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SOME MISCELLANEOUS PROPERTIES AND APPLICATIONS OF
CERTAIN OPERATORS OF FRACTIONAL CALCULUS

Shy-Der Lin and H. M. Srivastava*

Abstract. In recent years, various operators of fractional calculus (that is,
calculus of integrals and derivatives of arbitrary real or complex orders) have
been investigated and applied in many remarkably diverse fields. The main
object of this paper is to consider some miscellaneous properties and applica-
tions which are associated with several fractional differintegral operators. We
first investigate, in a systematic and unified manner, various families of series
identities which emerged in connection with some of these fractional differin-
tegral formulas. By using such operators of fractional calculus, a number of
integral formulas as well as fractional differintegral formulas involving inverse
hyperbolic functions are also evaluated.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

During the past three decates or so, the extensively-investigated The subject of
fractional calculus (that is, calculus of integrals and derivatives of any arbitrary
real or complex orders) has been investigated rather extensively due mainly to its
demonstrated applications in numerous seemingly diverse fields of science and
engineering (see, for details, [1, 11-13, 20, 45-47, 53] and [56]). One of the
operators of fractional calculus, which has presumably been used in the literature
most commonly and most widely, is the Riemann-Liouville fractional differintegral
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operator Dµ
z of order µ (µ ∈ C) given by Definition 1 below (see, for details, [4,

Chapter 13], [12, 20, 45, 47] and [53]).

Definition 1. The (Riemann-Liouville) fractional differintegral operator D µ
z is

defined by

(1)

Dµ
z {f(z)}

=




1
Γ(−µ)

∫ z

0

(z−ζ)−µ−1 f(ζ) dζ [�(µ) < 0]

dn

dzn

{
Dµ−n

z {f(z)}
}

[n− 1 � �(µ) < n; n ∈ N] ,

provided that the defining integral in (1) exists.
Throughout our present investigation, we denote by R and C the sets of real

and complex numbers, respectively. Furthermore, we have

N0 := N ∪ {0} and N := {1, 2, 3, · · · }.

It readily follows from Definition 1 that

(2) Dµ
z

{
zλ

}
=

Γ (λ+ 1)
Γ (λ− µ+ 1)

zλ−µ [� (λ) > −1] .

In terms of the Srivastava-Daoust multivariable hypergeometric function defined
by (cf. [57] and [58]; see also [9], [60, p. 37 et seq.] and [62, p. 64 et seq.])

F p: q1 ;··· ; qr

�:m1 ;··· ;mr




(
aj;α′

j, · · · , α(r)
j

)
1,p

:
(
c′j, γ

′
j

)
1,q1

; · · · ;
(
c
(r)
j , γ

(r)
j

)
1,qr

;

(
bj; β′

j, · · · , β(r)
j

)
1,�

:
(
d′j, δ

′
j

)
1,m1

; · · · ;
(
d
(r)
j , δ

(r)
j

)
1,mr

;
z1, · · · , zr




:=
∞∑

n1,··· ,nr=0

p∏
j=1

(aj)n1α′
j+···+nrα

(r)
j

q1∏
j=1

(
c′j

)
n1γ′

j

· · ·
qr∏

j=1

(
c
(r)
j

)
nrγ

(r)
j

�∏
j=1

(bj)n1β′
j+···+nrβ

(r)
j

m1∏
j=1

(
d′j

)
n1δ′

j

· · ·
mr∏
j=1

(
d
(r)
j

)
nrδ

(r)
j

zn1
1

n1!
· · · z

nr
r

nr !
,

(3)

in which the multiple hypergeometric series converges absolutely under the
parametric and variable constraints detailed in the aforecited works and (λ)ν denotes
the Pochhammer symbol (or the shifted factorial, since (1)n = n! for n ∈ N0) given
(for λ, ν ∈ C and in terms of the Gamma function) by

(4) (λ)ν :=
Γ (λ+ ν)

Γ (λ)
=

{
1 (ν = 0; λ ∈ C \ {0})
λ (λ+ 1) · · · (λ+ n − 1) (ν = n ∈ N; λ ∈ C) ,



Some Miscellaneous Properties and Applications 2471

we recall the following potentially useful analogue of a well-known result [62, p.
303, Problem 1] for the familiar Riemann-Liouville operator Dµ

z (cf. [19, p. 54,
Equation (3.13)]; see also [14, p. 1178, Equation (2.3)]):

Dλ−µ
z

{
zλ−1

r∏
j=1

{(
1 − aj z

µj
)−αj

}}

=
Γ(λ)
Γ(µ)

zµ−1 F 1:1; ··· ;1
1:0; ··· ;0

[
(λ;µ1, · · · , µr) : (α1, 1) ; · · · ; (αr, 1) ;
(µ;µ1, · · · , µr) : ; · · · ; ;

a1 z
µ1 , · · · , ar z

µr

](5)

[�(λ) > 0; µj > 0 (j = 1, · · · , r); max {|a1 z
µ1 | , · · · , |ar z

µr |} < 1] .

By applying the reflection formula for the Gamma function:

(6) Γ(z)Γ(1 − z) =
π

sin(πz)
(z ∈ C \ Z; Z := {0,±1,±2, · · ·}),

we can easily rewrite (5) as follows:

Dλ−µ
z

{
zλ−1

r∏
j=1

{(
1 − aj z

µj
)−αj

}}
=

Γ(1 − µ)
Γ(1 − λ)

sin(πµ)
sin(πλ)

zµ−1

· F 1:1; ··· ;1
1:0; ··· ;0

[
(λ; µ1, · · · , µr) : (α1, 1) ; · · · ; (αr, 1) ;

(µ; µ1, · · · , µr) : ; · · · ; ;
a1 z

µ1 , · · · , ar z
µr

](7)

[�(λ) > 0; µj > 0 (j = 1, · · · , r); max {|a1 z
µ1 | , · · · , |ar z

µr |} < 1] .

We next recall that, in a series of recent investigations dealing with power,
composite, rational, exponential and logarithm functions as well as many other
special functions, Nishimoto et al. and other authors (cf., e.g., [27-43]; see also [7,
17-19, 21-24, 54, 55, 61]) made use of a certain fractional differintegral operator
N ν

z [that is, fractional derivative operator N ν
z of order ν ∈ C when �(ν) > 0 and

fractional integral operator N ν
z of order ν ∈ C when �(ν) < 0] (see Definition

2 below), which is based essentially upon the familiar Cauchy-Goursat Integral
Formula (see, for details, [65, Chapter 5]).

Definition 2 (cf. [25, 26] and [63]). If the function f(z) is analytic (regular)
and has no branch points inside and on C, where

(8) C := {C−, C+},

C− is a contour along the cut joining the points z and −∞ + iI(z), which starts
from the point at −∞, encircles the point z once counter-clockwise, and returns to
the point at −∞, C+ is a contour along the cut joining the points z and ∞+ iI(z),
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which starts from the point at ∞, encircles the point z once counter-clockwise, and
returns to the point at ∞,

(9)
N ν

z {f(z)} :=
Γ(ν + 1)

2πi

∫
C

f(ζ)
(ζ − z)ν+1

dζ

(ν ∈ C \ Z
−; Z

− := {−1,−2,−3, · · · })

and

(10) N−n
z {f(z)} := lim

ν→−n

{N ν
z {f(z)}} (n ∈ N := {1, 2, 3, · · · }),

where ζ �= z,

(11) −π � arg (ζ − z) � π for C−,

and

(12) 0 � arg(ζ − z) � 2π for C+,

then
N ν

z {f(z)} [�(ν) > 0]

is said to be the fractional derivative of f(z) of order ν and

N ν
z {f(z)} [�(ν) < 0]

is said to be the fractional integral of f(z) of order −ν, provided that

(13) |N ν
z {f(z)}| <∞ (ν ∈ C).

Remark 1. Throughout our present investigation, in case the differintegrated
function f(z) is a many-valued function, we shall tacitly consider the principal
value of f(z).

We choose to recall here the following potentially useful lemmas and properties
associated with the fractional differintegration which is given by Definition 2 above
(cf., e.g., [25] and [26]).

Lemma 1. (Linearity Property). If the functions f(z) and g(z) are single-valued
and analytic in some domain Ω ⊆ C, then

(14) N ν
z

{
k1 f(z)+k2 g(z)

}
=k1 N ν

z {f(z)}+k2 N ν
z {g(z)} (ν∈C ; z∈Ω)

for any constants k1 and k2.
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Lemma 2. (Index Law). If the function f(z) is single-valued and analytic in
some domain Ω ⊆ C, then

(15)
N ν

z

{N µ
z {f(z)}} = N µ+ν

z {f(z)} = N µ
z

{N ν
z {f(z)}}(N µ

z {f(z)} �= 0; N ν
z {f(z)} �= 0; µ, ν ∈ C ; z ∈ Ω

)
.

Lemma 3. (Generalized Leibniz Rule). If the functions f(z) and g(z) are
single-valued and analytic in some domain Ω ⊆ C, then

(16) N ν
z {f(z) · g(z)} =

∞∑
n=0

(
ν

n

)
N ν−n

z {f(z)} · N n
z {g(z)} (ν ∈ C ; z ∈ Ω),

where N n
z {g(z)} is the ordinary derivative of g(z) of order n (n ∈ N 0 := N ∪ {0}) ,

it being tacitly assumed (for simplicity) that g(z) is the polynomial part (if any) of
the product f(z) · g(z).

Property 1. For a constant λ,

(17) N ν
z

{
eλz

}
= λν eλz (λ �= 0; ν ∈ C ; z ∈ C)

and

(18) N ν
z

{
e−λz

}
= e−iπν λν e−λz (λ �= 0; ν ∈ C ; z ∈ C).

Property 2. For a constant λ,

(19)
N ν

z

{
zλ

}
= e−iπν Γ(ν − λ)

Γ(−λ)
zλ−ν

(
ν ∈ C ; z ∈ C \ {0};

∣∣∣∣Γ(ν − λ)
Γ(−λ)

∣∣∣∣ <∞
)
.

Property 3. For a constant λ,

(20)
N ν

z

{
(z − c)λ

}
= e−iπν Γ(ν − λ)

Γ(−λ)
(z − c)λ−ν

(
ν ∈ C ; z ∈ C \ {c}; c ∈ C ;

∣∣∣∣Γ(ν − λ)
Γ(−λ)

∣∣∣∣ <∞
)
.

By suitably applying Property 3 in conjunction with the definition (3), it is not
difficult to derive the following analogue of the fractional differintegral formula (5):
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N λ−µ
z

{
zλ−1

r∏
j=1

{(
1 − aj z

µj
)−αj

}}
=

Γ(1 − µ)
Γ(1 − λ)

e−iπ(λ−µ) zµ−1

· F 1:1; ··· ;1
1:0; ··· ;0

[
(λ; µ1, · · · , µr) : (α1, 1) ; · · · ; (αr, 1) ;

(µ; µ1, · · · , µr) : ; · · · ; ;
a1 z

µ1 , · · · , ar z
µr

](21)

(∣∣∣∣Γ(1−µ)
Γ(1−λ)

∣∣∣∣<∞; µj>0 (j=1, · · · , r); max {|a1 z
µ1| , · · · , |ar z

µr |}<1
)
,

which may be compared with the fractional differintegral formula (7).

In a considerably large number of recent investigations (some of which have
already been referred to above), several fractional differintegral formulas involving
the fractional differintegral operators Dµ

z (µ ∈ C) and N ν
z (ν ∈ C) were derived

by applying such fractional differintegral formulas as those depicted above in (for
example) Equations (2), (5), (7) and (21), Lemma 3, Property 2 and Property 3.
Some of these fractional differintegral formulas were also shown to lead to several
closely-related series identities (see, for details, [14, 15, 36] and [44]). Each of the
fractional differintegral operators Dµ

z (µ ∈ C) and N ν
z (ν ∈ C) has indeed been

investigated and applied in many remarkably diverse fields. In the present sequel
to some of these earlier works, we consider several miscellaneous properties and
applications which are associated with each of the fractional differintegral operators
Dµ

z (µ ∈ C) and N ν
z (ν ∈ C). We first investigate, in a systematic and unified

manner, various families of series identities which emerged in connection with some
of the fractional differintegral formulas referred to above. We then use such operators
of fractional calculus with a view to deriving a number of integral formulas as well
as fractional differintegral formulas involving inverse hyperbolic functions.

2. SERIES IDENTITIES DERIVED BY MEANS OF THE FRACTIONAL

DIFFERINTEGRAL OPERATOR N ν
z

The series identities (22) and (23) asserted by Theorems 1 and 2, respectively,
were derived recently by Nishimoto [36] and Nishimoto et al. [44] by comparing
different expressions which they obtained for the following fractional differintegrals:

N γ
z

{
log

([
(z − b)2 − c

]2 − d
)}

and N γ
z

{
log

([√
z − b− c

]2 − d

)}
.

Theorem 1. (cf. [36, p. 35, Theorem 4]). The following series identity holds
true:
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∞∑
�=0

∞∑
m=1

(2m)� Γ(2	+ 4m+ γ)
m · 	! Γ(2	+ 4m)

(
c

(z − b)2

)� (
d

(z − b)4

)m

= 2
∞∑

�=0

Γ(2	+ γ)
(2	)!


(

c+
√
d

(z − b)2

)�

+

(
c−√

d

(z − b)2

)�

− 2
(

c

(z − b)2

)�



(22)

(
|z − b|2 > max

{
|c|,

√
d
}

; z ∈ C \ {b}
)
,

provided that each of the series involved is absolutely convergent.

Theorem 2. (cf. [44, p. 22, Theorem 3]). The following series identity holds
true:

∞∑
�=0

∞∑
m=1

(2m)� Γ
(

1
2 	+m+ γ

)
m · 	! Γ

(
1
2 	+m

) (
c√
z − b

)� (
d

z − b

)m

=
1
2

∞∑
�=0

Γ
(

1
2 	+ γ

)
Γ
(

1
2 	+ 1

)

(

c+
√
d√

z − b

)�

+

(
c−√

d√
z − b

)�

− 2
(

c√
z − b

)�



(23)

(√
|z − b| > max

{
|c|,

√
d
}

; z ∈ C \ {b}
)
,

provided that each of the series involved is absolutely convergent.

Remark 2. In their statements of Theorems 1 and 2, respectively, Nishimoto [36,
p. 35, Theorem 4] and Nishimoto et al. [44, p. 22, Theorem 3] also included the
trivially obvious special cases of the assertions (22) and (23) when γ = n (n ∈ N).

In the existing literature, there are remarkably many families of interesting (and
potentially useful) series identities. We choose to present an important member of
one of these families of series identities, which is due to Chen and Srivastava [2,
p. 586, Equation (2.10)], as Theorem 3 below.

Theorem 3. Let {Ω(n)}n∈N0 be a bounded sequence of complex numbers.
Then

(24)
∞∑

�,m=0

Ω(	+ 2m)
(µ)m

x�

	!
y2m

m!
=

∞∑
�,m=0

Ω(	+m)

(
µ− 1

2

)
m

(2µ− 1)m

(x+ 2y)�

	!
(−4y)m

m!
,

provided that each of the double series involved is absolutely convergent.

By letting µ→ 1
2 and by setting µ = 3

2 in the assertion (24) of Theorem 3, and
then making use of the following hypergeometric reduction formulas [50, p. 461,
Entry 7.3.1.106]:
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(25) 2F1

[
λ, λ+ 1

2 ;
1
2 ;

z

]
=

1
2

[(
1 +

√
z
)−2λ +

(
1 −√

z
)−2λ

]

and [50, p. 461, Entry 7.3.1.107]:

(26) 2F1

[
λ, λ+ 1

2 ;
3
2 ;

z

]
=

1
2(2λ− 1)

√
z

[(
1 −√

z
)1−2λ − (

1 +
√
z
)1−2λ

]
,

respectively, Lin et al. [15] derived two general series identities which are
asserted by Theorem 4 below (see also a recent paper [64] dealing extensively
and systematically with the theory and applications of such hypergeometric reduction
formulas as (25) and (26) above).

Theorem 4. (cf. [15, p. 744, Theorem 3]). Let {Ω(n)}n∈N0 be a bounded
sequence of complex numbers. Then

(27)
∞∑

�,m=0

Ω(	+ 2m)
x�

	!
y2m

(2m)!
=

1
2

∞∑
�=0

Ω(	)
(

(x+ y)� + (x− y)�

	!

)

and

(28)
∞∑

�,m=0

Ω(	+2m)
x�

	!
y2m+1

(2m+ 1)!
=

1
2

∞∑
�=0

Ω(	)
(

(x+ y)�+1−(x− y)�+1

(	+ 1)!

)
,

provided that each of the double series involved in the assertions (27) and (28) is
absolutely convergent.

Remark 3. As already observed by (for example) Lin et al. [15, p. 745], the
hypergeometric reduction formula (26) is an essentially differentiated version of the
hypergeometric reduction formula (25), since it is easily verified that [51, p. 69,
Exercise 1]

(29)
d

dz

{
2F1

[
λ, µ;
ν;

z

]}
=
λµ

ν
2F1

[
λ+ 1, µ+ 1;

ν + 1;
z

]
.

The details involved may be left as an exercise for the interested reader.

Upon suitable specializations of the complex sequence {Ω(n)}n∈N0, each of the
assertions (27) and (28) of Theorem 4 would easily yield a remarkably large number
of series identities including (for example) those in the class of series identities
represented in Theorems 1 and 2. Here, in our present investigation, we derive
the following unification and generalization of Theorems and 2 by applying only
the first assertion (27) of Theorem 4. Analogous series identities can similarly be
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derived by appying the second assertion (28) of Theorem 4.

Theorem 5. The following series identity holds true:

∞∑
�=0

∞∑
m=1

(
1
2 	+m

) · (2m)�

p∏
j=1

Γ
(
rj(	+ 2m) + γj

)
m · 	!

q∏
j=1

Γ
(
sj(	+ 2m) + δj

) x� y2m

=
1
2

∞∑
�=0

p∏
j=1

Γ
(
rj	+ γj

)
q∏

j=1
Γ (sj	+ δj)

[
(x+ y)� + (x− y)� − 2x�

]
(30)

[
rj, sk ∈ R+ (j = 1, · · · , p; k = 1, · · · , q);
γj ∈ C (j = 1, · · · , p); δj ∈ C \ Z

+
0 (j = 1, · · · , q)],

provided that each of the series involved is absolutely convergent.

Proof. First of all, upon setting

(31) Ω(n) =
n!

p∏
j=1

Γ
(
rjn+ γj

)
q∏

j=1
Γ (sjn+ δj)[

n ∈ N0; rj, sk ∈ R
+ (j = 1, · · · , p; k = 1, · · · , q);

γj ∈ C (j = 1, · · · , p); δj ∈ C \ Z
+
0 (j = 1, · · · , q)]

in the first assertion (27) of Theorem 4, we find that

(32)

∞∑
�=0

∞∑
m=0

(	+ 2m)!
p∏

j=1
Γ
(
rj(	+ 2m) + γj

)
q∏

j=1
Γ
(
sj(	+ 2m) + δj

) x�

	!
y2m

(2m)!

=
1
2

∞∑
�=0

p∏
j=1

Γ
(
rj	+ γj

)
q∏

j=1

Γ (sj	+ δj)

[
(x+ y)� + (x− y)�

]
.

We denote, for convenience, the first member of (32) by S(x, y) and observe
from the definition (4) that

(	+ 2m)!
	! (2m)!

=
Γ(	+ 2m+ 1)
	! Γ(2m+ 1)

=

(
1
2 	+m

) · (2m)�

m · 	! (	 ∈ N0; m ∈ N) ,
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which readily yields

(33)

S(x, y) :=
∞∑

�=0

∞∑
m=0

(	+ 2m)!
p∏

j=1
Γ
(
rj(	+ 2m) + γj

)
q∏

j=1
Γ
(
sj(	+ 2m) + δj

) x�

	!
y2m

(2m)!

=
∞∑

�=0

∞∑
m=1

(
1
2 	+m

) · (2m)�

p∏
j=1

Γ
(
rj(	+ 2m) + γj

)
m · 	!

q∏
j=1

Γ
(
sj(	+ 2m) + δj

) x� y2m

+
∞∑

�=0

p∏
j=1

Γ
(
rj	+ γj

)
q∏

j=1

Γ (sj	+ δj)
x�.

If we substitute this last expression for S(x, y) from (33) for the first member of
(32) and transpose the resulting single 	-series to the right-hand side of (32), we
shall arrive at the assertion (30) of Theorem 5 under the constraints stated already.

Alternatively, we can prove the assertion (30) of Theorem 5 directly by appealing
to the hypergeometric reduction formula (25), that is, without using the assertion
(27) of Theorem 4. Indeed, if in the left-hand side of (30), we set

	 	→ 	− 2m
(

0 � m �
[
	

2

]
; 	, m ∈ N0

)
and make use of the following well-known series identity for a suitably bounded
double sequence {Λ(	, m)}�,m∈N0 (see, for example, [51, p. 57, Lemma 11 (7)]
and [62, p. 100, Lemma 2 (3)]):

(34)
∞∑

�,m=0

Λ(	, m) =
∞∑

�=0

[�/2]∑
m=0

Λ(	− 2m,m),

we find for the first member of (27) that

(35)

Θ(x, y)

:=
∞∑

�=0

∞∑
m=1

(
1
2 	+m

) · (2m)�

p∏
j=1

Γ
(
rj(	+ 2m) + γj

)
m · 	!

q∏
j=1

Γ
(
sj(	+ 2m) + δj

) x� y2m

=
∞∑

�=0

∞∑
m=0

(	+2m)!
p∏

j=1
Γ
(
rj(	+ 2m)+γj

)
q∏

j=1
Γ
(
sj(	+ 2m)+δj

) x�

	!
y2m

(2m)!
−

∞∑
�=0

p∏
j=1

Γ
(
rj	+γj

)
q∏

j=1
Γ (sj	+ δj)

x�

=
∞∑

�=0

p∏
j=1

Γ
(
rj	+ γj

)
q∏

j=1

Γ (sj	+ δj)
x�

2F1


−

	

2
,− 	

2
+

1
2
;

1
2
;

y2

x2


− ∞∑

�=0

p∏
j=1

Γ
(
rj	+γj

)
q∏

j=1

Γ (sj	+ δj)
x�,
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which, by applying the hypergeometric reduction formula (25), yields

(36)

Θ(x, y)

=
1
2

∞∑
�=0

p∏
j=1

Γ
(
rj	+γj

)
q∏

j=1

Γ (sj	+ δj)

[
(x+ y)�+(x − y)�

]− ∞∑
�=0

p∏
j=1

Γ
(
rj	+γj

)
q∏

j=1

Γ (sj	+ δj)
x�

=
1
2

∞∑
�=0

p∏
j=1

Γ
(
rj	+ γj

)
q∏

j=1
Γ (sj	+ δj)

[
(x+ y)� + (x− y)� − 2x�

]
,

which evidently completes our alternative demontration of (30) under the hypotheses
stated already with Theorem 5.

Remark 4. The assertion (22) of Theorem 1 would follow readily upon
specializing Theorem 5 by setting

p=q=1, r1 =s1 =2 (γ1=γ; δ1 =1) , x=
c

(z − b)2
and y =

√
d

(z − b)2(
|z − b|2 > max

{
|c|,

√
d
}

; z ∈ C \ {b}
)
.

Theorem 2, on the other hand, is a special case of Theorem 5 when

p=q=1, r1=s1 =
1
2

(γ1 =γ; δ1 =1) , x=
c√
z − b

and y=

√
d√

z − b(√
|z − b| > max

{
|c|,

√
d
}

; z ∈ C \ {b}
)
.

Remark 5. Just as we have demonstrated above in our alternative proof of
Theorem 5, each of Theorems 1 and 2 can be proven directly by applying the
hypergeometric reduction formula (25). The details involved are being left as an
exercise for the interested reader.

3. EVALUATION OF INTEGRALS BY USING FRACTIONAL CALCULUS

In this section, we propose to illustrate how several elementary integrals can be
evaluated by using fractional calculus.

Example 1. Consider the following elementary integral:

(37) I1 :=
∫ z

zκ (azρ + b)σ dz

where (and in what follows) the lower terminal of the integral can be specified
appropriately. By suitably applying the fractional differintegral formula (5) with
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r = 1 and λ = µ− 1 = κ + 1
(
a1 = −a

b
; α1 = −δ; µ1 = ρ

)
,

it is not difficult to find from (37) that

(38)
I1 =

bσ zκ+1

κ+ 1 2Ψ∗
1

[
(κ+ 1, ρ), (−σ, 1); (κ+ 2, ρ);−a

b
zρ

]
[�(κ) > −1; ρ > 0; b �= 0] ,

in terms of the Fox-Wright function pΨ∗
q defined by the following special case of

the Srivastava-Daoust multivariable hypergeometric function (3) when r = 1 (cf.
[5, 66] and [67]; see also [3, p. 183] and [60, p. 21])

pΨ∗
q [(a1, A1) , · · · , (ap, Ap) ; (b1, B1) , · · · , (bq, Bq) ; z]

:=
∞∑

k=0

(a1)A1k · · · (ap)Apk

(b1)B1k · · · (bq)Bqk

zk

k!

=
Γ (b1) · · ·Γ (bq)
Γ (a1) · · ·Γ (ap)

pΨq


 (a1, A1) , · · · , (ap, Ap) ;

(b1, B1) , · · · , (bq, Bq) ;
z


(39)


Aj>0 (j=1, · · · , p) ; Bj>0 (j=1, · · · , q) ; 1+

q∑
j=1

Bj−
p∑

j=1

Aj �0


 ,

where the equality in the convergence condition holds true for suitably bounded
values of |z| given by

|z| <

 p∏

j=1

A
−Aj

j


 ·


 q∏

j=1

B
Bj

j


 .

Clearly, we have (see, for details, [59, p. 19])

(40)

pΨ∗
q [(a1, 1) , · · · , (ap, 1) ; (b1, 1) , · · · , (bq, 1) ; z]

= pFq

[
a1, · · · , ap;
b1, · · · , bq;

z

]
=

Γ (b1) · · ·Γ (bq)
Γ (a1) · · ·Γ (ap)

pΨq

[
(a1, 1) , · · · , (ap, 1) ;
(b1, 1) , · · · , (bq, 1) ;

z

]

and (see, for details, [6])

(41)

pΨq

[
(a1, A1) , · · · , (ap, Ap) ;
(b1, B1) , · · · , (bq, Bq) ;

z

]

= H1,p
p,q+1

[
−z

∣∣∣∣∣ (1 − a1, A1) , · · · , (1 − ap, Ap)
(0, 1) , (1− b1, B1) , · · · , (1− bq, Bq)

]
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in terms of the familiar and widely-investigated F and H functions, respectively
(see also [61]).

Remark 6. By using the definition (39) and such relationships as (40), we can
derive a number of simpler cases of the integral formula (38). In particular, when
σ = n (n ∈ N0), we find from (38) that [49, p. 27, Entry 1.2.2.7]

(42)

∫ z

zκ (azρ + b)n dz =
n∑

k=0

(
n

k

)
ak bn−kzκ+ρk+1

κ+ ρk + 1

[n ∈ N0; �(κ) > −1; ρ > 0] .

Example 2. By simple changes of the variable w of integration, the problem of
evaluation of such integrals as∫ w

log(logw) dw,
∫ w (

1
logw

)
dw and

∫ w

ee
w
dw

can be reduced to that of the evaluation of integrals of the following class:

(43) I2 :=
∫ z

zκ eazρ
dz = lim

n→∞

∫ z

zκ

(
1 +

azρ

n

)n

dz,

which, upon evaluation by means of the fractional differintegral formula (5) with

r = 1 and λ = µ− 1 = κ+ 1
(
a1 = −a

b
; α1 = −δ; µ1 = ρ

)
,

yields

(44)
I2 =

zκ+1

κ+ 1
lim

n→∞ 2Ψ∗
1

[
(κ+ 1, ρ), (−n, 1); (κ+ 2, ρ);−a

n
zρ

]

[�(κ) > −1; ρ > 0] .

Since

(−n)k

(−n)k
=
n(n − 1) · · · (n− k + 1)

nk
→ 1 as n→ ∞ (k = 0, 1, · · · , n),

we find from (44) that∫ z

zκ eazρ
dz =

zκ+1

κ + 1 1Ψ∗
1 [(κ+ 1, ρ); (κ+ 2, ρ); azρ]

=
∞∑

k=0

ak zκ+ρk+1

(κ+ ρk + 1) · k! [�(κ) > −1; ρ > 0] .(45)
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Remark 7. In terms of the incomplete Gamma function γ(z, α) defined by

(46)
γ(z, α) :=

∫ α

0
tz−1 e−t dt =

zα

α
1F1(α;α+ 1;−z)

[�(z) > 0; | arg(α)| � π − ε (0 < ε < π)] ,

a special case of the integral formula (45) when ρ = 1 and a = −α can be put in
the following form [49, p. 137, Entry 1.3.2.3]:

(47)
∫ z

0
zκ e−αz dz =

1
ακ+1

γ(κ+ 1, αz) [�(κ) > −1].

Remark 8. In an obviously exceptional case of the integral I2 in (43) when
κ = −n (n ∈ N), if we further set ρ = 1, we can apply Lemma 3 with

ν = −1, f(z) = z−n (n ∈ N) and g(z) = eaz,

so that

(48)
∫ z eaz

zn
dz =

∞∑
k=0

(−1
k

)
N−1−k

z

{
z−n

} · d
k

dzk
{eaz} (n ∈ N).

Since, by definition,(−1
k

)
=

(−1)(−2)(−3) · · ·(−1 − k + 1)
k!

= (−1)k (k ∈ N0),

by separating the infinite sum into three parts as follows, we find that

(49)

∫ z eaz

zn
dz =

eaz

azn
+ eaz

(
n−1∑
k=0

(−a)k−1 N−k
z

{
z−n

}
+

∞∑
k=n

(−a)k−1 N−k
z

{
z−n

})

=
eaz

azn
+ eaz

(
n−1∑
k=0

(−a)k−1 N−k
z

{
z−n

}
+

∞∑
k=0

(−a)n+k−1 N−n−k
z

{
z−n

})
(n ∈ N).

If we set
λ = −n and ν = −k

in Property 2, we get

(50)

N−k
z {z−n} = eiπk Γ(n − k)

Γ(n)
zk−n

= (−1)k (n−k−1)!
(n−1)!

zk−n

(k∈{0, 1, 2, · · · , n− 1}; n∈N) .
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We now recall the following easy consequence of Lemma 3 and Property 2 [26,
p. 69, Equation (27)]:

(51) N−n
z {log z} =

zn

n!

[
log z −

n−1∑
k=0

(−1)n−k−1

n− k

(
n

k

)]
(n ∈ N),

which, by means of the familiar combinatorial identity (see, for example, [8, p. 6,
Entry (1.45)]):

(52)
n−1∑
k=0

(−1)n−k−1

n − k

(
n

k

)
=

n∑
k=1

(−1)k−1

k

(
n

k

)
=

n∑
k=1

1
k

(n ∈ N),

assumes a remarkably simpler form given by

(53) N−n
z {log z} =

zn

n!
(log z −Hn) (n ∈ N0),

where Hn denotes the harmonic numbers defined by

(54) Hn :=
n∑

k=1

1
k

(n ∈ N; H0 := 0) .

Next, by operating upon both sides of the fractional differintegral formula [26,
p. 51, Equation (12)]:

(55) N−ν
z

{
z−ν

}
= − eiπν

Γ(ν)
log z

(
ν ∈ C; |Γ(ν)| <∞

)

by N−n
z and applying the result (53), we find that

(56)

N−ν−n
z {z−ν} = − eiπν

Γ(ν)
N−n

z {log z}

= − eiπν

Γ(ν)
zn

n!
(log z−Hn)

(
ν∈C; |Γ(ν)| <∞; n∈N

)
.

Finally, upon setting

ν = m and n 	→ n−m (m � n; m, n ∈ N)

in this last result (56), we obtain

(57) N−n
z

{
z−m

}
=− eiπm

(m−1)!
zn−m

(n−m)!
(log z−Hn−m) (m � n; m, n ∈ N)
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in terms of the harmonic numbers Hn defined by (54). An obviously erroneous
version of the fractional differintegral formula (57) was presented and applied in a
recent paper by Salinas de Romero et al. [52, p. 57, Equation (8)].

By appropriately applying the fractional differintegral formulas (50) and (57) to
the last member of (49), we are led eventually to the following integral formula:

(58)

∫ z eaz

zn
dz =

eaz

azn
− eaz

(n− 1)!

(
n−1∑
k=0

(n− k − 1)! · ak−1

zn−k

−
∞∑

k=0

(log z −Hk)
an+k−1 (−z)k

k!

)
(n ∈ N),

which, for n = 1, yields

(59)
∫ z eaz

z
dz = eaz

(
log z +

∞∑
k=1

(log z −Hk)
(−az)k

k!

)

in terms of the harmonic numbers Hn defined by (54).
By means of a known relationship [10, p. 363, Entry (55.7.2)] of the infinite

sums in (58) and (59) with the exponential integral Ei(z) (see also [16]), the integral
formulas (58) and (59) can be shown to be essentially the same as the known results
[49, p. 138, Entries 1.3.2.11 and 1.3.2.12].

Example 3. Consider the following integral:

(60) I3 :=
∫ z

zκ sin z dz,

which can be evaluated, for different constraints upon the parameter κ, by applying
the method (using Lemma 3 and Property 2) mutatis mutandis. We thus find that

(61)
∫ z

zκ sin z dz = zκ+1
∞∑

k=0

(−z)k

(κ+ 1)k+1
sin

(
z +

kπ

2

)
[�(κ) > −1],

(62)
∫ z

zn sin z dz=
n∑

k=0

(−1)k

(
n

k

)
k! · zn−k sin

(
z − (k+1)π

2

)
(n ∈ N0)

and

(63)

∫ z sin z
zn

dz = −cos z
zn

− 1
(n− 1)!

[
n−1∑
k=0

(n−k−1)!
zn−k

cos
(
z+

kπ

2

)

−
∞∑

k=0

(−z)k

k!
(log z−Hk) cos

(
z+

(n+k)π
2

)]
(n∈N),
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each of which may be compared with the corresponding known integral formulas
recorded by (for example) Prudnikov et al. [49], Hn being the harmonic numbers
defined already by (54).

Remark 9. In its special case when n = 1, this last integral formula (63)
reduces to the following interesting form:

(64)
∫ z sin z

z
dz = −

∞∑
k=0

(−z)k

k!
(log z −Hk) cos

(
z +

(k + 1)π
2

)
.

4. APPLICATIONS OF FRACTIONAL CALCULUS INVOLVING

INVERSE HYPERBOLIC FUNCTIONS

In a recent paper, Prieto et al. [48] considered several applications of the
fractional differintegral operator N ν

z involving the inverse trigonometric functions
sin−1 z and cos−1 z. Salinas de Romero et al. [52], on the other hand, considered
analogous applications involving the inverse hyperbolic functions sinh−1 z and
cosh−1 z. Here, in the present section, we show how such fractional differintegral
formulas as (for example) (2) or (5) can be applied to derive, in a relatively simpler
manner, several n-fold integral formulas for various inverse hyperbolic functions.

Theorem 6. Each of the following n-fold integral formulas holds true for the
inverse hyperbolic functions involved:

(65)
D−n

z

{
sinh−1 z

}
=

zn+1

(n+1)! 3F2

(
1
2
,
1
2
, 1;

1
2
n+1,

1
2
n+

3
2
;−z2

)
(n ∈ N; |z|<1),

(66)

D−n
z

{
sech−1z

}
=
zn

n!

[ ∞∑
k=1

(−1)k−1

k 3
F2

(
−k

2
,
1
2
, 1;

1
2
n+

1
2
,
1
2
n+1; z2

)
−log z+Hn

]
,

(n ∈ N; |z| < 1)

(67)

D−n
z

{
csch−1z

}
=
zn

n!

[ ∞∑
k=1

(−1)k−1

k
3F2

(
−k

2
,
1
2
, 1;

1
2
n+

1
2
,
1
2
n+1;−z2

)
−log z+Hn

]

(n ∈ N; |z| < 1),

and
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(68)
D−n

z

{
tanh−1 z

}
=

zn+1

(n+ 1)! 3F2

(
1
2
, 1, 1;

1
2
n + 1,

1
2
n +

3
2
; z2

)
(n ∈ N; |z| < 1),

where Hn denotes the harmonic numbers defined by (54).

Proof. For the inverse hyperbolic function sinh−1 z, it is fairly well known
that

(69)

sinh−1 z = log
(
z +

√
1 + z2

)
= D−1

{(
1 + z2

)− 1
2

}
= z 2F1

(
1
2
,
1
2
;
3
2
;−z2

)
(|z| < 1).

In light of the fractional differintegral formula (2) or (5) (with λ = µ− n = 1) and
the Legendre duplication formula for the Gamma function:

(70) Γ(2z) =
22z−1

√
π

Γ(z) Γ
(
z +

1
2

)
,

the first assertion (55) of Theorem 6 would follow easily when we apply the operator
D−n

z upon the second (or, alternatively, the third) member of (69).
Next, for the inverse hyperbolic function sech−1z, we have

(71)

sech−1z = log

(
1 +

√
1 − z2

z

)
= log

(
1 +

√
1 − z2

)
− log z

=
∞∑

k=1

(−1)k−1

k

(
1 − z2

) k
2 − log z,

which, in view of (5) in conjunction with the following easily derivable fractional
differintegral formula by the principle of mathematical induction on n ∈ N [see also
Equation (53)]:

(72) D−n
z {log z} =

zn

n!
(log z −Hn) (n ∈ N),

readily yields the assertion (65) of Theorem 6. Formula (72) is, in fact, an obvious
special case of the following known result (cf., e.g., [4, p. 188, Entry 13.1(24)]):

(73)
Dµ

z

{
zλ log z

}
=

Γ(λ+ 1)
Γ(λ− µ+ 1)

zλ−µ [log z + ψ(λ+ 1) − ψ(λ− µ+ 1)]

[�(λ) > −1; µ ∈ C]
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when
λ = 0 and µ = −n (n ∈ N),

since

(74) ψ(n+ 1) − ψ(1) = Hn (n ∈ N0),

in terms of the Harmonic numbers Hn given by (54), ψ(z) being the Psi (or
Digamma) function defined by

(75) ψ(z) :=
d

dz
{Γ(z)} =

Γ′(z)
Γ(z)

or logΓ(z) =
∫ z

1
ψ(τ) dτ.

In order to prove the assertion (67) of Theorem 6, we observe from (69) that

(76)
csch−1z = sinh−1

(
1
z

)
=log

(
1+

√
1+z2

z

)
=log

(
1+

√
1+z2

)
−log z

=
∞∑

k=1

(−1)k−1

k

(
1 + z2

) k
2 − log z,

which, just as in our demonstration of (65), leads us easily to (67) by means of the
fractional differintegral formulas (5) and (72).

Finally, we can similary prove the assertion (68) of Theorem 6 by noting that

(77) tanh−1 z =
1
2

log
(

1 + z

1 − z

)
= z 2F1

(
1
2
, 1;

3
2
; z2

)
.

The details involved may be left as an exercise for the interested reader.

4. FURTHER REMARKS AND OBSERVATIONS

In this concluding section, we present the following general fractional
differintegral formulas involving the operator Nν

z , which are proven by appealing
appropriately to such fractional differintegral formulas as those depicted in (for
example) Lemma 3, Property 2 and Property 3 of Section 1 (cf. [19, p. 53,
Equations (3.6) and (3.7)] and [17, p. 92, Equation (2.4)]; see also [15, p. 740,
Theorem 1]):

(78)

N ν
z

{[
(z − α)µ − ζ

]κ
}

=
e−iπν (z−α)κµ−ν

Γ(−κ) 2Ψ1

[
(ν− κµ, µ), (−κ, 1); (−κµ, µ);

ζ

(z−α)µ

]
,

(79) N ν
z

{(
zµ−ζ)κ

}
=
e−iπνzκµ−ν

Γ(−κ) 2Ψ1

[
(ν−κµ, µ), (−κ, 1); (−κµ, µ);

ζ

zµ

]
and
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(80)

N ν
z

{
(αz + β)ρ

[(λz + µ)σ − ζ]κ

}

= e−iπν λν

Γ(κ)
(αz + β)ρ

(λz + µ)ν+κσ

∞∑
�=0

(
ν

	

)(
ρ

	

)
· 	!

(
−α(λz + µ)
λ(αz + β)

)�

· 2Ψ1

[
(ν − 	+ κσ, σ), (κ, 1); (κσ, σ);

ζ

(λz + µ)σ

]
(
α �= 0; λ �= 0; σ ∈ R

+;
∣∣∣∣ ζ

(λz + µ)σ

∣∣∣∣ < 1
)
,

it being provided that both sides of each of the assertions (78), (79) and (80) exist.
The fractional differintegral formula (86) is equivalent to a result proven recently

by Nishimoto [28, p. 37, Theorem 1 (i)]. The fractional differintegral formula (79),
on the other hand, can easily be rewritten in the following form by appealing to the
relationship (41) with the Fox H-function:

(81) N ν
z

{(
zµ−ζ)κ

}
=
e−iπν zκµ−ν

Γ(−κ) H1,2
2,2

[
− ζ

zµ

∣∣∣∣∣
(1 + κµ− ν, µ) , (1 + κ, 1)

(0, 1) , (1 + κµ, µ)

]
,

provided that each member of (81) exists.
In light of the following rather elementary property of the Fox H-function

involved in (41) and (81) (see [59, p. 15, Equation (2.3.6)]):

(82)

zσ Hm,n
p,q

[
z

∣∣∣∣∣ (a1, A1) , · · · , (ap, Ap)
(b1, B1) , · · · , (bq, Bq)

]

= Hm,n
p,q

[
z

∣∣∣∣∣ (a1 + σA1, A1) , · · · , (ap + σAp, Ap)
(b1 + σB1, B1) , · · · , (bq + σBq, Bq)

]
(σ ∈ C),

we can at once rewrite the fractional differintegral formula (81) in its equivalent
form:

(83)

N ν
z

{(
zµ − ζ

)κ
}

=
e−iπν zκ−ν (−ζ)κ−(κ/µ)

Γ(−κ) H1,2
2,2


− ζ

zµ

∣∣∣∣∣∣∣∣
(1 + κ− ν, µ) ,

(
1 +

κ

µ
, 1

)
(
κ

µ
− κ, 1

)
, (1 + κ, µ)


 ,

which, in fact, corresponds precisely to one of the main results of Saxena and
Nishimoto [54, p. 59, Theorem 1] (see also [19] and [55]).

Upon setting
ρ = 1, λ = α and µ = β,
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the fractional differintegral formula (80) can be reduced fairly easily to the following
remarkably simple form:

N ν
z

{
αz + β

[(αz + β)σ − ζ]κ

}
= e−iπν αν

(αz + β)ν+κσ−1

· 2Ψ1

[
(ν + κσ − 1, σ), (κ, 1); (κσ − 1, σ);

ζ

(αz + β)σ

]
(84) (

α �= 0; σ ∈ R
+;

∣∣∣∣ ζ

(αz + β)σ

∣∣∣∣ < 1
)
.

Moreover, in its further special case when
κ = σ − 1 = 1, α = a, β = b and ζ = b2 − ac,

the fractional differintegral formula (84) would readily yield

(85)

N ν
z

{
az + b

az2 + 2bz + c

}

= e−iπν

(
a

az + b

)ν+1

2Ψ1

[
(ν + 1, 2), (1, 1); (1, 2);

b2 − ac

(az + b)2

]
(
az2 + 2bz + c �= 0; a �= 0; |Γ(ν + 1)| <∞;

∣∣∣∣ b2 − ac

(az + b)2

∣∣∣∣ < 1
)
,

which can easily be rewritten in the following equivalent forms:

(86)

N ν
z

{
az + b

az2 + 2bz + c

}

= e−iπν Γ(ν + 1)
(

a

az + b

)ν+1 ∞∑
m=0

(
ν + 2m

2m

)(
b2 − ac

(az + b)2

)m

(
az2 + 2bz + c �= 0; a �= 0; |Γ(ν + 1)| <∞;

∣∣∣∣ b2 − ac

(az + b)2

∣∣∣∣ < 1
)

and

(87)

N ν
z

{
az + b

az2 + 2bz + c

}

= e−iπν

(
a

az + b

)ν+1

2F1




1
2
ν +

1
2
,
1
2
ν + 1;

1
2
;

b2 − ac

(az + b)2




(
az2 + 2bz + c �= 0; a �= 0; |Γ(ν + 1)| <∞;

∣∣∣∣ b2 − ac

(az + b)2

∣∣∣∣ < 1
)
.

The fractional differintegral formula (73) happens to be one of the main results
proven recently by Nishimoto and Miyakoda [41, p. 56, Theorem 2(i)]. More
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interestingly, by appealing appropriately to hypergeometric reduction formula (25),
we can deduce a remarkably simpler (closed-form) version of the fractional
differintegral formula (87) given by

(88)

N ν
z

{
az + b

az2 + 2bz + c

}
=

1
2
e−iπν

(
a

az + b

)ν+1

·

(

1 +
√
b2 − ac

az + b

)−ν−1

+

(
1 −

√
b2 − ac

az + b

)−ν−1



(
az2 + 2bz + c �= 0; a �= 0; |Γ(ν + 1)| <∞;

∣∣∣∣ b2 − ac

(az + b)2

∣∣∣∣ < 1
)
.

Numerous obvious further special cases and applications of each of the fractional
differintegral formulas (78), (79) and (80), as well as of their aforementioned and
other corollaries and consequences (see also [15]), can be found to be derived in
a considerably large number of recent investigations which appeared and continue
to appear in the Journal of Fractional Calculus (see, for details, [7, 22-24, 32-35,
39] and [42]; see also many of the closely-related earlier as well as more recent
references cited in our bibliography). For instance, Miyakoda [22] considered an
obvious special case of the fractional differintegral formula (78) when

µ = m and κ = ± 1
n

(m, n ∈ N).

ACKNOWLEDGMENTS

The present investigation was supported, in part, by the National Science Council
of the Republic of China under Grant NSC98-2115-M-033-007 and, in part, by
the Natural Sciences and Engineering Research Council of Canada under Grant
OGP0007353.

REFERENCES

1. C. M. Carracedo and M. S. Alix, The Theory of Fractional Powers of Operators,
North-Holland Mathematical Studies, Vol. 187, Elsevier (North-Holland) Science
Publishers, Amsterdam, London and New York, 2001.

2. K.-Y. Chen and H. M. Srivastava, Series identities and associated families of
generating functions, J. Math. Anal. Appl., 311 (2005), 582-599.
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