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BALL SEPARATION PROPERTIES IN
BANACH SPACES AND EXTREMAL PROPERTIES OF

UNIT BALL IN DUAL SPACES∗

Bor-Luh Lin

Abstract. Various ball separation properties in Banach spaces and their
relationships with the extremal structures of the unit ball of dual space
are presented. The relationships of these properties with the ball convex-
ity, ball topology in Banach spaces and Banach spaces with the Radon-
Nikodyn property are discussed.

For a Banach space X, let SX (resp. BX) be the unit sphere (resp. ball)
in X and let X∗ be the dual space of X. We study Banach spaces with the
following property:
( ∗ ) For any two disjoint bounded closed convex sets Ki, i = 1, 2, in X, there

exist balls Bi, Bi ⊃ Ki, i = 1, 2 and B1 ∩B2 = φ.

Observe that if such balls B1 and B2 exist, then there exists a hyperplane
H in X which separates B1 and B2, hence separates K1 and K2. This leads
to the following problem:
(**) Determine x∗ 6= 0 in X∗ with the property that if H = ker x∗ = {x :

x ∈ X,x∗(x) = 0}, then for any bounded closed convex set K in X such
that K ∩H = φ, there exists a ball B, B ⊃ K and B ∩H = φ.

In this survey paper, we shall show that these two properties and other
related ball separation properties are related to the extremal structure of BX∗ .
Applications to ball topology and ball convexity in Banach spaces will be
discussed.
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For a set K in X, let c̄oK denotes the closed convex hull of K. If K is a
subset in X∗, let c̄o∗K be the weak∗ closed convex hull of K and let K̄ω∗ be
the weak∗ closure of K in X∗. A weak∗ slice of K is a set S(K,x, δ) = {x∗ :
x∗ ∈ K,x∗(x) > supy∗∈K y∗(x) − δ} where x ∈ X and δ > 0. x∗ is called a
weak∗-denting point (w∗-denting point) of K if for every ε > 0, there exists a
weak∗ slice S(x,K, δ) of K containing x∗ and diamS(x,K, δ) < ε. x∗ is called
a weak∗ (resp. weak∗-weak) point of continuity of K if the identity mapping
Id : (K,weak∗) −→ (K, ‖ · ‖) (resp. (K, weak∗)→ (K, weak)) is continuous at
x∗. For a set K in X, x ∈ K is called an extreme point of K if for any y, z ∈ K,
x = 1

2(y + z) implies that x = y = z. It is known [13] that for bounded closed
convex set K in X∗, the following hold:

(1) weak∗-denting points of K ⊂ weak∗-extreme points of K

⊂ extreme points of K;

(2) weak∗-denting points of K ⊂ weak∗-points of continuity of K

⊂ weak∗-weak points of continuity of K;

(3) x∗ ∈ K is a weak∗-denting point of K if and only if x∗ is a weak∗-point
of continuity of K and x∗ is an extreme point of K.

All balls in this paper are closed balls, that is, set of the form B(x, r) =
{y : y ∈ X, ‖x − y‖ ≤ r}. For balls in X∗, we use the notation B∗(x∗, r) and
for balls in X∗∗, we use the notation B∗∗(x∗∗, r).

1. Ball Separation Properties Related to

Weak
∗
-Denting Points of B·X∗

A Banach space X is said to have the Mazur intersection property (MIP) if
every bounded closed convex set in X is an intersection of balls. Equivalently,
for any bounded closed convex set K in X and for any x /∈ K, there exists
a ball B, B ⊃ K and x /∈ B. This is a special case of (∗) when one of
the sets Ki, i = 1, 2 is a singleton. Since in this case, there is a hyperplane
that separates K and x. Hence solutions of (∗∗) will yield solutions of Banach
spaces with the (MIP). S. Mazur [17] was the first to study Banach spaces with
(MIP). R. R. Phelps [18] showed that for a finite-dimensional Banach space
X to have the (MIP), it is necessary and sufficient that the set of extreme
points of BX∗ is dense in SX∗ . Since in finite-dimensional Banach spaces, the
weak topology and norm topology coincide and so every point is a point of
continuity. It follows that in finite-dimensional Banach spaces, extreme points,
denting points and weak∗ denting points coincide. J. Giles, D. A. Gregory and
B. Sims in 1978 proved the following theorem.
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Theorem 1. [10] A Banach space X has the (MIP) if and only if the set
of weak∗-denting points of BX∗ is dense in SX∗ .

In the proof of Theorem 1, they have demonstrated that the (MIP), weak∗-
denting points of BX∗ are related to the smoothness of X. In [18], R. R. Phelps
has established a basic result in determining the distance between elements in
X∗. The following lemma is an easy consequence of results in [18].

Lemma 2. For a normed space X, let x∗ and y∗ be elements in SX∗ and
let K = {x : x ∈ BX , x∗(x) > ε

2} where 0 < ε < 1. If inf y∗(K) > 0 then
‖x∗ − y∗‖ < ε.

Using Lemma 2 and the argument in [10], it is straightforward to prove
the following result.

Lemma 3. (i) Let x ∈ BX , δ > 0 and ε > 0. If diam S(BX∗ , x, δ) ≤ ε,
then

sup
y∈BX

‖x+ δ
2y‖+ ‖x− δ

2y‖ − 2
δ
2

≤ ε.

(ii) Let x ∈ SX , ε > 0 and n ∈ N. If

sup
y∈BX

‖x+ 1
n
y‖+ ‖x− 1

n
y‖ − 2

1
n

≤ ε,

then diam S(BX∗ , x, εn) ≤ 3ε.

Using Lemma 3, we establish a solution for (∗∗).

Theorem 4. Let X be a normed space and let x∗0 ∈ S∗X . Then x∗0 is a
weak∗-denting point of B∗X if and only if for any bounded closed convex set K
in X such that inf x∗0(K) > 0, there exists a ball B in X, B ⊃ K and inf
x∗0(B) > 0.

Corollary 5. Let X be a Banach space. Then x0 ∈ SX is a denting point
of BX if and only if for any bounded closed convex set K in X∗ such that
inf x0(K) > 0, there exists a ball B∗ in X∗, B∗ ⊃ K and inf x0(B∗) > 0.

Corollary 6. Let X be a Banach space. Then x∗0 ∈ SX∗ is a weak∗-denting
point of BX∗ if and only if for any bounded closed convex set K in X∗∗ such
that inf x∗0(K) > 0, there exists a ball B∗∗ in X∗∗ with center in X, B∗∗ ⊃ K
and inf x∗0(B∗∗) > 0.
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Corollary 7. A Banach space X has the (MIP) if and only if for any two
disjoint bounded weak∗-closed convex sets K1,K2 in X∗∗, there exist balls B∗∗1 ,
B∗∗2 in X∗∗ with centers in X such that B∗∗i ⊃ Ki, i = 1, 2, and B∗∗1 ∩B∗∗2 = φ.

In 1978, J. Giles, D. Gregory and B. Sims [10] raised the question whether
every Banach space with the (MIP) is an Asplund space. Recently, M. J.
Sevilla and J. P. Moreno [21] has exhibited a class of non-Asplund spaces that
admit equivalent norms with the (MIP).

2. Ball Separation Properties and Weak
∗
-Points

of Continuity of BX∗

We now consider some ball separation properties related to the weak∗-
points of continuity of BX∗ . The difference between weak∗-denting points and
weak∗-points of continuity is that for weak∗-denting points, we need to find
weak∗-slices with arbitrarily small diameter and for weak∗-points of continuity,
we need to find weak∗ open sets with arbitrarily small diameter. Since weak∗

open sets contain finite intersection of weak∗ slices this leads us to introduce
the following generalized Mazur intersection property.

Definition. A Banach space X is said to have the property (II) if for
every bounded closed convex set K in X, K = ∩i∈IKi where for each i ∈ I,
Ki = c̄o{∪nj=1Bj} and Bj, j = 1, 2, . . . , n, are balls in X. Equivalently, for any
bounded closed convex set K in X and for any x /∈ K, there exist balls Bj,
j = 1, 2, . . . , n, in X such that c̄o(∪nj=1Bj) ⊃ K and x /∈ c̄o(∪nj=1Bj).

The following theorem is the corresponding result of Theorem 4.

Theorem 8. [7] Let X be a Banach space and let x∗0 ∈ SX∗. Then x∗0 is a
weak∗-point of continuity of BX∗ if and only if for any bounded closed convex
set K in X such that inf x∗0(K) > 0, there exist balls B1, B2, . . . , Bn in X such
that c̄o(∪nj=1Bj) ⊃ K and inf x∗0(c̄o(∪nj=1Bj)) > 0.

Corollary 9. A Banach space X has the property (II) if and only if the
set of weak∗-points of continuity of BX∗ is dense in SX∗.

There is a ball separation property in Banach spaces that is closely related
to (MIP) and the property (II). A set K in a Banach space X is said to
be ball-generated [12] if K = ∩i∈IKi where each Ki is a finite union of balls
in X. Equivalently, K is ball-generated if for every x /∈ K, there exist balls
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B1, . . . , Bn in X such that ∪ni=1Bi ⊃ K and x /∈ ∪ni=1Bi. We say that a Banach
space X has the ball-generated property (BGP) if all bounded closed convex
sets in X are ball-generated. The (BGP) is related to the ball topology bX
of Banach space [12]. bX is the weakest topology on X such that all balls in
X are closed in bX . A bX-base of neighborhoods of a point x0 in X is of the
form X\ ∪ni=1 Bi where Bi are balls in X with x0 /∈ Bi, i = 1, 2, . . . , n. A
Banach space X has the (BGP) if and only if every bounded closed convex set
in X is bX-closed. The following theorem determines when an element in X∗

is bX-continuous.

Theorem 10. [8] x∗0 ∈ X∗ is continuous on (BX , bX) if and only if
for every ε > 0, there exist weak∗ slices S1, S2, . . . , Sn of BX∗ and a function

F : Πn
i=1Si → X∗ such that F (x∗1, x

∗
2, . . . , x

∗
n) =

n∑
i=1

aix
∗
i , where ai ∈ R, i =

1, 2, . . . , n, are dependent on (x∗1, x
∗
2, . . . , x

∗
n) and ‖x∗0 − F (x∗1, x

∗
2, . . . , x

∗
n)‖ < ε

for all (x∗1, x
∗
2, . . . , x

∗
n) ∈ Πn

i=1Si.

By Krein-Milman theorem and Theorem 10, it follows that every weak∗-
point of continuity of BX∗ is continuous on (BX , bX). By Theorem 10 again,
every element in X∗ is continuous on (BX , bX) if X∗ is the closed linear span
of weak∗ points of continuity of BX∗ . Thus we have the following result:

Theorem 11. A Banach space X has the (BGP) if X∗ is the closed linear
span of weak∗ points of continuity of BX∗.

A Banach space X is called nicely smooth [11] if for all x∗∗ ∈ X∗∗, ∩x∈XB∗∗
(x, ‖x−x∗∗‖) = {x∗∗}. Equivalently, for all x∗∗ 6= y∗∗ in X∗∗, there exists a ball
B∗∗ in X∗∗, center in X such that x∗∗ ∈ B∗∗ and y∗∗ /∈ B∗∗. A closed linear
subspace N in X∗ is called a norming subspace for X if ‖x‖ = sup{|x∗(x)| :
x∗ ∈ BN} for all x ∈ X. It is known that X is nicely smooth if and only if
there is no proper norming subspace for X in X∗. Suppose that X has the
(BGP) and let N be a norming subspace for X in X∗. Then BX is closed
under the weak topology σ(X,N) induced by N . Since X has the (BGP), it
follows that every bounded closed convex set in X is closed under σ(X,N).
Thus N = X∗. This proves that every Banach space with the (BGP) is nicely
smooth. Now if X is an Asplund space, then BX is Frechet differentiable on a
dense subset F in SX . Let D be the duality mapping of X. Then D(F ) norms
X and every element in D(F ) is a weak∗-strongly exposed point of BX∗ . If
X is also nicely smooth, then X∗ = the closed linear span of weak∗-strongly
exposed points of BX∗ . Since weak∗-strongly exposed points are weak∗-denting
points, we obtain the following theorem.
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Theorem 12. Let X be a Banach space. Consider the following state-
ments:

(1) X∗ is the closed linear span of weak∗-strongly exposed points of BX∗.

(2) X∗ is the closed linear span of weak∗-denting points of BX∗.

(3) X∗ is the closed linear span of weak∗-points of continuity of BX∗.

(4) X has the (BGP).

(5) X is nicely smooth.

Then (1)⇒(2)⇒(3)⇒(4)⇒(5). If X is Asplund, then all are equivalent.

For other properties of Banach spaces with (BGP), we refer to [6].

3. Ball Separation Property and Weak
∗
-Weak

Points of Continuity

The following ball separation property characterizes the weak∗-weak points
of continuity of BX∗ .

Theorem 13. [7] Let X be a Banach space and let x∗0 ∈ SX∗ . Then x∗0 is
a weak∗-weak point of continuity of BX∗ if and only if for any x∗∗ in X∗∗ such
that x∗∗(x∗0) 6= 0, there exists a ball B∗∗ in X∗∗ with center in X, x∗∗0 ∈ B∗∗
and B∗∗ ∩ ker x∗0 = φ, where ker x∗0 = {y∗∗ ∈ X∗∗ : y∗∗(x∗0) = 0}.

Corollary 14. If the set of weak∗-weak points of continuity is dense in
SX∗, then for any x∗∗1 6= x∗∗2 in X∗∗ there exist balls B∗∗i with center in X,
x∗∗i ∈ B∗∗i , i = 1, 2, and B∗∗1 ∩B∗∗2 = φ.

4. Ball Separation Properties Related to Extreme Points

and Weak
∗
-Strongly Extreme Points of BX∗

The ball separation properties of bounded closed convex sets in a Banach
space is related to the weak∗-denting points of BX∗ . The extreme points of
BX∗ determine the ball separation properties for compact convex sets.

Theorem 15. [24 and 19] Let X be a Banach space. Then every compact
convex set in X is an intersection of balls if and only if the cone generated
by the extreme points of BX∗ is τX dense in X∗, where τX is the topology of
uniform convergence on compact subsets of X.

Theorem 16. [19 and 20] Let X be a Banach space. Then
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( i ) every compact convex set in X with dimension less than or equal to n
is an intersection of balls if and only if for every x∗ ∈ X∗, every n + 1
points x1, x2, . . . , xn+1 in X and every ε > 0, there exists y∗ ∈ ExtX∗ ≡
{λz∗ : λ > 0, z∗ ∈ extBX∗} such that |(x∗ − y∗)(xi)| < ε, i = 1, 2, . . . , n;

(ii) every finite-dimensional compact convex set in X is an intersection of
balls if and only if the cone Ext X∗ generated by the extreme points of
BX∗ is weak∗ dense in X∗.

Using the argument similar to weak∗-denting points discussed in section 1
by using the family of semi-norms pM where M is compact convex set in X,
the following result can be proved.

Theorem 17. [7] Let X be a Banach space and let x∗0 ∈ SX∗ . Then the
following are equivalent:

( i ) x∗0 is an extreme point of BX∗;

(ii) for any compact convex set K in X, if inf x∗0(K) > 0, then there exists
a ball B in X, B ⊃ K and inf x∗0(B) > 0;

(iii) for any finite set K in X, if inf x∗0(K) > 0, then there exists a ball B in
X, B ⊃ K and inf x∗0(B) > 0.

For a bounded closed convex set K in X∗, x∗0 ∈ K is called a weak∗ strongly
extreme point of K if the family of all weak∗ slices of K containing x∗0 forms a
base for the weak∗ topology of x∗0 in K. It is clear that x∗0 is a weak∗ strongly
extreme point of K if and only if x∗0 is an extreme point of K and x∗0 is a
weak∗-weak point of continuity of K. By combining Theorems 13 and 17, it
is easy to prove the following result:

Theorem 18. [2] Let X be a Banach space and let x∗0 ∈ SX∗ . Then the
following are equivalent:

( i ) x∗0 is a weak∗-strongly extreme point of BX∗ ;

(ii) for any compact convex set K in X∗∗, if inf x∗0(K) > 0, then there exists a
ball B∗∗ in X∗∗ with center in X such that B∗∗ ⊃ K and inf x∗0(B∗∗) > 0;

(iii) for any finite set K in X∗∗, if inf x∗0(K) > 0, then there exists a ball B∗∗

in X∗∗ with center in X such that B∗∗ ⊃ K and inf x∗0(B∗∗) > 0.

Following the definition of usual convexity in linear spaces, M. Lassak [16]
in 1977 introduced the concept of ball convexity in Minkowski-Banach spaces.
A set K in a normed space is said to be B-convex if for every finite subset
F in K, K contains the intersection of balls containing F . It is easy to see
that a set K in a Banach space X is B-convex if and only if for every finite
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subset F in K and for any x /∈ K, there exists a ball B in X with B ⊃ F and
x /∈ B. It is known [16] that in finite-dimensional Banach spaces, the closure
of every bounded B-convex set is an intersection of balls. However, there is an
equivalent norm in Hilbert space `2 such that there is a bounded B-convex set
K with the property that the closure of K is not an intersection of balls [9].
Let us call a set K a Mazur set if it is an intersection of balls. It is clear that
every Mazur set is B-convex. We shall give a necessary condition for a Banach
space X such that the closure of every bounded B-convex set is a Mazur set.

Let X be a Banach space. An element x∗0 ∈ SX∗ is called a semi-denting
point of BX∗ if for every ε > 0, there exists a weak∗ slice S(BX∗ , x, δ) of BX∗
such that diam(x∗0∪S(BX∗ , x, δ)) < ε. It is clear that every weak∗ denting point
of BX∗ is a semi-denting point of BX∗ . Comparing to Theorem 4 in section I
for weak∗-denting points of BX∗ , the following ball separation property holds
for semi-denting points of BX∗ .

Theorem 19. [9] Let X be a Banach space. An element x∗0 in SX∗ is a
semi-denting point of BX∗ if and only if for any bounded closed convex set K
in X and for any x0 in X, if x∗0 separates K and x0, then there is a ball in X
with B ⊃ K and x0 /∈ B.

Theorem 20. [9] If X is a Banach space with the property that the closure

of every bounded B-convex set in X is a Mazur set, then SX∗ ∩Ext(X∗)
w∗

is
the set of all semi-denting points of BX∗ , where Ext(X∗) = {λx∗ : λ > 0, x∗

is an extreme point of BX∗} is the cone generated by the set of extreme points
of BX∗.

5. Weak
∗

Asymptotic Norming Properties

The density of weak∗-denting points (resp. weak∗ points of continuity etc.)
of BX∗ in SX∗ plays an important role on the geometry of X. Let us consider
the following four kinds of density in this respect.

(1) Every point of SX∗ is a weak∗-denting point (resp. weak∗ point of con-
tinuity, etc.) of BX∗ .

(2) The set of weak∗-denting points (resp. weak∗ points of continuity, etc.)
of BX∗ is dense in SX∗ relative to certain topology on X∗.

(3) BX∗ is the closed convex hull of weak∗-denting points (resp. weak∗ points
of continuity, etc.) of BX∗ .

(4) X∗ is the closed linear span of weak∗-denting points (resp. weak∗ points
of continuity, etc.) of BX∗ .
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In this paper, we have demonstrated that (2) is necessary and sufficient
for various ball separation properties. In [14], it is proved that if X is a
Banach space such that the duality mapping D : (SX , ‖ · ‖) → (SX∗ , w) is
upper semi-continuous, then BX∗ is the closed convex hull of weak∗ denting
points of BX∗ . In Section 2, we have showed that if X∗ is the closed linear
span of weak∗ points of continuity of BX∗ then X has the (BGP). To conclude
this paper, we consider Banach spaces that have property (1). It is well-
known that if every point of SX∗ is an extreme point of BX∗ , then X∗ is
said to be strictly convex and X is smooth. For the stronger kinds of extremal
structures of BX∗ , there are related to the so-called weak∗-asymptotic norming
properties of X∗. The asymptotic norming properties I, II and III (ANP-I, II,
III) were introduced by R. C. James and A. Ho in 1981 to show that the class
of separable Banach spaces with Radon-Nikodym property (RNP) is larger
than those Banach spaces which are isomorphic to subspaces of separable
dual spaces. It was proved by N. Ghoussoub and B. Maurey that in separable
Banach space, ANP and RNP are equivalent. However, it is still an open
question whether the ANP and RNP are equivalent in every Banach spaces.
Recently, it was proved in [13] tht the three ANP are equivalent in every
Banach space that admits an equivalent locally uniformly convex norm. It
is currently an active research topic to classify the class of Banach spaces
that admit equivalent locally uniformly convex norm. Let us mention that a
Banach space admits an equivalent uniformly convex norm if and only if the
space is superreflexive.

A subset Φ of BX∗ is called a norming set for X if ‖x‖ = sup
x∗∈Φ

x∗(x) for

all x ∈ X. A sequence {xn} in SX is said to be asymptotically normed by Φ
if for each ε > 0, there exists x∗ ∈ Φ and N ∈ N such that x∗(xn) > 1− ε for
all n ≥ N . For K = I, II, II ′orIII, a sequence {xn} in X is said to have the
property K if:

( I ) {xn} is convergent.

(II) {xn} has a convergent subsequence.

(II’) {xn} is weakly convergent.

(III) {xn} has a weakly convergent subsequence.

For K = I, II, II ′orIII,X is said to have the asymptotic norming property
K with respect to Φ(Φ − ANP − K) if every sequence in SX that is asymp-
totically normed by Φ has property K. A Banach space X is said to have
the asymptotic norming property K(ANP −K), K = I, II, II ′ or III, if there
exists an equivalent norm ‖·‖ on X and a norming set Φ for (X, ‖·‖) such that
X has Φ−ANP −K. The ANP-I, II and III were introduced by R. C. James
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and A. Ho. The ANP-II′ was recently introduced by P. Bandyopadhyay and
S. Basu [2].

A dual space X∗ is said to have the weak∗ asymptotic norming property
K(w∗ −ANP −K), K =I, II, II′ or III, if there exists an equivalent norm ‖ · ‖
on X and a norming set Φ for X∗ in BX such that X∗ has Φ−ANP −K. The
w∗ −ANP −K, K = I, II or III, were introduced by Zhibao Hu and Bor-Luh
Lin [13]. The w∗ −ANP − II ′ was recently introduced by P. Bandyopadhyay
and S. Basu [2]. It has been observed in [13] that X∗ has Φ−ANP−K, K = I,
II or III, where Φ ⊃ SX is equivalent to BX−ANP −K and similar arguments
can be used to show Φ−ANP − II ′ is equivalent to BX −ANP − II ′. Thus
for dual spaces X∗, we shall simply say that X∗ has w∗ − ANP − K, K = I,
II, II’ or III, without going to equivalent norm or specifying the norming set
Φ.

Theorem 21. [13] Let X be a Banach space. Then

(1) X∗ has w∗−ANP−I if and only if every point in SX∗ is a weak∗-denting
point of BX∗.

(2) X∗ has w∗−ANP −II if and only if every point in SX∗ is a weak∗ point
of continuity of BX∗.

(3) X∗ has w∗−ANP−III if and only if every point in SX∗ is a weak∗-weak
point of continuity of BX∗.

Theorem 22. [2] Let X be a Banach space. Then X∗ has w∗−ANP−II ′
if and only if every point of SX∗ is a weak∗-strongly extreme point of BX∗.

In [14], it is proved that X∗ has w∗−ANP − III if and only if X is Hahn-
Banach smooth. Recall that a Banach space X is said to be Hahn- Banach
smooth [22] if every element x∗ in X∗ has a unique Hahn-Banach extension in
X∗∗∗. In [2], it is proved that X∗ has the w∗−ANP − II ′ if and only if X has
the property V . A Banach space X is said to have the property (V) if there
does not exist an increasing sequence of open balls {Bn} with unbounded radii
and norm-one functionals x∗ and {y∗k}k∈N such that for some constant c,

( i ) x∗(x) > c for all x ∈ ∪∞n=1Bn,

(ii) y∗k(x) > c for all x ∈ Bn, n ≤ k, and

(iii) distance (x∗, co(yk)k∈N) > 0.

The property (V) was introduced by F. Sullivan [23] based on a result of L.
P. Vlasov which showed that if a Banach space X has the property V , then
X∗ is strictly convex. In fact, it is observed in [2] that X has the property V
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if and only if X∗ is strictly convex and X is Hahn-Banach smooth. It follows
that x∗ ∈ SX is a weak∗ strongly extreme point of BX∗ if and only if x∗ is an
extreme point of BX∗ and x∗ is a weak∗-weak point of continuity of BX∗ . It
remains to find geometric properties in X which are equivalent to X∗ having
w∗ −ANP −K, K = I or II.

It is easy to see that

w∗ −ANP − I ⇒ w∗ −ANP − II ⇒ w∗ −ANP − III

and
w∗ −ANP − I ⇒ w∗ −ANP − II ′ ⇒ w∗ −ANP − III .

In [13], it is proved that X∗ has w∗ −ANP − III is strictly stronger than
X∗ to have (RNP), hence X is an Asplund space. Thus if every point of SX∗
is a weak∗-denting point of BX∗ then X is Asplund. However, if the set of
weak∗-denting points of BX∗ is dense in SX∗ , then X is not necessaryily an
Asplund space [21].
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