)

∑∞
k=3D1 π

1
2 (k) <∞,

(c)
∫ 1

0 (ln N[ ](ε,F , ‖·‖2)) 1
2dε <∞, where F = 3D{1A : A ⊆ S} ⊆ L2(S, P ).

Let {Xi}i≥0 be a positive recurrent irreducible Markov chain taking values
in S = 3D{1, 2, 3, . . .} with the unique invariant probability measure π, Ni be
the i-th hitting time of state 1,

mi,j = E(min{n : n ≥ 1, Xn = j} |X0 = i).

Levental (1990) [12] generalized Durst and Dudley’s result (1981) [7] that
(a) and (b) above in the i.i.d. case are equivalent by showing that for Markov
chains when E(N2−N1)2 <∞, then the uniform CLT holds over {1A : A ⊆ S}
if and only if

∞∑
k=1

π(k)m
1
2
1,k <∞.(2)

Of course, in the i.i.d. case m1,k = (π(k))−1, so (2) coincides with (b).
We will prove a uniform CLT for regenerative processes and then apply

the theorem to Markov chains to generalize Levental’s theorem from the set
of indicator functions to the set of possibly unbounded functions. Let {Xi}i≥0

be a positive recurrent irreducible Markov chain. Let F be a non-negative
function on S and F = {f : |f | ≤ F}. We have that the uniform CLT holds
over F if and only if E(N2 −N1)2 <∞,

E

 ∑
N1<j≤N2

F (Xj)

2

<∞

and
∞∑
k=1

F (k)π(k)m
1
2
1,k <∞.

To compare our results to those obtained from weakly dependent observa-
tions, we let {Xi} be a strictly stationary sequence of random variables and
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recall the definitions of some classical mixing coefficients.
Strong mixing coefficient:

αk = sup{|P (A ∩B)− P (A)P (B)| : A ∈ σl1, B ∈ σ∞l+k, l ≥ 1}.

Absolutely regular mixing coefficient:

βk =
1
2

sup
{ I∑
i=1

J∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)| : {Ai}Ii=1

is a partition in σl1 and {Bj}Jj=1 is a partition in σ∞l+k, l ≥ 1
}
.

Obviously αk ≤ 1
2βk.

The best known results for the uniform CLT based on strong mixing em-
pirical processes require at least αk = O(k−a) for some a > 3, [3], [13]. For
absolutely regular empirical processes, Doukhan, Massart and Rio (1995) [4]
obtained a uniform CLT over classes of functions which satisfy a bracketing
condition with respect to a norm ‖ · ‖2,β. This norm depends on P and on
the mixing structure of the sequence, and coincides with the usual L2(P )-
norm in the independent case. Their result generalizes Ossiander’s theorem
for independent observations.

In the last section we will prove that when the βk decays at a polynomial
rate, the bracketing condition in Doukhan, Massart and Rio with respect to the
class of indicator functions implies that

∑
x∈S(π(x))

1
2+δ < ∞ for some δ > 0.

Our uniform CLT over the family of functions dominated by a non-negative
function is the best possible result for positive recurrent irreducible Markov
chains.We also present an example to illustrate that, in the Markov chain case,
applying the known mixing empirical process results will not get the results
obtained by our approach. The mixing approach requires that αk � k−3 or
the bracketing conditions hold. In our example the rates of decay of αk and
βk can be taken such that αk � k−3 and also

∑
x∈S(π(x))

1
2+δ diverges. Hence

the bracketing condition of the mixing approach fails.

2. Main Results

A regenerative process, informally speaking, is a stochastic process that can
be divided into blocks which are identically distributed and independent. To
state the results, we need a formal definition and some notation. The following
is a simplification of Levental’s [11] general space notation.

( i ) S = {1, 2, 3, . . .} is a discrete space.
(ii) Ω stands for the set of all sequences {yi}1≤i<∞ such that yi = (xi, φi)

where xi ∈ S and φi ∈ {0, 1}.
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(iii) P is a probability measure on Ω.
(iv) The coordinate maps Xn : Ω → S are defined by Xn({yi}) = xn and

Φn : Ω→ {0, 1} are defined by Φn({yi}) = φn.
(v) Ni = min{j ≥ 1 :

∑
1≤k≤j Φk = i}, i = 1, . . . or Ni = ∞ if the set

that we minimize over is empty. {Ni} are called renewal times. For
every i ≥ 1 Ni is a stopping time relative to the increasing sequence of
σ-algebras (σ{W1, . . . ,Wn})1≤n where by Wn we denote the coordinate
maps Wn({yi}) = yn. GNi is the σ-algebra associated with the stopping
time Ni, i.e. : GNi = σ{Wk∧Ni : k = 1, 2, . . .}. θk is a shift operator:
θk : {yi}i≥1 → {yi+k}i≥1 for every k ≥ 1.

Definition 2.1. {Xi} will be called a regenerative process if Ni < ∞
almost surely for every i ≥ 1 and if for every f : Ω → R which is bounded
E [f(θNi) | GNi ] = E [f(θN1)].

The following two properties of the process {Wi} are equivalent to the
above definition:

( i ) The post Ni + 1 process is independent of the occurence up to and
including Ni, and

(ii) L((WN1+1, . . .)) = L((WNi+1, ...)) for all i = 1, 2, . . .
We assume that E(N2−N1) <∞ and denote µ = E(N2−N1) throughout

the paper. Define

π(A) =
1
µ
E

 ∑
N1<j≤N2

1A(Xj)

 for all A ⊆ S.

Then π is a probability measure on S (called a steady state distribution). For
Markov chains, let Ni be the i-th hitting time of state 1, then π is the invariant
propability measure [6, p. 262]. We also assume that π(k) > 0 for all k ∈ S
and write π(f) =

∑
k∈S f(k)π({k}) for all f ∈ L1(S, π). Then

n−1
n∑
k=1

f(Xk)→ π(f) a.s. for all f ∈ L1(S, π).

For the proof of the above property see [1, p. 92] where the statement is
formulated for Markov chains but the same proof works for regenerative pro-
cesses.

Define for every f ∈ L1(S, π)

Sn(f) =
n∑
j=1

(f(Xj)− π(f)) .
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Our generalization of Levental’s theorem is the following result.

Theorem 2.2. Suppose E(N2 − N1)2 < ∞. Let F be a non-negative
function on S and F = {f : |f | ≤ F}. Then

E

 ∑
N1<j≤N2

F (Xj)

2

<∞(3)

and
∞∑
k=1

F (k)(E

 ∑
N1<j≤N2

1{k}(Xj)

2

)
1
2 <∞(4)

if and only if the uniform CLT holds over F , namely {n− 1
2Sn(f)}f∈F converges

in law, as random elements of l∞(F), to a Gaussian process {G(f)}f∈F whose
covariance is

E(G(f)G(g)) =
1
µ
E(Z1(f)Z1(g))(5)

where Z1(f) =
∑
N1<j≤N2

(f(Xj) − π(f)). Furthermore, {G(f)}f∈F is uni-
formly continuous with respect to the L2-norm metric of L2(S, π) restricted to
F .

Remark. The condition (3) implies F ∈ L2(S, π), since

(
‖F‖L2(S,π)

)2
=

1
µ
E

 ∑
N1<j≤N2

F 2(Xj)

 ≤ 1
µ
E

 ∑
N1<j≤N2

F (Xj)

2

<∞.

The equality above readily follows from the definition of π.

Proof of Theorem 2.2. First we show (3) and (4) imply the uniform CLT
over F . Define

Zk(f) =
∑

Nk<j≤Nk+1

(f(Xj)− π(f))

for all k ≥ 1. By the properties of regenerative processes the Zk(f) are i.i.d..
Let

Rn(f) =
∑

1≤j≤N1 or Nl(n)<j≤n
(f(Xj)− π(f)),

and l (n) = max {k : Nk ≤ n}. Then

Sn(f) =
l(n)−1∑
i=1

Zi(f) +Rn(f).
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We have the following lemma.

Lemma 2.3. Let F be a non-negative function in L1(S, π) and F = {f :
|f | ≤ F}. Then

n−
1
2 sup
f∈F
|Rn(f)| → 0 in probability as n→∞.

Proof. This follows from Chung’s proof [1, p. 99], since

sup
f∈F
|Rn(f)| ≤

∑
1≤j≤N1 or Nl(n)<j≤n

F (Xj) + (N1 + n−Nl(n))π(F ).

Chung’s proof is for Markov chains but the same proof will work for regener-
ative processes.

Lemma 2.4. Suppose E(N2 − N1)2 < ∞ and (4) holds. Then for all
ε > 0,

lim
δ→0

lim sup
n→∞

P (sup
[δ]

n−
1
2 |

n∑
i=1

(Zi(f)− Zi(g))| > ε) = 0.

where [δ] = {f, g ∈ F , ‖f − g‖2 < δ}.

Proof. For f, g ∈ F , |f(k)− g(k)| ≤ 2F (k) for all k ∈ S, and ‖f − g‖2 < δ
implies |f(k)−g(k)| ≤ δ(π(k))− 1

2 for all k ∈ S. Let δ(k) = min{2F (k), δ√
π(k)
}.

Then for (f, g) ∈ [δ], |f(k)−g(k)| ≤ δ(k) for all k ∈ S. Let m(δ) be the largest
integer such that min{π(1), π(2), . . . , π(m(δ))} ≥ δ 2

3 or m(δ) = 1 if π(1) < δ
2
3 .

Clearly, m(δ)→∞ as δ → 0. Since

sup
[δ]

n∑
i=1

(Zi(f)−Zi(g))| ≤ sup
[δ]

∞∑
k=1

|f(k)−g(k)| |
n∑
i=1

Zi(1{k})| ≤
∞∑
k=1

δ(k)|
n∑
i=1

Zi(1{k})|,

we have

P (sup
[δ]

n−
1
2 |

n∑
i=1

(Zi(f)− Zi(g))| > ε)≤ P (n− 1
2

∞∑
k=1

δ(k)|
n∑
i=1

Zi(1{k})| > ε)

≤ 1
ε

∞∑
k=1

δ(k)E(n−
1
2 |

n∑
i=1

Zi(1{k})|).

Since Zi(·) are i.i.d. and centered,

E(n−
1
2 |

n∑
i=1

Zi(1{k})|) ≤ (n−1E|
n∑
i=1

Zi(1{k})|2)
1
2 =

(
E
(
Z2

1 (1{k})
)) 1

2 .(6)
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Denote ω(k) =
(
E

( ∑
N1<j≤N2

1{k}(Xj)
)2) 1

2

, and then by definition,

(
E
(
Z2

1 (1{k})
)) 1

2 =

E
 ∑
N1<j≤N2

1{k}(Xj)− (N2 −N1)π(k)

2


1
2

≤ ω(k) + π(k)(E(N2 −N1)2) 1
2 .

(7)

Thus

P (sup
[δ]

n−
1
2 |

n∑
i=1

(Zi(f)− Zi(g)) |> ε)

≤ 1
ε

∞∑
k=1

δ(k)(ω(k) + π(k)(E(N2 −N1)2)
1
2 ).

Since ω(k) ≥ µπ(k), it is enough to show that
∑∞
k=1 δ(k)ω(k) → 0 as δ → 0.

If δ 2
3 ≤ π(1) then (π(k))− 1

2 ≤ δ− 1
3 for 1 ≤ k ≤ m(δ), and hence we have

∞∑
k=1

δ(k)ω(k)≤
m(δ)∑
k=1

δ√
π(k)

ω(k) +
∞∑

k=m(δ)+1

2F (k)ω(k)

≤ δ 2
3

m(δ)∑
k=1

ω(k) + 2
∞∑

k=m(δ)+1

F (k)ω(k).

The right term converges to zero since m(δ)→∞ as δ → 0 and (4). The left
term satisfies

δ
2
3

m(δ)∑
k=1

ω(k) ≤ δ 2
3m(δ)

[
E(N2 −N1)2] 1

2 .

Hence for m > 0 fixed,

lim sup
δ→0

δ
2
3m(δ) = lim sup

δ→0
δ

2
3 (m(δ)−m) ≤ lim sup

δ→0

m(δ)∑
k=m+1

π(k) =
∞∑

k=m+1

π(k),

and the right hand side converges to zero as m→∞.

Lemma 2.5. Suppose that n− 1
2

(
l(n)− n

µ

)
converges in law to a normal

distribution and π(F ) <∞. Then

sup
f∈F

n−
1
2 |
l(n)−1∑
i=1

Zi(f)−
[nµ ]∑
i=1

Zi(f)| → 0 in probability.
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Proof. Put a = min{l(n) − 1, [n/µ]}, b = max{l(n) − 1, [n/µ]} and fix
ε > 0. Then

P (sup
f∈F

n−
1
2

l(n)−1∑
i=1

Zi(f)−
[nµ ]∑
i=1

Zi(f)| > ε) = P (sup
f∈F

n−
1
2 |
∑
a<i≤b

Zi(f)| > ε).

Fix δ > 0, then there exits a constant c > 0 such that P (|l(n) − [n/µ]| ≤
c
√
n) > 1−δ for n large enough. Thus the right hand side of the last equation

is equal to or less than

δ + P ({sup
f∈F

n−
1
2 |
∑
a<i≤b

Zi(f)| > ε} ∩ {|l(n)− [
n

µ
]| ≤ c

√
n})

≤ δ + P (sup
f∈F

max
|s−[nµ ]|≤c√n

2n− 1
2 |

∑
[nµ ]−c√n≤i≤s

Zi(f) |> ε)

= δ + P (sup
f∈F

max
1≤s≤2c

√
n

2n− 1
2 |
∑

1≤i≤s
Zi(f)| > ε).

Now we consider Zi as random vetors in C(F, R), the separable Banach space
of all continuous functions from F to the real number equipped with supremun
norm. Since

E

(
sup
f∈F
|Z1(f)|

)
= E

sup
f∈F
|

∑
N1<j≤N2

f(Xi)− π(f)(N2 −N1)|


≤ E

 ∑
N1<j≤N2

F (Xi)

+ π(F )E(N2 −N1) <∞,

E ‖Z1‖ <∞ and hence by the uniform SLLN [10, Corollary 7.10],

n−1 ‖
n∑
i=1

Zi ‖= n−1 sup
f∈F
|
n∑
i=1

Zi(f)| → 0 a.s. .

Thus n− 1
2 supf∈F |

∑√n
i=1 Zi(f)| → 0 a.s.. This implies

max
1≤s≤2c

√
n
n−

1
2 sup
f∈F
|
s∑
i=1

Zi(f)| → 0 a.s.

(since n−1an → 0 implies max1≤s≤n n
−1as → 0), and hence

P (sup
f∈F

max
1≤s≤2c

√
n

2n−
1
2 |
∑

1≤i≤s
Zi(f)| > ε)→ 0 as n→∞.
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Since δ is arbitrary, we have

P (sup
f∈F

n−
1
2 |
l(n)−1∑
i=1

Zi(f)−
[nµ ]∑
i=1

Zi(f) |> ε)→ 0 as n→∞,

which completes the proof.

We know that E(N2−N1)2 <∞ implies that n− 1
2

(
l(n)− n

µ

)
converges in

law to a normal distribution. So we have the following lemma.

Lemma 2.6. Suppose E(N2 − N1)2 < ∞ and (4) holds. Then for all
ε > 0,

lim
δ→0

lim
n→∞

P (sup
[δ]

n−
1
2 |Sn(f)− Sn(g)| > ε) = 0.

Proof. By Lemma 2.3, we only have to show that

lim
δ→0

lim sup
n→∞

P (sup
[δ]

n−
1
2 |
l(n)−1∑
i=1

(Zi(f)− Zi(g))| > ε) = 0.

Since

sup
[δ]
|
l(n)−1∑
i=1

(Zi(f)− Zi(g))|

≤ sup
[δ]
|

[nµ ]∑
i=1

(Zi(f)− Zi(g))|+ 2 sup
f∈F
|
l(n)−1∑
i=1

Zi(f)−
[nµ ]∑
i=1

Zi(f)|,

the proof follows from Lemma 2.4 and Lemma 2.5.

Hence we now have:

( i ) finite dimensional convergence by (3) [1, p. 99] (there the convergence is
formulated for Markov chains but the same proof works for regenerative
processes).

(ii) F is compact in L2(S, π), thus totally bounded, since F ∈ L2(S, π).

(iii) asymptotically stochastic equicontinuity i.e. for each ε > 0 and η > 0
there exists a δ > 0 such that lim supn→∞ P (sup[δ] n

− 1
2 |Sn(f−g)| > ε) <

η.

Applying Theorem 21 in Pollard [15, p. 157] shows that the conditions are
sufficient for the uniform CLT.
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For the converse part, (adapted from the proof of [12, Theorem 4]).
Suppose the uniform CLT holds over F , and let {G(f)}f∈F be the lim-
iting Gaussian process. If support(f) = A is a finite set, then E(G(f) −∑
k∈A f(k)G(1{k}))2 = 0 by using covariance (5) and hence G(f) =

∑
k∈A f(k)

G(1{k}) a.s.. On the other hand, sup
f∈F
|G(f) |= ‖G‖∞ <∞ a.s., thus

∞∑
k=1

F (k) | G(1{k}) |<∞ a.s.,

since F ∈ F . This means that the law of the process {F (k)G(1{k})}k∈S defines
a Gaussian measure on the separable Banach space l1(S). The first moment of
the norm of a random vector, which has a Gaussian distribution in a separable
Banach space, is finite, and hence

∞ > E‖{F (k)G(1{k})}k∈S‖1 =
∞∑
k=1

F (k)E | G(1{k}) | .

Since G(1{k}) are centered normal random variables,

E
∣∣G(1{k})

∣∣ =
√

2
π

(
E
(
G2 (1{k}))) 1

2 ,

and hence

∞∑
k=1

F (k)
(
E
(
G2 (1{k}))) 1

2 <∞.(8)

From Chung [1, p. 99],(
E
(
G2
(
1{k}

))) 1
2 =

(
µ−1E

(
Z1
(
1{k}

))) 1
2

= µ−
1
2 ‖

∑
N1<j≤N2

1{k}(Xj)− π(k)(N2 −N1)‖2.

Thus

∞∑
k=1

F (k)

E
 ∑
N1<j≤N2

1{k}(Xj)

2


1
2

≤
∞∑
k=1

F (k)

‖ ∑
N1<j≤N2

1{k}(Xj)− π(k)(N2 −N1)‖2 + ‖π(k)(N2 −N1)‖2


=
∞∑
k=1

F (k)
√
µ
(
E
(
G2(1{k})

)) 1
2 +

∞∑
k=1

F (k)π(k)‖N2 −N1‖2.
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Using (8), we have

∞∑
k=1

F (k)

E
 ∑
N1<j≤N2

1{k}(Xj)

2


1
2

<∞.(9)

We also need to show (3) is necessary. Since n− 1
2Sn(F ) converges in law

to a normal distribution G(F ) and n−
1
2Rn(F ) → 0 in probability, we have

n−
1
2
∑l(n)−1
k=1 Zk(F ) converges in law to G(F ). By Lemma 2.5, n− 1

2
∑[n/µ]
k=1 Zk(F )

converges in law to G(F ) since (9) impies π(F ) < ∞. This is equivalent to
EZ2

1 (F ) <∞ [9, p.181], thus

E
 ∑
N1<j≤N2

F (Xj)

2


1
2

≤ ‖
∑

N1<j≤N2

F (Xj)− π(F )(N2 −N1)‖2 + ‖π(F )(N2 −N1)‖2

=(E (Z2
1 (F )))

1
2 + π(F )‖N2 −N1‖2 <∞.

Now let {Xj}j≥0 be a positive recurrent irreducible Markov chain taking
values in S = 3D{1, 2, 3, . . .} with an invariant probability measure π. Let Ni

be the i-th hitting time of state 1, and consider {Xi} as a regenerative process
with renewal times {Ni}. Then apply Theorem 2.2 to the Markov chain {Xi}
to obtain the following theorem.

Theorem 2.7. Let {Xi} be a positive recurrent irreducible Markov chain.
Let F be a non-negative function on S and F = {f : |f | ≤ F}. Then E(N2 −
N1)2 <∞,

E

 ∑
N1<j≤N2

F (Xj)

2

<∞(10)

and
∞∑
k=1

F (k)π(k)m
1
2
1,k <∞(11)

if and only if the uniform CLT holds over F , i.e. {n 1
2
∑n
j=1(f(Xj)−π(f))}f∈F

converges in law to a Gaussian process in the sense of Theorem 2.2.

Remark. The condition E(N2 − N1)2 < ∞ and (10) does not depend
on the state which we choose to use to define the hitting times Ni, [1, p.
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84] and (11) is equivalent to
∑∞
k=1 F (k)π(k)m

1
2
j,k < ∞ for any j ∈ S. Since

mi,k ≤ mi,j +mj,k, we have that for j fixed

m
1
2
1,k ≤ m

1
2
1,j +m

1
2
j,k and m

1
2
j,k ≤ m

1
2
j,1 +m

1
2
1,k.

Thus (11) is equivalent to
∑∞
k=1 F (k)π(k)m

1
2
j,k <∞.

Proof of Theorem 2.7. First we show that E(N2 − N1)2 < ∞ is a neces-
sary condition for the uniform CLT holds over F . Without loss of generality
we assume that F (1) > 0. From the fact that {1{1}(Xj)} satisfy the CLT,
that is n− 1

2 (
∑n
j=1 1{1}(Xj)− nπ(1)) converges in law to a normal distribution

G(1{1}). Then we have n− 1
2 (l(n) − n

m1,1
) converges in law to G(1{1}), since∑n

j=1 1{1}(Xj) = l(n). On the other hand,

n−
1
2

l(n)−1∑
j=1

Zj(1{1})

converges in law to G(1{1}) since Sn(f) =
∑l(n)−1
j=1 Zj(f) + Rn(f) and

n−
1
2Rn(1{1})→ 0 in probability. Using Lemma 2.5, we thus have

n−
1
2

[n/m1,1]∑
j=1

Zj(1{1})

converges in law to G(1{1}), and hence E(Z2
1 (1{1})) <∞ [9, p. 181]. But

E
(
Z2

1 (1{1})
)
= E

 ∑
N1<j≤N2

1{1}(Xj)− π(1)(N2 −N1)2

2

= E(1− π(1)(N2 −N1))2.

Therefore E(N2 −N1)2 <∞.
By virtue of Theorem 2.2, we only need to show that (4) and (11) are

equivalent. First suppose (11) holds. From Chung [1, p.88],

E

 ∑
N1<j≤N2

1{k}(Xj)

2

= 2m1,1π
2(k)(m1,k +mk,1)−m1,1π(k) for k ≥ 1(12)

and

E(N2 −N1)2 = 3D2m1,1

∞∑
k=1

π(k)mk,1 −m1,1.(13)
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Since E(N2 − N1)2 < ∞ and m1,1 < ∞, we thus have
∑∞
k=1 π(k)mk,1 < ∞,

and hence

∞∑
k=1

F (k)π(k)m
1
2
k,1 ≤

( ∞∑
k=1

F 2(k)π(k)

) 1
2
( ∞∑
k=1

π(k)mk,1

) 1
2

<∞,(14)

since F ∈ L2(S, π). Thus
∑∞
k=1 F (k)π(k)m

1
2
k,1 <∞, and hence

∞∑
k=1

F (k)

E
 ∑
N1<j≤N2

1{k}(Xj)

2


1
2

∞∑
k=1

F (k)(2m1,1π
2(k)(m1,k +mk,1)−m1,1π(k))

1
2

≤
√

2m1,1

∞∑
k=1

F (k)π(k)
(
m

1
2
1,k +m

1
2
k,1

)
<∞.

Conversely, suppose (4) holds. Then

∞∑
k=1

F (k)π(k)m
1
2
1,k ≤ m

− 1
2

1,1

∞∑
k=1

F (k)
(
m1,1π

2(k)(m1,k +mk,1)
) 1

2 .(15)

Since

m1,1π
2(k)(m1,k +mk,1)−m1,1π(k) = m1,1π(k)

(
m1,k +mk,1

mk,k

− 1
)
≥ 0,

the right hand side of (15) is equal to or less than

m
− 1

2
1,1

∞∑
k=1

F (k)
(
2m1,1 π

2(k)(m1,k +mk,1)−m1,1 π(k)
) 1

2 .

Combining with (4) and (12), we obtain (11).

3. Comparison with Mixing Results

It is known that a positive recurrent irreducible Markov chain has conver-
gent absolutely regular mixing coefficients [2]. Using empirical process CLT’s
for stationary sequences satisfying absolutely regular mixing conditions one
can also obtain results similar to those above. However, our conditions are
less restrictive than those required for a mixing process application to these
problems, and an example is given to show these differences.
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Let X1, X2, . . . be a strictly stationary sequence of random variables with
distribution P , and assume that the absolutely regular mixing coefficient se-
quence {βk} satisfies the summability condition

∑
k≥1 βk < ∞. Define the

mixing rate function β(·) by β(t) = β[t] if t ≥ 1, and β(t) = 1 otherwise. For
any numerical function f, we denote by Qf the quantile function of |f(X1)|,
that is

Qf (u) = inf{t : P (|f(X1)| > t) ≤ u}.

Let F be a class of functions in the function space L2,β(P ), here the norm is
defined by

‖f‖2,β =
(∫ 1

0
β−1(u)(Qf (u))2du

) 1
2

,

where β−1(u) = inf{t : β(t) ≤ u}. Doukhan, Massart and Rio (1995) [4]
proved that a sufficient condition for the uniform CLT holding over F is that

∫ 1

0
(logN[ ] (ε,F , ‖ · ‖2,β))

1
2dε <∞(16)

where N[ ](ε,F , ‖ · ‖2,β) is the bracketing number of F with respect to the
norm ‖ · ‖2,β and L2,β(P ).

From now on, we assume S = 3D{1, 2, 3, . . .} with distribution {pk}k≥1

and let F = {1A : A ⊆ S}. Then N[ ](ε,F , ‖ · ‖) does not depend on the space
V from which we choose brackets. In fact, we can choose brackets just from
the set of all indicator functions F . Since for any bracket [g, h], we define [g, h]
by setting

h(x) = 1, g(x) = 0 when h(x) ≥ 1, g(x) ≤ 0,

h(x) = 1, g(x) = 1 when h(x) ≥ 1, g(x) > 0,

h(x) = 0, g(x) = 0 when h(x) < 1.

Then [g, h] ⊆ [g, h] and |h− g| ≤ |h− g|, thus we can replace [g, h] by [g, h].

Proposition 3.1. Suppose βk � k−a for some a > 1, then (16) implies

∞∑
k=1

p
(2+ 2

2a−1)−1

k <∞.

Proof. From assumption, βk ≥ ck−a for some constant c > 0, thus
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β−1(u) ≥ c 1
au−

1
a , and we also have Q1A = 1[0,

∑
k∈A

pk) for all A ⊆ S. Then

‖1A‖2,β≥
(∫ 1

0
c

1
au−

1
a 1[0,

∑
k∈A

pk)du
) 1

2

= c
1
2a

(
(1− a−1)−1u1− 1

a |
∑

k∈A
pk

0

) 1
2

=

(
c

1
aa

a− 1

) 1
2 (∑

k∈A
pk

) a−1
2a

.

Since ‖ · ‖2,β ≥ ‖ · ‖2, N[ ](ε,F , ‖ · ‖2,β) ≥ N[ ](ε,F , ‖ · ‖2) and hence (16)
implies

∑∞
k=1 p

1
2
k ≤M <∞ by the Borisov-Durst theorem [5, p. 47]. Then for

all A ⊆ S, ∑
k∈A

p
a−1
a + 1

2a
k ≤

(∑
k∈A

pk

) a−1
a
(∑
k∈A

p
1
2
k

) 1
a

,

and hence (∑
k∈A

pk

) a−1
a

≥M− 1
a

∑
k∈A

p
2a−1

2a
k .

Define a new norm by

‖f‖2,a =

( ∞∑
k=1

f2(k)p
2a−1

2a
k

) 1
2

.

Then for all A ⊆ S,

‖1A‖2,β ≥
(
c

1
aa

a− 1

) 1
2

M− 1
2a ‖1A‖2,a.(17)

We observe that (16) and (17) assert that∫ 1

0

(
logN[ ](ε,F , ‖.‖2,a)

) 1
2 dε <∞.(18)

By the Borisov-Durst theorem (18) is equivalent to
∑∞
k=1 p

1
2 ( 2a−1

2a )
k <∞.

Under the condition F ≡ 1 and F = {1A : A ⊆ S} our conditions for
the uniform CLT are E(N2 −N1)2 <∞ and

∞∑
k=1

E
 ∑
N1<j≤N2

1{k}(Xj)

2


1
2

<∞.(19)
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The mixing results in Doukhan, Massart and Rio require at least the bracketing
condition (16). We present an example in which our conditions hold but the
bracketing condition fails.

Example 3.2. Let {Xi} be a stationary Markov chain with transition
probability

pn,n+1 =
(

n

n+ 1

)s
, pn,1 = 1− pn,n+1 for alln ≥ 1 and somes > 1.

Then the invariant probability measure is pk = ck−s where c = (
∑∞
k=1 k

−s)−1
.

(i) Since P (N2−N1 = n) =
( 1

2

)s ( 2
3

)s · · · (n−1
n

)s (1−( n
n+1)s) = n−s (n+1)s−ns

(n+1)s ,

E(N2 −N1)2 =
∞∑
n=1

n2P (N2 −N1 = n) ≈
∞∑
n=1

n1−s.

Thus E(N2 −N1)2 <∞ if s > 2.

(ii) Examine the condition (19). Note that

E

 ∑
N1<j≤N2

1{k}(Xj)

2

=
∞∑
n=k

P (N2 −N1 = n) ≈
∞∑
n=k

n−s−1 ≈ k−s,

thus (19) holds if s > 2.

(iii)
∑∞
k=1 p

1
2+δ
k <∞, only if s > 2 + δ.

(iv) We claim that αk � k−s and βk � k1−s. Recall that mixing coefficients
αk and βk are defined by

αk = sup{|P (A ∩B)− P (A)P (B)| : A ∈ σl1, B ∈ σ∞l+k, l ≥ 1}

and

βk =
1
2

sup
{ I∑
i=1

J∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)|; {Ai}Ii=1 is a partition of the

sample space in σl1, {Bj}Jj=1 is a partition of the sample space in σ∞l+k, l ≥ 1
}

.

We take Ak = {X1 = 1} and Bk = {Xk+1 = k + 2}, then P (Ak ∩Bk) = 0 and
hence

αk ≥ P (Ak)P (Bk) ≈ (k + 2)−s ≈ k−s.
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For the absolutely regular mixing coefficient, we take

l = 1, A1 = {X1 = 1}, A2 = Ac1,

Bj = {Xk+1 = k + 1 + j} for j = 1, 2, · · · , J and BJ+1 =

 J⋃
j=1

Bj

c

.

Note that P (A1 ∩Bj) = 0 for j = 1, 2, · · · , J . Thus

βk ≥
1
2

sup
j

J∑
j=1

P (A1)P (Bj) ≈
∞∑
j=1

(
1

k + 1 + j

)s
≈ k1−s.

Now if we restrict 2 < s < 5/2, obviously our conditions E(N2−N1)2 <∞
and (19) hold. Suppose that the bracketing condition (16) holds, then by
Proposition 3.1, we have

∞∑
k=1

p
1

2+δ
k <∞

where δ = 2/(2(s − 1) − 1). Thus 2/(2(s − 1) − 1) < s − 2 by (iii), but this
contradicts 2 < s < 5/2. Therefore the bracketing condition fails.
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