ANALYTIC SOLUTIONS OF A FUNCTIONAL DIFFERENTIAL EQUATION WITH STATE DEPENDENT ARGUMENT*

Jian-Guo Si and Sui Sun Cheng

Abstract

This paper is concerned with a functional differential equation $x^{\prime}(z)=x(a z+b x(z))$, where $a \neq 1$ and $b \neq 0$. By constructing a convergent power series solution $y(z)$ of a companion equation of the form $\beta y^{\prime}(\beta z)=y^{\prime}(z)\left[y\left(\beta^{2} z\right)-a y(\beta z)+a\right]$, analytic solutions of the form $\left(y\left(\beta y^{-1}(z)\right)-a z\right) / b$ for the original differential equation are obtained.

Functional differential equations of the form

$$
x^{\prime}(t)=x(t-\sigma(t))
$$

have been studied to some extent by many authors. However, when the function $\sigma(t)$ is state dependent, say, $\sigma(t)=(1-a) t-b x(t)$, relatively little is known. Indeed, to the best of our knowledge, there are only a few reports (see [1, 3-10]) on functional differential equations with state dependent arguments. In this note, we will be concerned with a class of functional differential equation of the form

$$
\begin{equation*}
x^{\prime}(z)=x(a z+b x(z)) . \tag{1}
\end{equation*}
$$

When $a=0$ and $b=1$, equation (1) reduces to the iterative functional differential equation $x^{\prime}(z)=x(x(z))$ which has been investigated by Eder [1] and analytic solutions are shown to exist by means of the Banach fixed point theorem. When $b=0$ and $|a| \leq 1$, equation (1) reduces to the functional differential equation

$$
x^{\prime}(z)=x(a z)
$$

[^0]which has an entire solution of the form (see Elbert [3])
$$
x(z)=\sum_{n=0}^{\infty} \frac{a^{(n(n-1) / 2)}}{n!} \eta z^{n} .
$$

Indeed, if we seek a power series solution of the form

$$
x(z)=\sum_{n=0}^{\infty} b_{n} z^{n},
$$

then substituting it into the above equation leads to

$$
(n+1) b_{n+1}=a^{n} b_{n}, \quad n=0,1,2, \ldots
$$

Taking $b_{0}=\eta$, we see that

$$
b_{n}=\frac{a^{(n(n-1) / 2)}}{n!} \eta
$$

and that

$$
\lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}}=\lim _{s \rightarrow \infty} \frac{a^{n}}{n+1}=0,
$$

as required.
When $a \neq 1$ and $b \neq 0$, by means of the reasoning just used and several more involved ideas, we will be able to construct analytic solutions for our equations in a neighborhood of the complex number $(\beta-a) /(1-a)$, where β satisfies either one of the following conditions:
(H1) $0<|\beta|<1$; or
(H2) $|\beta|=1, \beta$ is not a root of unity, and

$$
\log \frac{1}{\left|\beta^{n}-1\right|} \leq \mu \log n, n=2,3, \ldots
$$

for some positive constant μ.
The technique for obtaining such solutions is as follows. We first seek a formal power series solution for the following initial value problem

$$
\begin{equation*}
y^{\prime}(\beta z)=\frac{1}{\beta} y^{\prime}(z)\left\{y\left(\beta^{2} z\right)-a y(\beta z)+a\right\}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
y(0)=\frac{\beta-a}{1-a} . \tag{3}
\end{equation*}
$$

Then we show that such a power series solution is majorized by a convergent power series. Then we show that

$$
\begin{equation*}
x(z)=\frac{1}{b} y\left(\beta y^{-1}(z)\right)-\frac{a}{b} z \tag{4}
\end{equation*}
$$

is an analytic solution of (1) in a neighborhood of $(\beta-a) /(1-a)$. Finally, we make use of a partial difference equation to show how to explicitly construct such a solution.

We begin with the following preparatory lemma, the proof of which can be found in [2, Chapter 6].

Lemma 1. Assume that (H2) holds. Then there is a positive number δ such that $\left|\beta^{n}-1\right|^{-1}<(2 n)^{\delta}$ for $n=1,2, \ldots$ Furthermore, the sequence $\left\{d_{n}\right\}_{n=1}^{\infty}$ defined by $d_{1}=1$ and

$$
d_{n}=\frac{1}{\left|\beta^{n-1}-1\right|} \max _{\substack{n=n_{1}+\ldots+n_{t}, 0<n_{1} \leq \ldots \leq n_{t}, t \geq 2}}\left\{d_{n_{1}} \ldots, d_{n_{t}}\right\}, n=2,3, \ldots,
$$

will satisfy

$$
d_{n} \leq\left(2^{5 \delta+1}\right)^{n-1} n^{-2 \delta}, n=1,2, \ldots
$$

Lemma 2. Suppose (H1) holds. Then for any nontrivial complex number η, equation (2) has an analytic solution of the form

$$
\begin{equation*}
y(z)=\frac{\beta-a}{1-a}+\eta z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{5}
\end{equation*}
$$

in a neighborhood of the origin, and there exists a positive constant M such that for z in this neighborhood,

$$
|y(z)| \leq\left|\frac{\beta-a}{1-a}\right|+\frac{1}{2 M} .
$$

Proof. We seek a solution of (2) in a power series of the form (5). By defining $b_{0}=(\beta-a) /(1-a)$ and $b_{1}=\eta$ and then substituting (5) into (2), we see that the sequence $\left\{b_{n}\right\}_{n=2}^{\infty}$ is successively determined by the condition

$$
\begin{align*}
& \left(\beta^{n+1}-\beta\right)(n+1) b_{n+1} \\
& =\sum_{k=0}^{n-1}(k+1)\left(\beta^{2(n-k)}-a \beta^{n-k}\right) b_{k+1} b_{n-k}, n=1,2, \ldots \tag{6}
\end{align*}
$$

in a unique manner. Furthermore, since $0 \leq k \leq n-1$,

$$
\begin{equation*}
\left|\frac{\beta^{2(n-k)}-a \beta^{n-k}}{\beta^{n+1}-\beta}\right| \leq \frac{1+|a|}{\left|\beta^{n}-1\right|} \leq M, n \geq 2 \tag{7}
\end{equation*}
$$

for some positive number M, thus if we define a sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ by $B_{1}=|\eta|$ and

$$
B_{n+1}=M \sum_{k=0}^{n-1} B_{k+1} B_{n-k}, n=1,2, \ldots,
$$

then $\left|b_{n}\right| \leq B_{n}$ for $n=1,2, \ldots$. Now if we define

$$
G(z)=\sum_{n=1}^{\infty} B_{n} z^{n}
$$

then

$$
\begin{aligned}
G^{2}(z) & =\sum_{n=2}^{\infty}\left(B_{1} B_{n-1}+B_{2} B_{n-2}+\cdots+B_{n-1} B_{1}\right) z^{n} \\
& =\sum_{n=1}^{\infty}\left(B_{1} B_{n}+B_{2} B_{n-1}+\cdots+B_{n} B_{1}\right) z^{n+1} \\
& =\frac{1}{M} \sum_{n-1}^{\infty} B_{n+1} z^{n+1}=\frac{1}{M} G(z)-\frac{1}{M}|\eta| z .
\end{aligned}
$$

Hence

$$
G(z)=\frac{1}{2 M}\{1 \pm \sqrt{1-4 M|\eta| z}\} .
$$

But since $G(0)=0$, only the negative sign of the square root is possible, so that

$$
G(z)=\frac{1}{2 M}\{1-\sqrt{1-4 M|\eta| z}\} .
$$

It follows that the power series $G(z)$ converges for $|z| \leq 1 /(4 M|\eta|)$, which implies that (5) is also convergent for $|z| \leq 1 /(4 M|\eta|)$.

Next, note that for $|z| \leq 1 /(4 M|\eta|)$,

$$
\frac{1}{G(|z|)}=\frac{2 M}{1-\sqrt{1-4 M|\eta||z|}}=\frac{1+\sqrt{1-4 M|\eta||z|}}{2|\eta||z|} \geq \frac{1}{2|\eta||z|},
$$

or

$$
G(|z|) \leq 2|\eta||z| \leq 2|\eta| \frac{1}{4 M|\eta|}=\frac{1}{2 M} .
$$

Thus

$$
\begin{aligned}
|y(z)| & \leq\left|\frac{\beta-a}{1-a}\right|+\sum_{n=1}^{\infty}\left|b_{n}\right||z|^{n} \leq\left|\frac{\beta-a}{1-a}\right|+\sum_{n=1}^{\infty} B_{n}|z|^{n} \\
& =\left|\frac{\beta-a}{1-a}\right|+G(|z|) \leq\left|\frac{\beta-a}{1-a}\right|+\frac{1}{2 M}
\end{aligned}
$$

as required. The proof is complete.
Next, we consider the case when (H2) holds.
Lemma 3. Suppose (H2) holds. Then equation (2) has an analytic solution of the form

$$
\begin{equation*}
y(z)=\frac{\beta-a}{1-a}+z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{8}
\end{equation*}
$$

in a neighborhood of the origin, and there exists a positive constant δ such that

$$
|y(z)| \leq\left|\frac{\beta-a}{1-a}\right|+\frac{1}{2^{5 \delta+1}} \sum_{n=1}^{\infty} \frac{1}{n^{2 \delta}} .
$$

Proof. As in the proof of Lemma 1, we seek a power series solution of the form (8). Then defining $b_{0}=(\beta-a) /(1-a)$ and $b_{1}=1$, (6) and (7) again hold so that

$$
\begin{align*}
\left|b_{n+1}\right| & \leq \frac{1+|a|}{\left|\beta^{n}-1\right|} \sum_{k=0}^{n-1}\left|b_{k+1}\right|\left|b_{n-k}\right| \\
& =\frac{1+|a|}{\left|\beta^{n}-1\right|} \sum_{\substack{n_{1}+n_{2}=n+1 ; \\
1 \leq n_{1}, n_{2} \leq n}}\left|b_{n_{1}}\right|\left|b_{n_{2}}\right|, n=1,2, \ldots \tag{9}
\end{align*}
$$

Let us now consider the function

$$
G(z)=\frac{1}{2(1+|a|)}\{1-\sqrt{1-4(1+|a|) z}\}
$$

which, in view of the binomial series expansion, can also be written as

$$
G(z)=z+\sum_{n=2}^{\infty} C_{n} z^{n}
$$

for $|z|<1 / 4(1+|a|)$. Since $G(z)$ satisfies the equation

$$
(1+|a|) G^{2}(z)+z=G(z),
$$

thus, by the method of undetermined coefficients, it is not difficult to see that the coefficient sequence $\left\{C_{n}\right\}_{n=2}^{\infty}$ will satisfy $C_{1}=1$ and

$$
\begin{aligned}
C_{n+1} & =(1+|a|) \sum_{k=0}^{n-1} C_{k+1} C_{n-k} \\
& =(1+|a|) \cdot \sum_{\substack{n_{1}+n_{2}=n+1 ; \\
1 \leq n_{1}, n_{2} \leq n}} C_{n_{1}} C_{n_{2}}, n=1,2, \ldots
\end{aligned}
$$

Hence by induction, we easily see from Lemma 1 that

$$
\left|b_{n}\right| \leq C_{n} d_{n}, n=1,2, \ldots,
$$

where the sequence $\left\{d_{n}\right\}_{n=1}^{\infty}$ is defined in Lemma 1.
Since $G(z)$ converges on the open disc $|z|<1 / 4(1+|a|)$, there exists a positive constant T such that

$$
C_{n} \leq T^{n}
$$

for $n=1,2, \ldots$. In view of this and Lemma 1 , we finally see that

$$
\left|b_{n}\right| \leq T^{n} Q^{n-1} n^{-2 \delta}, n=1,2, \ldots,
$$

where $Q=2^{5 \delta+1}$, which shows that the series (5) converges for $|z|<(T Q)^{-1}$.
Finally, when $|z| \leq(T Q)^{-1}$, we have

$$
\begin{aligned}
|y(z)| & \leq\left|\frac{\beta-a}{1-a}\right|+\sum_{n=1}^{\infty}\left|b_{n}\right||z|^{n} \leq\left|\frac{\beta-a}{1-a}\right|+\sum_{n=1}^{\infty} C_{n} d_{n}|z|^{n} \\
& \leq\left|\frac{\beta-a}{1-a}\right|+\sum_{n=1}^{\infty} T^{n} Q^{n-1} n^{-2 \delta}|z|^{n} \\
& \leq\left|\frac{\beta-a}{1-a}\right|+\sum_{n=1}^{\infty} T^{n} Q^{n-1} n^{-2 \delta}(T Q)^{-n} \\
& =\left|\frac{\beta-a}{1-a}\right|+\frac{1}{Q} \sum_{n=1}^{\infty} \frac{1}{n^{2 \delta}},
\end{aligned}
$$

as required. The proof is complete.
We now state and prove our main result in this note.
Theorem. Suppose the complex number β satisfies either (H1) or (H2). Then equation (1) has an analytic solution $x(z)$ of the form (4) in a neighborhood of $(\beta-a) /(1-a)$, where $y(z)$ is an analytic solution of equation (2). Furthermore, when (H1) holds, there is a positive constant M such that

$$
|x(z)| \leq \frac{1}{|b|}\left(\left|\frac{\beta-a}{1-a}\right|+\frac{1}{2 M}\right)+\left|\frac{a}{b}\right||z|
$$

in a neighborhood of $(\beta-a) /(1-a)$; and when (H2) holds, there is a positive number δ such that

$$
|x(z)| \leq \frac{1}{|b|}\left(\left|\frac{\beta-a}{1-a}\right|+\frac{1}{Q} \sum_{n=1}^{\infty} \frac{1}{n^{2 \delta}}\right)+\left|\frac{a}{b}\right||z|, Q=2^{5 \delta+1}
$$

in a neighborhood of $(\beta-a) /(1-a)$.
Proof. In view of Lemmas 2 and 3, we may find a sequence $\left\{b_{n}\right\}_{n=2}^{\infty}$ such that the function $y(z)$ of the form by (8) is an analytic solution of (2) in a neighborhood of the origin. Since $y^{\prime}(0)=1$, the function $y^{-1}(z)$ is analytic in a neighborhood of the point $y(0)=(\beta-a) /(1-a)$. If we now define $x(z)$ by means of (4), then

$$
\begin{aligned}
x^{\prime}(z) & =\frac{1}{b} \cdot \beta y^{\prime}\left(\beta y^{-1}(z)\right) \cdot\left(y^{-1}\right)^{\prime}(z)-\frac{a}{b}=\frac{\beta}{b} y^{\prime}\left(\beta y^{-1}(z)\right) \cdot \frac{1}{y^{\prime}\left(y^{-1}(z)\right)}-\frac{a}{b} \\
& =\frac{1}{b}\left\{y\left(\beta^{2} y^{-1}(z)\right)-a y\left(\beta y^{-1}(z)\right)+a\right\}-\frac{a}{b} \\
& =\frac{1}{b}\left\{y\left(\beta^{2} y^{-1}(z)\right)-a y\left(\beta y^{-1}(z)\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
x(a z+b x(z)) & =x\left(a z+b\left[\frac{1}{b} y\left(\beta y^{-1}(z)\right)-\frac{a}{b} z\right]\right)=x\left(y\left(\beta y^{-1}(z)\right)\right) \\
& =\frac{1}{b} y\left(\beta y^{-1}\left(y\left(\beta y^{-1}(z)\right)\right)\right)-\frac{a}{b} y\left(\beta y^{-1}(z)\right) \\
& =\frac{1}{b}\left\{y\left(\beta^{2} y^{-1}(z)\right)-a y\left(\beta y^{-1}(z)\right)\right\}
\end{aligned}
$$

as required.
Next, if (H1) holds, then in view of Lemma 2,

$$
\begin{aligned}
|x(z)| & =\frac{1}{|b|}\left|y\left(\beta y^{-1}(z)\right)-a z\right| \leq \frac{1}{|b|}\left(\left|y\left(\beta y^{-1}(z)\right)\right|+|a||z|\right) \\
& \leq \frac{1}{|b|}\left(\left|\frac{\beta-a}{1-a}\right|+\frac{1}{2 M}\right)+\left|\frac{a}{b}\right||z|
\end{aligned}
$$

and if (H2) holds, then in view of Lemma 3,

$$
\begin{aligned}
|x(z)| & =\frac{1}{b}\left|y\left(\beta y^{-1}(z)\right)-a z\right| \leq \frac{1}{|b|}\left(\left|y\left(\beta y^{-1}(z)\right)\right|+|a||z|\right) \\
& \leq \frac{1}{|b|}\left(\left|\frac{\beta-a}{1-a}\right|+\frac{1}{Q} \sum_{n=1}^{\infty} \frac{1}{n^{2 \delta}}\right)+\left|\frac{a}{b}\right||z| .
\end{aligned}
$$

The proof is complete.
We now show how to explicitly construct an analytic solution of (1) by means of (4). Since

$$
x(z)=\frac{1}{b} y\left(\beta y^{-1}(z)\right)-\frac{a}{b} z,
$$

thus

$$
x\left(\frac{\beta-a}{1-a}\right)=\frac{1}{b} y(0)-\frac{a}{b} \frac{\beta-a}{1-a}=\frac{1}{b} \frac{\beta-a}{1-a}-\frac{a}{b} \frac{\beta-a}{1-a}=\frac{\beta-a}{b} .
$$

Furthermore,

$$
\begin{aligned}
x^{\prime}\left(\frac{\beta-a}{1-a}\right) & =x\left(a \cdot \frac{\beta-a}{1-a}+b x\left(\frac{\beta-a}{1-a}\right)\right) \\
& =x\left(a \cdot \frac{\beta-a}{1-a}+b \cdot \frac{\beta-a}{b}\right)=x\left(\frac{\beta-a}{1-a}\right)=\frac{\beta-a}{b} .
\end{aligned}
$$

By calculating the derivatives of both sides of (1), we obtain successively

$$
\begin{gathered}
x^{\prime \prime}(z)=x^{\prime}(a z+b x(z))\left(a+b x^{\prime}(z)\right), \\
x^{\prime \prime \prime}(z)=x^{\prime \prime}(a z+b x(z))\left(a+b x^{\prime}(z)\right)^{2}+x^{\prime}(a z+b x(z))\left(b x^{\prime \prime}(z)\right),
\end{gathered}
$$

so that

$$
\begin{aligned}
& x^{\prime \prime}\left(\frac{\beta-a}{1-a}\right)= x^{\prime}\left(a \cdot \frac{\beta-a}{1-a}+b x\left(\frac{\beta-a}{1-a}\right)\right)\left(a+b x^{\prime}\left(\frac{\beta-a}{1-a}\right)\right) \\
&=\beta x^{\prime}\left(\frac{\beta-a}{1-a}\right)=\frac{\beta(\beta-a)}{b}, \\
& x^{\prime \prime \prime}\left(\frac{\beta-a}{1-a}\right)=x^{\prime \prime}\left(\frac{\beta-a}{1-a}\right) \beta^{2}+x^{\prime}\left(\frac{\beta-a}{1-a}\right) \cdot b x^{\prime \prime}\left(\frac{\beta-a}{1-a}\right) \\
&=\frac{1}{b}\left[\beta(\beta-a)\left(\beta^{2}+\beta-a\right)\right] .
\end{aligned}
$$

It seems from the above calculations that the higher derivatives $x^{(m)}(z)$ at $z=\xi \equiv(\beta-a) /(1-a)$ can be determined uniquely in similar manners. To see this, let us denote the derivative $\left(x^{(i)}(a z+b x(z))\right)^{(j)}$ at $z=\xi$ by $\lambda_{i j}$, where $i, j \geq 0$. Note that the two derivatives $x^{(k)}(z)$ and $x^{(k)}(a z+b x(z))$ are equal at the point $z=\xi$ since $a \xi+b x(\xi)=\xi$. In other words,

$$
x^{(k)}(\xi)=\lambda_{k 0} .
$$

Furthermore, in view of (1), we see that $x^{(k+1)}(z)=(x(a z+b x(z)))^{(k)}$ which implies

$$
\lambda_{k+1,0}=\lambda_{0, k} .
$$

Finally, since

$$
\begin{aligned}
\left(x^{(i)}(a z+b x(z))\right)^{(j+1)} & =\left(x^{(i+1)}(a z+b x(z)) \cdot\left(a+b x^{\prime}(z)\right)\right)^{(j)} \\
& =\sum_{k=0}^{j}\binom{j}{k}\left(a+b x^{\prime}(z)\right)^{(k)}\left(x^{(i+1)}(a z+b x(z))\right)^{(j-k)},
\end{aligned}
$$

we see also that

$$
\begin{aligned}
\lambda_{i, j+1} & =\left.\sum_{k=0}^{j}\binom{j}{k} \lambda_{i+1, j-k} \cdot\left(a+b x^{\prime}(z)\right)^{(k)}\right|_{z=\xi} \\
& =\beta \lambda_{i+1, j}+b \sum_{k=1}^{j}\binom{j}{k} \lambda_{i+1, j-k} \lambda_{0, k}, i=0,1, \ldots ; j=0,1, \ldots,
\end{aligned}
$$

where we have used the fact that $\lambda_{k+1,0}=\lambda_{0, k}$ in obtaining the last equality. Clearly, if we have obtained the derivatives $x^{(0)}(\xi)=\lambda_{00}, \ldots, x^{(m)}(\xi)=$ $\lambda_{m 0}=\lambda_{0, m-1}$, then by means of the above partial difference equation, we can successively calculate

$$
\lambda_{m-1,1}, \lambda_{m-2,1}, \lambda_{m-2,2}, \ldots, \lambda_{11}, \lambda_{12}, \ldots, \lambda_{1, m-1}, \lambda_{0 m}
$$

in a unique manner. In particular, $\lambda_{0 m}=\lambda_{m+1,0}$ is the desired derivative $x^{(m+1)}(\xi)$.

This shows that

$$
\begin{aligned}
x(z) & =\frac{\beta-a}{b}+\frac{1}{b}(\beta-a)\left(z-\frac{\beta-a}{1-a}\right)+\frac{\beta(\beta-a)}{2!b}\left(z-\frac{\beta-a}{1-a}\right)^{2} \\
& +\frac{\beta(\beta-a)\left(\beta^{2}+\beta-a\right)}{3!b}\left(z-\frac{\beta-a}{1-a}\right)^{3}+\sum_{i=4}^{\infty} \frac{\lambda_{i, 0}}{i!}\left(z-\frac{\beta-a}{1-a}\right)^{i} .
\end{aligned}
$$

References

1. E. Eder, The functional differential equation $x^{\prime}(t)=x(x(t))$, J. Differential Equations 54 (1984), 390-400.
2. M. Kuczma, Functional Equations in a Single Variable, Polish Scientific Publishers, Warszawa, 1968.
3. A. Elbert, Asymptotic behaviour of the analytic solution of the differential equation $y^{\prime}(t)+y(q t)=0$ as $q \rightarrow 1^{-}$, J. Comput. Appl. Math. 41 (1992), 5-22.
4. Wang Ke, On the equation $x^{\prime}(t)=f(x(x(t)))$, Funkcial. Ekvac. 33 (1990), 405-425.
5. H. Z. Wu, On the existence and asymptotic behavior of strong solutions of equation $x^{\prime}(t)=f(x(x(t)))$, Ann. Differential Equations, 9 (1993), 336-351.
6. B. Shi and Z. X. Li, Existence of solutions and bifurcation of a class of firstorder functional differential equations, Acta Math. Appl. Sinica 18 (1995), 83-89.
7. B. Shi, Z. C. Wang and Z. X. Li, Asymptotic behavior of the solutions of a class of new type of functional differential equations, J. Hunan University 23 (2) (1996), 1-5.
8. H. Z. Wu, A class of functional differential equations with deviating arguments depending on the state, Acta Math. Sinica 38 (6) (1995), 803-809.
9. B. H. Stephen, On the existence of periodic solutions of $z^{\prime}(t)=-a z(t-r+$ $\mu k(t, z(t)))+F(t)$, J. Differential Equations 6 (1969), 408-419.
10. K. L. Cooke, Functional differential systems: some models and perturbation problems, Inter. Symp. Diff. Eqs. Dynamical Systems, Puerto Rico, 1965.

Jian-Guo Si
Department of Mathematics, Binzhou Normal College
Binzhou, Shandong 256604, P. R. China
Sui Sun Cheng
Department of Mathematics, Tsing Hua University
Hsinchu, Taiwan

[^0]: Received March 1, 1997; revised September 25, 1997. Communicated by S.-B. Hsu.
 1991 Mathematics Subject Classification: 30D05, 34K25.
 Key words and phrases: Functional differential equation, analytic solution.

 * Presented at the International Mathematics Conference '96, National Changhua University of Education, December 13-16, 1996. The Conference was sponsored by the National Science Council and the Math. Soc. of the R.O.C.

