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NONLINEAR MEAN ERGODIC THEOREMS∗

Isao Miyadera

Abstract. Let C be a nonempty subset (not necessarily closed and
convex) of a Hilbert space, and T : C → C be a nonlinear mapping (not
necessarily asymptotically nonexpansive). In this paper, we study the
convergence of (1/n)

∑n−1
i=0 T

ix(x ∈ C) as n→∞.

Introduction

Let X be a Banach space, C a subset of X and T : C → C be a nonlinear
mapping. We are concerned with the convergence of (1/n)

∑n−1
i=0 T

ix(x ∈ C)
as n→∞). In order to investigate such problem it is usually assumed that C
is closed and convex and T is nonexpansive on C, i.e., T satisfies

‖Tu− Tv‖ ≤ ‖u− v‖ for u, v ∈ C.(0.1)

Under such conditions on C and T , Baillon [1] established the following non-
linear ergodic theorem: If X is a Hilbert space and T has a fixed point, then
for every x ∈ C, {Tnx} is weakly almost-convergent to a fixed point y of T ,
i.e., w - limn→∞(1/n)

∑n−1
i=0 T

i+kx = y uniformly in k ≥ 0, and Ty = y. This
result has been extended to the case that X is a uniformly convex Banach
space with Fréchet differentiable norm by Bruck [6] and Reich [14] and a uni-
formly convex Banach space satisfying the Opial condition by Hirano [8]. On
the other hand, Baillon [2] also proved the following strong ergodic theorem:
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If T is nonexpansive on a closed convex subset C of a Hilbert space and it is
odd, i.e.,

− C = C and T (−u) = −Tu for u ∈ C,(0.2)

then for every x ∈ C, {Tnx} is strongly almost-convergent to a fixed point of
T . Brezis and Browder [4] showed that the Baillon result remains true even if
the oddness of T is weakened as follows:

0 ∈ C and ‖Tu+ Tv‖2 ≤ ‖u+ v‖2 + c[‖u‖2 − ‖Tu‖2

+‖v‖2 − ‖Tv‖2] for u, v ∈ C,
(0.3)

where c is a nonnegative constant. We see that if T is a nonexpansive mapping
on a closed convex subset C of a Hilbert space and (0.3) is satisfied, then T
satisfies

for u, v ∈ C, lim
n→∞

‖Tn+iu− Tnv‖ exists uniformly in i ≥ 0.(0.4)

Bruck [5] proved that if C is a closed convex subset of a Hilbert space X and
T : C → C is a nonexpansive mapping satisfying (0.4) and has a fixed point
then for every x ∈ C, {Tnx} is strongly almost-convergent to a fixed point of
T . Later, Kobayasi and Miyadera [10] showed that the Bruck result remains
true even if X is a uniformly convex Banach space. Hirano and Takahashi [9]
and Oka [11, 12] showed that the nonexpansivity of T in the above-mentioned
ergodic theorems can be weakened as follows:

‖T ku− T kv‖ ≤ ak‖u− v‖ for u, v ∈ C and k ≥ 0,(0.5)

where ak are nonnegative constants with limk→∞ ak = 1. A mapping T sat-
isfying (0.5) is said to be asymptotically nonexpansive (in the usual sense). If
T : C → C is asymptotically nonexpansive and odd then it satisfies

‖T ku+ T kv‖ ≤ ak‖u+ v‖ for u, v ∈ C and k ≥ 0,(0.6)

where ak are nonnegative constants with limk→∞ ak = 1.
Recently, Wittmann [15] proved the following interesting theorem: If C

is a subset of a Hilbert space and T : C → C satisfies condition (0.6), then
{(1/n)

∑n−1
i=0 T

ix} is strongly convergent for every x ∈ C. It should be noted
here that the closedness and convexity of C and the asymptotic nonexpansivity
of T are not assumed.

In Section 1 of this paper we first show that condition (0.6) in the Wittman
theorem can be replaced by a weaker condition (a1). (See Theorem 1.1.) The
condition (0.3) due to Brezis and Browder also implies condition (a1). It is
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proved that if C is a subset of a Hilbert space and T : C → C satisfies con-
dition (a1) then for every x ∈ C, {Tnx} is strongly almost-convergent to its
asymptotic center. (See Theorem 1.1.) We shall also establish strong ergodic
theorems for mappings satisfying condition (a2) of asymptotically nonexpan-
sive type or condition (a3) of asymptotically noncontractive type. (See The-
orems 1.2 and 1.3.) In Section 2 we deal with weak ergodic theorems, and
we prove that if C is a subset of a Hilbert space, and T : C → C satisfies
condition (a2) and has a fixed point, then for every x ∈ C, {Tnx} is weakly
almost-convergent to its asymptotic center. (See Theorem 2.1.) The key to
our ergodic theorems is Propositions 1.4 and 2.3. It is interesting that these
propositions can be extended to Lp spaces, where p is an integer with p ≥ 2.
The results are stated in Section 5. Section 3 is devoted to applications to the
space L4, and examples are given in Section 4.

1. Strong Ergodic Theorems

Throughout this section, let H be a real Hilbert space with inner product
(·, ·) and norm ‖ · ‖, C a subset of H and let T : C → C be a mapping. It
should be noted that the closedness and convexity of C are not assumed here.
The set of fixed points of T will be denoted by F (T ). The main results in this
section are stated as follows:

Theorem 1.1 Suppose that for every bounded set B ⊂ C and integer
k ≥ 0 there exists a δk(B) ≥ 0 with limk→∞ δk(B) = 0 such that

‖T ku+ T kv‖p ≤ ak‖u+ v‖p + c[ak‖u‖p

−‖T ku‖p + ak‖v‖p − ‖T kv‖p] + δk(B)
(a1)

for u, v ∈ B, where ak, c and p are nonnegative constants independent of B
such that limk→∞ ak = 1 and p ≥ 1. Then for every x ∈ C, {Tnx} is strongly
almost-convergent to its asymptotic center y, i.e., limn→∞(1/n)

∑n−1
i=0 T

i+kx =
y uniformly in k ≥ 0.

In particular we have

Theorem 1.1′. If T satisfies

‖T ku+ T kv‖p ≤ ak‖u+ v‖p + c[ak‖u‖p − ‖T ku‖p + ak‖v‖p − ‖T kv‖p](a′1)

for u, v ∈ C and k ≥ 0, where ak, c and p are the same constants as in
condition (a1), then for every x ∈ C, {Tnx} is strongly almost-convergent to
its asymptotic center.
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Theorem 1.2. Suppose that for every bounded set B ⊂ C and integer
k ≥ 0 there exists a δk(B) ≥ 0 with limk→∞ δk(B) = 0 such that

‖T ku− T kv‖p ≤ ak‖u− v‖p + c[ak‖u‖p

−‖T ku‖p + ak‖v‖p − ‖T kv‖p] + δk(B)
(a2)

for u, v ∈ B, where ak, c and p are the same constants as in condition (a1). If
either F (T ) 6= ∅ or c > 0 in (a2), and if x ∈ C satisfies

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tm+ix− Tmx‖2 − ‖Tn+ix− Tnx‖2] ≤ 0,(1.1)

then {Tnx} is strongly almost-convergent to its asymptotic center.

In particular we have

Theorem 1.2′. Suppose that T satisfies

‖T ku− T kv‖p ≤ ak‖u− v‖p + c[ak‖u‖p − ‖T ku‖p + ak‖v‖p − ‖T kv‖p](a′2)

for u, v ∈ C and k ≥ 0, where ak, c and p are the same constants as in
condition (a1). If either F (T ) 6= ∅ or c ≥ 0 in (a′2), and if x ∈ C satisfies
(1.1), then {Tnx} is strongly almost-convergent to its asymptotic center.

Theorem 1.3. Suppose that T satisfies

‖u− v‖p ≤ ak‖T ku− T kv‖p + c[ak‖T ku‖p − ‖u‖p + ak‖T kv‖ − ‖v‖p](a3)

for u, v ∈ C and k ≥ 0, where ak, c and p are the same constants as in
condition (a1).

(I) If x ∈ C and {‖Tnx‖} is convergent, then {Tnx} is strongly almost-
convergent to its asymptotic center.

(II) If either F (T ) 6= ∅ or c > 0 in (a3), then for every x ∈ C, either
limn→∞ ‖Tnx‖ =∞ or {Tnx} is strongly almost-convergent to its asymptotic
center.

Remark. Let {xn} be a bounded sequence in H. It is known that there
exists a unique element y ∈ H such that limn→∞‖xn − y‖ < limn→∞‖xn − z‖
for every z ∈ H\{y}. The element y is called the asymptotic center of {xn}.

The Wittmann condition (0.6) is the case of (a1) with c = 0 and δk(B) ≡ 0
(i.e., the case of (a′1) with c = 0). There exists a mapping T : C → C such
that C is closed, convex and T satisfies condition (a′1) but does not (0.6). (See
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Example 4.3 (ii).) Condition (0.3) due to Brezis and Browder also implies (a′1)
with ak ≡ 1 and p = 2. Therefore, Theorem 1.1 extends [15, Theorem 2.2] and
[4, Theorem 2]. We note that the limit y in Theorem 1.1 is not necessarily a
fixed point of T even if C is closed and convex. (See [15, Example 3.2].) Con-
dition (a2) in Theorem 1.2 covers the notion of asymptotical nonexpansivity
for mappings. Indeed, by the definition, a mappimg T : C → C is asymptoti-
cally nonexpansive (in the usual sense) if and only if it satisfies condition (a′2)
with c = 0. It is also seen that if T : C → C is asymptotically nonexpansive
in the intermediate sense (see [7] and [8]), then it satisfies condition (a2) with
ak ≡ 1, p = 1 and c = 0. Moreover, (1.1) is satisfied if limn→∞ ‖Tn+ix−Tnx‖2
exists uniformly in i ≥ 0. So, Theorem 1.2 improves on [5, Theorem 2.1]. (We
remark here that if C is closed and convex, T : C → C is asymptotically
nonexpansive and F (T ) 6= ∅, then for every x ∈ C the asymptotic center of
{Tnx} is a fixed point of T .) Theorem 1.3 is a strong ergodic theorem for
mappings T satisfying condition (a3) of asymptotically noncontractive type.

It is interesting that the above-mentioned theorems can be proved in a
unified way. In fact, the proofs of Theorems 1.1, 1.2 and 1.3 are based on the
following

Proposition 1.4. Let {xn} be a sequence in H. The following conditions
(i), (ii) and (iii) are mutually equivalent:

( i ) limm→∞limn→∞ supi≥0[(xn+i, xn)− (xm+i, xm)] ≤ 0;

(ii) limm→∞limn→∞ supi≥0[‖xn+i + xn‖2 − ‖xm+i + xm‖2] ≤ 0;

(iii) limm→∞limn→∞ supi≥0[‖xm+i−xm‖2−‖xn+i−xn‖2] ≤ 0 and {‖xn‖} is
convergent.

Moreover, if {xn} satisfies the equivalent conditions above, then it is strongly
almost-convergent to its asymptotic center.

Proof. The equivalence of (i), (ii) and (iii) follows easily from the identity
‖xn+i ± xn‖2 = ‖xn+i‖2 ± 2(xn+i, xn) + ‖xn‖2 and the convergence of ‖xn‖.
By virtue of [3, Lemma 3], (i) implies that {xn} is strongly almost-convergent
to its asymptotic center. 2

Remarks. 1) Let {xn} be a sequence in a normed space with norm ‖ · ‖.
We see that if {xn} satisfies

lim
k,m,n→∞

(‖xk+m + xk+n‖2 − ‖xm + xn‖2) ≤ 0,(1.2)
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then it satisfies (ii) in Proposition 1.4. 2) Wittmann [15, Theorem 2.3] has
proved that if a sequence {xn} in H satisfies

‖xk+m+xk+n‖2 ≤ ‖xm+xn‖2 + δk for k,m, n ≥ 0 with lim
k→∞

δk = 0,(1.3)

then {(1/n)
∑n−1
i=0 xi} is strongly convergent. Clearly, (1.3) implies (1.2). But

the converse does not hold. For example, consider the sequence {1−1/(n+1)}
in R1 = (−∞,∞). So, Proposition 1.4 improves on [15, Theorem 2.3].

As a direct cosequence of Proposition 1.4 we have

Proposition 1.5. Let x ∈ C and f ∈ H.

(I) If limm→∞limn→∞ supi≥0[‖Tn+ix+Tnx+2f‖2−‖Tm+ix+Tmx+2f‖2] ≤
0, then {Tnx} is strongly almost-convergent to its asymptotic center.

(II) If limm→∞limn→∞ supi≥0[‖Tm+ix−Tmx‖2−‖Tn+ix−Tnx‖2] ≤ 0, and
{‖Tnx− f‖} is convergent, then {Tnx} is strongly almost-convergent to
its asymptotic center.

Proof. (I) Setting xn = Tnx + f for n ≥ 0, {xn} satisfies condition (ii)
in Proposition 1.4. Therefore {Tnx + f} is strongly almost-convergent to its
asymptotic center z, which implies that {Tnx} is strongly almost-convergent to
z−f and z−f is the asymptotic center of {Tnx}. (II) Setting xn = Tnx−f for
n ≥ 0, {xn} satisfies condition (iii) in Proposition 1.4. Therefore {Tnx − f}
is strongly almost-convergent to its asymptotic center z, which means that
{Tnx} is strongly almost-convergent to its asymptotic center z + f . 2

Proof of Theorem 1.1. Let x ∈ C. By condition (a1) with B = {x} we
have ‖T kx‖p ≤ ak‖x‖p + δk({x})/(2p + 2c) for k ≥ 0. Therefore {Tnx;n ≥ 0}
is bounded. Now, set B = {Tnx;n ≥ 0}. By virtue of condition (a1) with
u = v = Tnx, we obtain ‖T k+nx‖p ≤ ak‖Tnx‖p+δk(B)/(2p+2C) for k, n ≥ 0,
which implies limk→∞‖T kx‖p ≤ ‖Tnx‖p for n ≥ 0. So that

{‖Tnx‖} is convergent.(1.4)

Let n > m ≥ 0. By condition (a1) with k = n−m,u = Tm+ix and v = Tmx
we obtain

‖Tn+ix+ Tnx‖p ≤ ‖Tm+ix+ Tmx‖p + [(2M)p + 2cMp]|an−m − 1|

+c(‖Tm+ix‖p − ‖Tn+ix‖p + ‖Tmx‖p − ‖Tnx‖p) + δn−m(B)

for i ≥ 0, where M = sup`≥0 ‖T `x‖. Combining this with (1.4) we obtain

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tn+ix+ Tnx‖p − ‖Tm+ix+ Tmx‖p] ≤ 0,
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which implies

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tn+ix+ Tnx‖2 − ‖Tm+ix+ Tmx‖2] ≤ 0.

Therefore the theorem follows from Proposition 1.5 (I). 2

Proof of Theorem 1.2. We first consider the case when c = 0 in condition
(a2), i.e., for every bounded set B ⊂ C and integer k ≥ 0 there exists a
δk(B) ≥ 0 with limk→∞ δk(B) = 0 such that

‖T ku− T kv‖p ≤ ak‖u− v‖p + δk(B)(1.5)

for u, v ∈ B, where limk→∞ ak = 1 and p ≥ 1. Let x ∈ C and take an
f ∈ F (T ). Considering the bounded set B0 = {x, f}, we have ‖T kx − f‖p ≤
ak‖x − f‖p + δk(B0) for k ≥ 0, which shows that {Tnx;n ≥ 0} is a bounded
set. Now, set B = {Tnx;n ≥ 0} ∪ {f}. By (1.5) we have

‖T k+nx− f‖p ≤ ak‖Tnx− f‖p + δk(B) for k, n ≥ 0.

Letting k → ∞, limk→∞‖T kx− f‖ ≤ ‖Tnx− f‖ for n ≥ 0, which shows that
{‖Tnx−f‖} is convergent. By virtue of Proposition 1.5 (II), {Tnx} is strongly
almost-convergent to its asymptotic center.

We next consider the case when c > 0 in condition (a2). Let x ∈ C.
By (a2) with B = {x} we have ‖T kx‖p ≤ ak‖x‖p + δk({x})/2c for k ≥ 0.
Therefore {Tnx;n ≥ 0} is a bounded set. Set B = {Tnx;n ≥ 0}. By (a2)
with u = v = Tnx we have ‖T k+nx‖p ≤ ak‖Tnx‖p + δk(B)/2c for k, n ≥ 0.
This shows that {‖Tnx‖} is convergent. By virtue of Proposition 1.5 (II)
again, {Tnx} is strongly almost-convergent to its asymptotic center. 2

Proof of Theorem 1.3. (I) Let n > m ≥ 0. Using condition (a3) with
u = Tm+ix, v = Tmx and k = n−m we have

‖Tm+ix− Tmx‖p ≤ ‖Tn+ix− Tnx‖p + [(2M)p + 2cMp]|an−m − 1|

+c[‖Tn+ix‖p − ‖Tm+ix‖p + ‖Tnx‖p − ‖Tmx‖p] for i ≥ 0,

where M = sup`≥0 ‖T `x‖. Combining this with the convergence of {‖Tnx‖}
we obtain limm→∞limn→∞ supi≥0[‖Tm+ix − Tmx‖p − ‖Tn+ix − Tnx‖p] ≤ 0,
which implies

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tm+ix− Tmx‖2 − ‖Tn+ix− Tnx‖2] ≤ 0.

It follows from Proposition 1.5 (II) that {Tnx} is strongly almost-convergent
to its asymptotic center.
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(II) Let x ∈ C and let limn→∞‖Tnx‖ < ∞. We first consider the case
when c = 0 in condition (a3), i.e., ‖u − v‖p ≤ ak‖T ku − T kv‖p for u, v ∈ C
and k ≥ 0. Take an f ∈ F (T ). Using the above inequality with u = Tnx and
v = f , we have

‖Tnx− f‖p ≤ ak‖T k+nx− f‖p for k, n ≥ 0.

Noting limk→∞‖T kx− f‖ <∞, we see that {‖Tnx− f‖} is convergent. Since

‖Tm+ix− Tmx‖p ≤ an−m‖Tn+ix− Tnx‖p

≤ ‖Tn+ix− Tnx‖p + |an−m − 1|(2M)p

for n > m ≥ 0 and i ≥ 0, where M = sup`≥0 ‖T `x‖, we have
limm→∞limn→∞ supi≥0[‖Tm+ix− Tmx‖p − ‖Tn+ix− Tnx‖p] ≤ 0 and hence

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tm+ix− Tmx‖2 − ‖Tn+ix− Tnx‖2] ≤ 0.

Therefore by Proposition 1.5 (II), {Tnx} is strongly almost-convergent to its
asymptotic center.

We next consider the case when c > 0 in condition (a3). By condition
(a3) with u = v = Tnx we have ‖Tnx‖p ≤ ak‖T k+nx‖ for k, n ≥ 0, which
implies that {‖Tnx‖} is convergent. So by part (I), {Tnx} is strongly almost-
convergent to its asymptotic center. 2

2. Weak Ergodic Theorems

Let H,C, T and F (T ) be as in Section 1. The main results in this section
are the follwing theorems.

Theorem 2.1. Suppose that for every bounded set B ⊂ C and integer
k ≥ 0 there exists a δk(B) ≥ 0 with limk→∞ δk(B) = 0 such that

‖T ku− T kv‖p ≤ak‖u− v‖p + c[ak‖u‖p

−‖T ku‖p + ak‖v‖p − ‖T kv‖p] + δk(B)
(a2)

for u, v ∈ B, where ak, c and p are the same constants as in condition (a1) in
Theorem 1.1. If either F (T ) 6= ∅ or c > 0 in (a2), then for every x ∈ C {Tnx}
is weakly almost-convergent to its asymptotic center.

In particular we have

Theorem 2.1′. Suppose that T satisfies condition (a′2) in Theorem 1.2′.
If either F (T ) 6= ∅ or c > 0 in (a′2), then for every x ⊂ C {Tnx} is weakly
almost-convergent to its asymptotic center.
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Remarks. 1) Theorem 2.1′ (and then Theorem 2.1) extends a main result
in [9] because if T is asymptotically nonexpansive (in the usual sense) then
it satisfies condition (a′2) with c = 0. As shown in Section 4 there exists a
mapping T : C → C such that C is closed convex, T satisfies condition (a′2)
and F (T ) 6= ∅ but it is not asymptotically nonexpansive (in the usual sense).
(See Example 4.3.) 2) It follows from Theorem 2.1 that if T : C → C is
asymptotically nonexpansive in the intermediate sense and F (T ) 6= ∅, then
for every x ∈ C, {Tnx} is weakly almost-convergent to its asymptotic center.

Next, corresponding to Theorem 1.3 we have

Theorem 2.2. Suppose that T satisfies

‖u+ v‖p ≤ ak‖T ku+ T kv‖p

+c[ak‖T ku‖p − ‖u‖p + ak‖T kv‖p − ‖v‖p]
(a4)

for u, v ∈ C and k ≥ 0, where ak, c and p are the same constants as in condition
(a1) in Theorem 1.1. Then for every x ∈ C, either limn→∞ ‖Tnx‖ = ∞ or
{‖Tnx‖} is weakly almost-convergent to its asymptotic center.

The proofs of Theorems 2.1 and 2.2 are based on the following propositions.

Proposition 2.3. Let {xn} be a sequence in H and let {‖xn‖} be conver-
gent. The following (i), (ii) and (iii) are mutually equivalent:

( i ) limm→∞limn→∞limi→∞[(xm+i, xm)− (xn+i, xn)] ≤ 0;

(ii) limm→∞limn→∞limi→∞[‖xm+i + xm‖2 − ‖xn+i + xn‖2] ≤ 0;

(iii) limm→∞limn→∞limi→∞[‖xn+i − xn‖2 − ‖xm+i − xm‖2] ≤ 0.

Moreover, if {xn} satisfies the equivalent conditions above and {‖xn‖} is
convergent then {xn} is weakly almost-convergent to its asymptotic center.

Proof. The equivalence of (i), (ii) and (iii) is a direct consequence of the
identity ‖xn+i± xn‖2 = ‖xn+i‖2± 2(xn+i, xn) + ‖xn‖2 and the convergence of
‖xn‖. By [5, Lemma 1.3], (i) and the convergence of ‖xn‖ imply that {xn} is
weakly almost-convergent to its asymptotic center. 2

Proposition 2.4. Suppose that T satisfies condition (a2). If x ∈ C and
{‖Tnx‖} is convergent, then we have

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tn+ix− Tnx‖2 − ‖Tm+ix− Tmx‖2] ≤ 0.(2.1)

441



442 Isao Miyadera

Proof. Set B = {Tnx;n ≥ 0}. By condition (a2) we have

‖Tn+ix− Tnx‖p ≤ an−m‖Tm+ix− Tmx‖p + c[an−m‖Tm+ix‖p

−‖Tn+ix‖p + an−m‖Tmx‖p − ‖Tnx‖p] + δn−m(B)

≤ ‖Tm+ix− Tmx‖p + |an−m − 1|[(2M)p + 2cMp]

+c[‖Tm+ix‖p − ‖Tn+ix‖p + ‖Tmx‖p − ‖Tnx‖p]

+δn−m(B)

for n > m ≥ 0 and i ≥ 0, where M = sup`≥0 ‖T `x‖. Combining this with the
convergence of ‖Tnx‖ we get

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tn+ix− Tnx‖p − ‖Tm+ix− Tmx‖p] ≤ 0,

which implies (2.1). 2

Proof of Theorem 2.1. We first consider the case when c = 0 in condition
(a2). Let x ∈ C and take an f ∈ F (T ). Similarly as in the proof of Theorem
1.2, we see that {‖Tnx − f‖} is convergent. Set B = {Tnx;n ≥ 0} and use
(1.5) with u = Tm+ix, v = Tmx and k = n −m. We see that if n > m ≥ 0
then ‖Tn+ix−Tnx‖p ≤ an−m‖Tm+ix−Tmx‖p+δn−m(B) for i ≥ 0. Therefore
we have

lim
n→∞

sup
i≥0

[‖Tn+ix− Tnx‖p − ‖Tm+ix− Tmx‖p] ≤ 0. for m ≥ 0,

which implies (2.1) and a fortiori

lim
m→∞

lim
n→∞

lim
i→∞

[‖Tn+ix− Tnx‖2 − ‖Tm+ix− Tmx‖2] ≤ 0.(2.2)

Thus xn ≡ Tnx−f satisfy condition (iii) in Proposition 2.3 and hence {Tnx−
f} is weakly almost-convergent to its asymptotic center z. So that {Tnx} is
weakly almost-convergent to its asymptotic center z + f .

We next consider the case when c > 0 in condition (a2). Let x ∈ C. Simi-
larly as in the proof of Theorem 1.2, it is shown that {‖Tnx‖} is convergent.
So, by Proposition 2.4 we have (2.1) and a fortiori (2.2). Using Proposition
2.3 with xn = Tnx we see that {Tnx} is weakly almost-convergent to its
asymptotic center. 2

Proof of Theorem 2.2. Let x ∈ C and suppose limn→∞‖Tnx‖ < ∞. By
condition (a4) with u = v = Tnx we have ‖Tnx‖p ≤ ak‖T k+nx‖p for k, n ≥ 0,



Nonlinear Mean Ergodic Theorems 443

which implies that {‖Tnx‖} is convergent. Next, similarly as in the proof of
Theorem 1.3 (I) we have limm→∞limn→∞ supi≥0[‖Tm+ix+Tmx‖2−‖Tn+ix+
Tnx‖2] ≤ 0 and a fortiori

lim
m→∞

lim
n→∞

lim
i→∞

[‖Tm+ix+ Tmx‖2 − ‖Tn+ix+ Tnx‖2] ≤ 0.

Therefore it follows from Proposition 2.3 that {Tnx} is weakly almost-
convergent to its asymptotic center. 2

3. Applications

Our argument in the preceding sections can be applied to the real space
L4(Ω) with norm ‖ · ‖, where Ω is a measure space with measure µ.

We start with the following

Proposition 3.1. If {xn} is a sequence in L4(Ω) satisfying

lim
m→∞

lim
n→∞

sup
i≥0

[‖xn+i + xn‖4 − ‖xm+i + xm‖4] ≤ 0(3.1)

and

lim
m→∞

lim
n→∞

sup
i≥0

[‖xn+i − xn‖4 − ‖xm+i − xm‖4] ≤ 0,(3.2)

then {x2
n} is strongly almost-convergent to its asymptotic center in L2(Ω).

Proof. We see from (3.1) that {‖xn‖4} is convergent. Together with (3.1),
(3.2) and [15, Lemma 3.3] we obtain

lim
m→∞

lim
n→∞

sup
i≥0

[‖x2
n+i + x2

n‖22 − ‖x2
m+i + x2

m‖22] ≤ 0,

where ‖ · ‖2 denotes the norm in the space L2(Ω). So the conclusion follows
from Proposition 1.4. 2

Theorem 3.2. Let C be a subset of L4(Ω) and T : C → C satisfy

‖T ku+ T kv‖4 ≤ ak‖u+ v‖4 + c[ak‖u‖4

−‖T ku‖4 + ak‖v‖4 − ‖T kv‖4]
(3.3)

and

‖T ku− T kv‖4 ≤ ak‖u− v‖4 + b[ak‖u‖4

−‖T ku‖4 + ak‖v‖4 − ‖T kv‖4]
(3.4)
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for u, v ∈ C and k ≥ 0, where ak, c and b are constants such that limk→∞ ak =
1, c ≥ 0 and b ≥ 0. Then for every x ∈ C, {(Tnx)2} is strongly almost-
convergent to its asymptotic center in L2(Ω).

Proof. Let x ∈ C. It follows from (3.3) that {‖Tnx‖} is convergent. Let
n > m ≥ 0. Putting u = Tm+ix, v = Tmx and k = n −m in (3.3) we have
‖Tn+ix + Tnx‖4 ≤ ‖Tm+ix + Tmx‖4 + c[‖Tm+ix‖4 − ‖Tn+ix‖4 + ‖Tmx‖4 −
‖Tnx‖4] + [(2M)4 + 2cM4]|an−m − 1| for i ≥ 0. Combining this with the
convergence of {‖Tnx‖} we obtain

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tn+ix+ Tnx‖4 − ‖Tm+ix+ Tmx‖4] ≤ 0.

Similarly we see from (3.4) that

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tn+ix− Tnx‖4 − ‖Tm+ix− Tmx‖4] ≤ 0.

So by Proposition 3.1 we have the desired conclusion. 2

The results above improve on [15, Corollaries 3.4 and 3.5].

Proposition 3.3. If {xn} is a bounded sequence in L4(Ω) satisfying

lim
m→∞

lim
n→∞

sup
i≥0

[‖xm+i + xm‖4 − ‖xn+i + xn‖4] ≤ 0(3.5)

and

lim
m→∞

lim
n→∞

sup
i≥0

[‖xm+i − xm‖4 − ‖xn+i − xn‖4] ≤ 0,(3.6)

then {x2
n} is weakly almost-convergent to its asymptotic center in L2(Ω).

Proof. The boundedness of {xn} and (3.5) imply that {‖xn‖} is convergent.
Combining this with (3.5), (3.6) and [15, Lemma 3.3] we obtain

lim
m→∞

lim
n→∞

sup
i≥0

[‖x2
m+i + x2

m‖22 − ‖x2
n+i + x2

n‖22] ≤ 0.

Since {‖x2
n‖22} is convergent, the conclusion follows from Proposition 2.3. 2

Theorem 3.4. Let C be a subset of L4(Ω) and T : C → C satisfy

‖u+ v‖4 ≤ ak‖T ku+ T kv‖4

+b[ak‖T ku‖4 − ‖u‖4 + ak‖T kv‖4 − ‖v‖4]
(3.7)
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and

‖u− v‖4 ≤ ak‖T ku− T kv‖4

+c[ak‖T ku‖4 − ‖u‖4 + ak‖T kv‖4 − ‖v‖4]
(3.8)

for u, v ∈ C and k ≥ 0, where ak, b and c are the same constants as in Theorem
3.2. Then for every x ∈ C, either limn→∞ ‖Tnx‖ =∞ or {(Tnx)2} is weakly
almost-convergent to its asymptotic center in L2(Ω).

Proof. Let x ∈ C and limn→∞‖Tnx‖ < ∞. Taking u = Tm+ix, v = Tmx
and k = n−m in (3.7) we have

‖Tm+ix+ Tmx‖4 ≤an−m‖Tn+ix+ Tnx‖4 + b[an−m‖Tn+ix‖4

−‖Tm+ix‖4 + an−m‖Tnx‖4 − ‖Tmx‖4]

for n > m ≥ 0 and i ≥ 0.

(3.9)

In particular, taking i = 0 in (3.9) we obtain ‖Tmx‖ ≤ (an−m)1/4‖Tnx‖ for
n > m ≥ 0. Hence {‖Tnx‖} is convergent. By (3.9) and the convergence of
‖Tnx‖ we have

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tm+ix+ Tmx‖4 − ‖Tn+ix+ Tnx‖4] ≤ 0.

Similarly it follows from (3.8) and the convergence of ‖Tnx‖ that

lim
m→∞

lim
n→∞

sup
i≥0

[‖Tm+ix− Tmx‖4 − ‖Tn+ix− Tnx‖4] ≤ 0.

By virtue of Proposition 3.3, {(Tnx)2} is weakly almost-convergence to its
asymptotic center in L2(Ω). 2

4. Examples

Example 4.1. Let C be a subset of a real Hilbert space H with norm
‖ · ‖ and T : C → C be a mapping.

I. If T satisfies

‖Tu+ Tv‖p ≤ ‖u+ v‖p + c[‖u‖p − ‖Tu‖p

+‖v‖p − ‖Tv‖p] for u, v ∈ C,
(4.1)

where c ≥ 0 and p ≥ 1 are constants, then for every x ∈ C, {Tnx} is strongly
almost- convergent to its asymptotic center.
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II. Let T satisfy

‖Tu− Tv‖p ≤ ‖u− v‖p + c[‖u‖p − ‖Tu‖p

+‖v‖p − ‖Tv‖p] for u, v ∈ C,
(4.2)

where c ≥ 0 and p ≥ 1 are constants. If either F (T ) 6= ∅ or c > 0 in (4.2),
and if x ∈ C satisfies (1.1),then {Tnx} is strongly almost-convergent to its
asymptotic center.

III. If T satisfies

‖u− v‖p ≤ ‖Tu− Tv‖p + c[‖Tu‖p − ‖u‖p

+‖Tv‖p − ‖v‖p] for u, v ∈ C,
(4.3)

where c ≥ 0 and p ≥ 1 are constants, then (I) and (II) of Theorem 1.3 hold
true.

In fact, let T satisfy (4.1). Then by considering T ju and T jv instead of
u and v in (4.1) we have ‖T j+1u + T j+1v‖p ≤ ‖T ju + T jv‖p + c[‖T ju‖p −
‖T j+1u‖p + ‖T jv‖p − ‖T j+1v‖p] for j ≥ 0. Adding these inequalities for j =
0, 1, · · · , k − 1 we have ‖T ku+ T kv‖p ≤ ‖u+ v‖p + c[‖u‖p − ‖T ku‖p + ‖v‖p −
‖T kv‖p] for u, v ∈ C and k ≥ 0, i.e., T satisfies condition (a′1) with ak ≡ 1.
The result follows from Theorem 1.1′. Similarly, (4.2) and (4.3) imply (a′2)
and (a3) with ak ≡ 1 respectively. So, II and III are direct consequences of
Theorems 1.2′ and 1.3 respectively.

Example 4.2. Let C and T be as in Example 4.1.
IV. If T satisfies (4.2) and if either F (T ) 6= ∅ or c > 0 in (4.2), then for

every x ∈ C, {Tnx} is weakly almost-convergent to its asymptotic center.
V. If T satisfies

‖u+ v‖p ≤ ‖Tu+ Tv‖p + c[‖Tu‖p − ‖u‖p

+‖Tv‖p − ‖v‖p] for u, v ∈ C,
(4.4)

where c ≥ 0 and p ≥ 1 are constants, then for every x ∈ C, either
limn→∞ ‖Tnx‖ = ∞ or {Tnx} is weakly almost-convergent to its asymptotic
center.

In fact, IV and V follow from Theorem 2.1′ and Theorem 2.2 respectively.

Finally we give examples of mappings T : C → C such that C are closed,
convex, T are continuous and satisfy condition (a′2) with F (T ) 6= ∅ but they
are not asymptotically nonexpansive (in the usual sense). The mapping T in
our second example also satisfies condition (a′1) but does not the Wittmann
condition (0.6).
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Example 4.3. Let ϕ be the Cantor ternary function. Define f : [0, 1]→
[0, 1] and g : [−1, 1]→ [−1, 1] by

f(s) = s(0 ≤ s ≤ 1/2),= ϕ(s)(1/2 < s ≤ 1)

and
g(s) = −f(−s)(−1 ≤ s ≤ 0),= f(s)(0 < s ≤ 1).

(i) Set C = [0, 1]× [0, 1](⊂ R2 = (−∞,∞)× (−∞,∞)) and define T : C →
C by T (u, v) = (u, f(v)) for (u, v) ∈ C. Then T is continuous, F (T ) 6= ∅ and T
is not astmptotically nonexpansive (in the usual sense). A simple computation
yields

‖T (u1, v1)− T (u2, v2)‖2 ≤ ‖(u1, v1)− (u2, v2)‖2 + [‖(u1, v1)‖2

−‖T (u1, v1)‖2 + ‖(u2, v2)‖2 − ‖T (u2, v2)‖2]
(4.5)

for (u1, v1), (u2, v2) ∈ C, where ‖(u, v)‖2 = u2 + v2 for (u, v) ∈ R2. Hence T satisfies
condition (a′2) with ak ≡ 1, p = 2 and c = 1.

(ii) Set C = [−1, 1] × [−1, 1](⊂ R2) and define T : C → C by T (u, v) =
(u, g(v)) for (u, v) ∈ C. Then T is continuous and odd, F (T ) 6= ∅ and T is not
asymptotically nonexpansive (in the usual sense). Moreover, T satisfies (4.5)
and then condition (a′2) with ak ≡ 1, p = 2 and c = 1. We also see that T
satisfies condition (a′1) with ak ≡ 1, p = 2 and c = 1 but it does not satisfy
the Wittmann condition (0.6).

5. Concluding Remarks

The key of our argument in the preceding sections is Propositions 1.4 and
2.3. We may generalize these propositions to the spaces Lp(Ω) with positive
integers p in the following forms, where Ω is a measure space with measure µ.

Proposition 5.1. Let {xn} be a sequence of real-valued functions in
Lp(Ω). Suppose

lim
m→∞

lim
n→∞

sup
i1,i2,...,ip−1≥0

[∫
Ω
xn+i1(s)xn+i2(s) · · ·xn+ip−1(s)xn(s)dµ

−
∫

Ω
xm+i1(s)xm+i2(s) · · ·xm+ip−1(s)xm(s)dµ

]
≤ 0.

(I) If p is even, then {(l/n)
∑n−1
i=0 xi} is strongly convergent to the unique

element of clco W of minimum norm, where W is the set of weak subsequential
limits of {xn} and clco W denotes the closed convex hull of W .

(II) If p is odd and each xn is nonnegative, then {(1/n)
∑n−1
i=0 xi} is strongly

convergent to the unique element of clco W of minimum norm.
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Remark. We shall expect that the conclusion of Proposition 5.1 can be
strengthened such form as {xn} is strongly almost-convergent to the unique
element of clco W of minimum norm.

Proposition 5.2. Let {xn} be a bounded sequence of real-valued functions
in Lp(Ω). Suppose

lim
m→∞

lim
n→∞

lim
i1,i2,...,ip−1→∞

[∫
Ω
xm+i1(s)xm+i2(s) · · ·xm+ip−1(s)xm(s)dµ

−
∫

Ω
xn+i1(s)xn+i2(s) · · ·xn+ip−1(s)xn(s)dµ

]
≤ 0.

(I) If p is even, then {xn} is weakly almost-convergent to the unique ele-
ment of clco W of minimum norm, where W and clco W are the same as in
Proposition 5.1.

(II) If p is odd and each xn is nonnegative, then {xn} is weakly almost-
convergent to the unique element of clco W of minimum norm.

Added in Proof. (a1) in Theorem 1.1, (a2) in Theorem 1.2 and (a2)
in Theorem 2.1 can be replaced by the following weaker conditions.

(β1)



for every bounded set B ⊂ C, v ∈ C and integer k ≥ 0 there exists a
δk (B, v) ≥ 0 with limk→∞ δk(B, v) = 0 such that ‖T ku+ T kv‖p ≤ ak
‖u+v‖p+c[ak‖u‖p−‖T ku‖p + ak‖v‖p − ‖T k v‖p] + δk(B, v) for u ∈ B,
where ak, c and p are nonnegative constants independent of B and
v such that limk→∞ ak = 1 and p ≥ 1,

(α2)



for every u, v ∈ C and integer k ≥ 0 there exists a δk(u, v) ≥ 0 with
limk→∞ δk(u, v) = 0 such that ‖T ku−T kv||p ≤ ak‖u− v‖p + c[ak‖u‖p
−‖T ku ‖p + ak‖v‖p − ‖T kv‖p] + δk (u, v), where ak, c and p are non−
negative constants independent of u and v such that limk→∞ ak = 1
and p ≥ 1,

(β2)


for every bounded set B ⊂ C, v ∈ C and integer k ≥ 0 there exists a
δk(B, v) ≥ 0 with limk→∞ δk (B, v) = 0 such that ‖T ku− T kv‖p ≤ ak
‖u− v‖p+c[ak‖u‖p − ‖T ku‖p + ak‖v‖p−‖T kv‖p] + δk(B, v) for u ∈ B,
where ak, c and p are the same constants as in condition (β1) above,

respectively. Similarly, (a3) in Theorem 1.3 and (a4) in Theorem 2.2 can be
also replaced by some weaker conditions.
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