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T-EPIDERIVATIVES OF SET-VALUED MAPS AND ITS APPLICATION
TO SET OPTIMIZATION AND GENERALIZED VARIATIONAL

INEQUALITIES

Qamrul Hasan Ansari* and Johannes Jahn

Abstract. In this paper, we first define a T-cone which is a unified version of
several cones, namely, contingent cone, radial cone, C-tangent cone, Clarke
tangent cone, S-cone, adjacent cone, etc. Then, we define the T-epiderivative
of a set-valued map which includes the contingent epiderivative, radial epi-
derivative, S-epiderivative, adjacent epiderivative etc. as special cases. We
present several properties of such an epiderivative. The generalized vector
T-variational inequality problem is also considered. We provide necessary
and sufficient conditions for a solution of a set optimization problem. Several
existence results for solutions of set optimization problems and a generalized
vector T-variational inequality problem are given.

1. INTRODUCTION

The contingent derivative of a set-valued map at a given point is a set-valued
map whose graph equals the contingent cone to the graph of the set-valued map
at that given point. This concept of derivative of a set-valued map was introduced
by Aubin [1] in 1981. Several authors used this notion of contingent derivative to
derive the optimality conditions for set-valued vector optimization problems; see,
for example, [9, 22] and references therein. It is clear from the definition of the
contingent derivative that two concepts are used. One is the contingent cone and
the other is the graph of the set-valued map. Several authors generalized this kind
of derivative by replacing different kinds of cones. Namely, Shi [26] introduced
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the concept of the TP -cone (we shall call it S-cone) to the graph of a set-valued
map at a given point. By using this cone, he introduced the so-called TP -derivative
(we shall call it S-derivative) of a set-valued map. He gave a relationship between
the TP -derivative and the contingent derivative and some applications to perturbed
set-valued vector optimization problems. This kind of derivative is further used
by Taa [27] to investigate the necessary and sufficient conditions for an optimal
solution of a set-valued vector optimization problem. Flores-Bazán [10] and Taa [28]
introduced the radial derivative by replacing the contingent cone in the definition
of the contingent derivative with the radial cone [6]. They also examined several
properties of such derivative along with some optimality conditions for set-valued
vector optimization problems. In 1997, Jahn and Rauh [16] replaced the graph of
the set-valued map in the definition of the contingent derivative by the epigraph
and the resulting derivative is called contingent epiderivative. More precisely, the
contingent epiderivative of a set-valued map at a given point is a single-valued
map whose epigraph equals the contingent cone to the epigraph of the set-valued
map at that given point. They have shown that the contingent epiderivative has
important properties and is one possible generalization of directional derivatives
in the single-valued convex case. They also presented necessary and sufficient
conditions for a solution of a set-valued vector optimization problem. In [10, 11],
Flores-Bazán generalized the contingent epiderivative by replacing the contingent
cone with the radial cone. Such kind of derivative is called radial epiderivative. He
discussed several properties of such a derivative, relationships with the contingent
epiderivative, and necessary and sufficient optimality conditions for a solution of a
set-valued vector optimization problem. Lalitha et al. [18] introduced the concept of
Clarke epiderivative of a set-valued map by considering the Clarke tangent cone in
place of the contingent cone in the definition of contingent epiderivative. Later, Chen
[8] introduced the concept of generalized Clarke epiderivative. Instead of considered
the Clarke tangent cone to the epigraph of a set-valued map F : X → 2Y at (x̄, ȳ)
in the epigraph of F , its projection on the image space is taken at that point and
minimizers of this projection set is the value of the generalized Clarke epiderivative
at that point. Lalitha et al. [18] and Chen [8] investigated several properties of their
epiderivatives and gave a Fritz John type necessary optimality condition and Karush
Kuhn Tucker type necessary and sufficient optimality conditions for a solution of a
set-valued vector optimization problem. Bigi and Castellani [5] also extended the
contingent epiderivative to a so-called K-epiderivative, and they presented optimality
conditions with this differentiability concept.

In the last decade, the existence of an efficient or a weak efficient solution of
a single-valued vector optimization problem is studied by using vector variational
inequalities; see, for example, [3, 7, 12, 17, 19, 20, 30] and references therein. In
almost of all the papers mentioned above, the necessary and sufficient conditions for
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a weak minimizer of a set-valued optimization problem are given in terms of some
kind of generalized vector variational inequalities, without naming generalized vector
variational inequalities. That is, a weak minimizer of a set-valued optimization
problem is a solution of some kind of generalized vector variational inequality
problem and vice-versa under certain conditions. But no author has discussed the
existence of a weak minimizer of a set-valued optimization problem by proving the
existence of a solution of the corresponding generalized vector variational inequality
problem. This paper is an effort in this direction. One of the main motivations of
this paper is to introduce a unified closed cone (called T-cone) which includes
almost all the cones mentioned above. We derive almost all the results mentioned
in the above references in a more general and unified frame work.

In this paper, we introduce the concept of a T-cone which includes, in general, all
the closed cones, in particular, contingent cone, radial cone, S-cone, Clarke tangent
cone, adjacent cone, etc. By using this cone, we introduce the T-epiderivative of a
set-valued map. More precisely, we define the T-epiderivative of a set-valued map
at a given point being a single-valued map whose epigraph is equal to the T-cone
to the epigraph of the set-valued map at that given point. This kind of derivative is
a unified version of all the derivatives mentioned above. Several properties of the
T-epiderivative and its relations with known epiderivatives are given. We consider
the generalized vector T-variational inequality problem and give some optimality
conditions for a solution of a set-valued vector optimization problem. At the end,
we establish some existence results for solutions of set-valued vector optimization
problems and generalized vector T-variational inequality problems.

2. T-CONES AND T-EPIDERIVATIVES

Let X and Y be two real normed spaces and C be a convex cone in Y inducing
a partial order in Y . Let K be a nonempty subset of X and F : X → 2Y be a
set-valued map with nonempty values, where 2Y denotes the family of all subsets
of Y . The set

graph(F ) = {(x, y) ∈ X × Y : y ∈ F (x)}
is called the graph of the map F . Throughout the paper, unless otherwise specified,
we denote by int K and K, the interior and closure of K, respectively.

Let x̄ ∈ K be given. The contingent cone (also called, Bouligand’s cone) to K

at x̄ [6] (see also [2, 4, 13]) is defined as

C(K; x̄)={d ∈ X : ∃{xn} ⊂ K and {tn} ⊂ (0,∞)

such that xn → x̄ and tn(xn − x̄) → d}

(Severi [25] remarked that he has independently introduced this cone concept). It
is easy to see that the above definition of the contingent cone can be written as
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C(K; x̄) = {d ∈ X : ∃{xn} ⊂ K and {tn}

such that xn → x̄, tn → 0+ and
xn − x̄

tn
→ d

}
.

If x̄ ∈ int K, then C(K; x̄) is clearly the whole space. Since we require xn → x̄

in the definition of C(K; x̄), it is obvious that several authors considered x̄ ∈ K .
If dn =

xn − x̄

tn
[ → d], that is, xn = x̄ + tndn [∈ K], then we have d ∈

C(K; x̄) if and only if there exist sequences {dn} and {tn} with dn → d and
tn → 0+ such that x̄ + tndn ∈ K for all n ∈ N. It is equivalent to saying that
d ∈ C(K; x̄) if and only if there exist sequences {dn} with dn → d and {tn} ⊂ R+

such that
x̄ + tndn ∈ K, for all n ∈ N and tnxn → 0

(see for example [28]).
Let (x̄, ȳ) ∈ graph(F ) be given. Then

C (graph(F ); (x̄, ȳ)) = {(x, y) ∈ X × Y : there exist {tn} ⊂ (0,∞), {xn} ⊂ K

and yn∈F (xn) with (xn, yn)→(x̄, ȳ) such that tn ((xn, yn)−(x̄, ȳ))→(x, y)}
is the contingent cone to the graph of F , graph(F ), at (x̄, ȳ). The set S(graph(F );
(x̄, ȳ)) ⊂ X × Y , defined by

S(graph(F ); (x̄, ȳ))={(x, y) ∈ X×Y : ∃{tn}⊂(0,∞), {xn} ⊂ K with xn → x̄,

and yn ∈ F (xn) such that tn((xn, yn)− (x̄, ȳ)) → (x, y)}
is called the S-cone to graph(F ) at (x̄, ȳ). It is introduced and studied by Shi [26].
He also pointed out that

(2.1) C(graph(F ); (x̄, ȳ)) ⊂ S(graph(F ); (x̄, ȳ))

and that
C(graph(F ); (x̄, ȳ)) = S(graph(F ); (x̄, ȳ))

if graph(F ) is convex.
We observe the following relationship.

Lemma 2.1. If the first component of every element of S(graph(F ); (x̄, ȳ)) is
nonzero, then

S(graph(F ); (x̄, ȳ)) = C(graph(F ); (x̄, ȳ)).

Proof. Let (x, y) ∈ S(graph(F ); (x̄, ȳ)) with x �= 0 be arbitrarily chosen.
Then by the definition of the S-cone, there exist {tn} ⊂ (0,∞), {xn} ⊂ K with
xn → x̄ and yn ∈ F (xn) such that

tn((xn, yn) − (x̄, ȳ)) → (x, y) �= (0, y).
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Since x �= 0 we conclude tn → ∞ and therefore tn(yn − ȳ) → y implies yn → ȳ.
Hence (x, y) ∈ C(graph(F ); (x̄, ȳ)). The opposite inclusion is formulated in
(2.1).

The radial cone R(K; x̄) to K at x̄ [6] (see also [10, 11, 28]) is defined by

R(K; x̄)={d∈X :∃{dn}→d, {tn}⊂(0,∞) such that x̄+tndn∈K for all n∈N} .

It is easy to see that (i) C(K; x̄) ⊂ R(K; x̄) and (ii) C(K; x̄) = R(K; x̄) whenever
K is a convex set.

The radial cone is related to the adjacent cone A(K; x̄) to K at x̄ [29] being
defined by

A(K; x̄) = {d ∈ X : ∀{tn} ⊂ (0,∞) with tn → 0+ ∃{dn} with dn → d such that

x̄ + tndn ∈ K for all n ∈ N} .

It is obvious that A(K; x̄) ⊂ R(K; x̄).
The C-tangent cone T (K; x̄) to K at x̄ [8] is defined by

T (K; x̄)={d∈X : ∀{x̄n}⊂K with x̄n→ x̄ and {tn}⊂(0, +∞) with tn→+∞,

∃{xn} ⊂ K such that xn → x̄ and tn(xn − x̄) → d} .

Notice that the sequence {x̄n} plays no role in the original definition of T (K; x̄).
It is easy to see that the C-tangent cone equals the adjacent cone.

Lemma 2.2. (Thanks to the referees to provide this result.) For an arbitrary
nonempty set K and every x̄ ∈ K we have

T (K; x̄) = A(K; x̄).

Proof. The C-tangent cone can equivalently be written as

T (K; x̄) = {d ∈ X : ∀{tn} ⊂ (0, +∞) with tn → +∞,

∃{xn} ⊂ K such that xn → x̄ and tn(xn − x̄) → d} .

By setting dn := tn(xn − x̄) and θn := 1
tn

for all n ∈ N, we obtain dn → d,
θn → 0+,

x̄ + θndn = xn ∈ K for all n ∈ N

and xn → x̄. Hence, we conclude T (K; x̄) = A(K; x̄).

The concept of C-tangent cone was first used by Chen [8]. He also pointed out
that T (K; x̄) is a closed convex cone while C(K; x̄) is a closed cone, T (K; x̄) ⊂
C(K; x̄), and T (K; x̄) = C(K; x̄) whenever K is a convex set.
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From the above remark, it is clear that C(K; x̄) = R(K; x̄) = A(K; x̄) when-
ever K is a convex set.

Lemma 2.3. The C-tangent cone (and so the adjacent cone) is a superset of
the well-known Clarke tangent cone (e.g., see [14, p. 82]) defined by

TClarke(K; x̄) := {d∈X : ∀{x̄n}⊂K with x̄n→ x̄ and {λn}⊂(0,∞) with λn→0

∃{dn} with dn → d and x̄n + λndn ∈ K for all n ∈ N}.

Proof. Let d ∈ TClarke(K; x̄) be arbitrarily given. Then for every sequence
{x̄n} ⊂ K with x̄n → x̄ and {λn} ⊂ (0,∞) with λn → 0 there exists a sequence
{dn} with dn → d and x̄n + λndn ∈ K for all n ∈ N. If we set xn := x̄n + λndn

for all n ∈ N and tn := 1
λn

for all n ∈ N, we obtain

lim
n→∞xn = lim

n→∞ x̄n + λndn = x̄

and
lim

n→∞ tn(xn − x̄) = lim
n→∞

1
λn

(x̄ + λndn − x̄) = lim
n→∞ dn = d.

Consequently, we have d ∈ T (K; x̄).

We now define a unified version of tangent cones.

Definition 2.1. Let Z be a real normed space. The set-valued map T :
2Z × Z → 2Z defined as

T(P ; z̄) =
{

closed cone, if z̄ ∈ P

∅, otherwise

for all P ⊆ Z, is called a tangent map and T(P ; z̄) is called T-cone to P at z̄.
The contingent cone C(K; x̄), the radial cone R(K; x̄), the Clarke tangent cone

TClarke(K; x̄), the S-cone and the adjacent cone A(K; x̄) (= T (K; x̄)) are examples
of a T-cone.

Let F : K → 2Y be a set-valued map. The epigraph of F (with respect to K),
denoted by epi(F ), is defined as

epi(F ) = {(x, y) ∈ X × Y : x ∈ K, y ∈ F (x) + C}.

Let (x̄, ȳ) ∈ X × Y with x̄ ∈ K and ȳ ∈ F (x̄) be given. A single-valued map
De

T
F (x̄, ȳ) : X → Z is called T-epiderivative of F at (x̄, ȳ) if its epigraph is equal

to the T-cone to the epigraph of F at (x̄, ȳ), that is,

epi(De
T
F (x̄, ȳ)) = T(epi(F ); (x̄, ȳ)).
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Remark 2.1.
(a) If we replace the T-cone by the contingent cone, the S-cone, the radial cone or

the adjacent cone, then the T-epiderivative is called contingent epiderivative
denoted by De

CF (x̄, ȳ) [16], S-epiderivative denoted by De
SF (x̄, ȳ), radial

epiderivative denoted by De
RF (x̄, ȳ) [10, 11] or adjacent epiderivative de-

noted by De
AF (x̄, ȳ) [8], respectively. Similar notions could be introduced

with the Clarke tangent cone and the adjacent cone.
(b) If we replace the epigraph by the graph in the definition of the T-epiderivative,

then the set-valued map DTF (x̄, ȳ) : X → 2Y is called T-derivative of F

at (x̄, ȳ). In other words, DTF (x̄, ȳ) : X →!2Y is the T-derivative! F ! at
(x̄, ȳ) if

graph (DTF (x̄, ȳ)) = T (graph(F ); (x̄, ȳ)) .

(c) If we replace the T-cone by the contingent cone, the S-cone, the radial cone
or the C-tangent cone, then the T-derivative is called contingent derivative
denoted by DCF (x̄, ȳ) [1, 2, 4], S-derivative denoted by DSF (x̄, ȳ) [26,
27], radial derivative denoted by DRF (x̄, ȳ) [10, 28] or adjacent derivative
denoted by DAF (x̄, ȳ) [8], respectively.

The adjacent epiderivative introduced and studied by Chen [8] is a set-valued
map. He discussed several properties of the adjacent epiderivative and gave some op-
timality conditions of set-valued optimization problems. He proved that if De

AF (x̄, ȳ)
and De

CF (x̄, ȳ) exist, then

De
AF (x̄, ȳ)(x) ⊂ {De

CF (x̄, ȳ)(x)}+ C for all x ∈ X,

where C is a closed pointed convex cone in Y ; and

De
AF (x̄, ȳ)(x) = De

CF (x̄, ȳ)(x) for all x ∈ X,

whenever F is C-convex on a convex set K .
The radial epiderivative was introduced and studied by Flores-Bazán [10, 11].

He derived a necessary and sufficient condition for a point to be a weak minimal
solution of a non-convex set-valued vector optimization problem.

Throughout the paper, De
GF (x̄, ȳ) stands for all De

CF (x̄, ȳ), De
SF (x̄, ȳ), De

RF (x̄,

ȳ) and De
AF (x̄, ȳ); and DGF (x̄, ȳ) stands for all DCF (x̄, ȳ), DSF (x̄, ȳ), DRF (x̄, ȳ)

and DAF (x̄, ȳ).

Remark 2.2. It is clear from the above definitions that

epi (De
RF (x̄, ȳ)) ⊆ epi (De

SF (x̄, ȳ)) ⊆ epi (De
CF (x̄, ȳ)) .

One of the main motivations of this paper is to establish some results in con-
nection with the T-epiderivative which will be unified results for the contingent
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epiderivative, the S-epiderivative, the radial epiderivative, the adjacent epideriva-
tive, etc.

3. SOME PROPERTIES OF T-EPIDERIVATIVES

Before proving the existence of a T-epiderivative in a special case we discuss
some properties of these derivatives. By using the same argument as in the proof
of Theorem 2 in [16], one can easily establish the following result.

Theorem 3.1. Let F : K → 2Y be a set-valued map and (x̄, ȳ) ∈ X × Y

be given such that x̄ ∈ K and ȳ ∈ F (x̄). If the T-epiderivative D e
T
F (x̄, ȳ) exists,

then it is unique.

Definition 3.1. Let K be a nonempty convex subset of X . A set-valued map
F : K → 2Y is called C-convex if for all x1, x2 ∈ K and λ ∈ [0, 1]

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2) + C.

Lemma 3.1. [16]. If K is nonempty convex and F : K → 2Y is C-convex,
then epi(F ) is convex.

Theorem 3.2. Let K = X , C be a closed convex cone in Y and F : X → 2Y

be C-convex. If the T-derivative DTF (x̄, ȳ) and the T-epiderivative De
T
F (x̄, ȳ)

exist, then
epi (DTF (x̄, ȳ)) ⊂ epi (De

TF (x̄, ȳ)) .

Proof. It is similar to the proof of Theorem 3 in [16].

Definition 3.2. A single-valued map f : X → Y is called
(i) positively homogeneous if for all x ∈ X and α ≥ 0, f(αx) = αf(x);

(ii) subadditive if for all x1, x2 ∈ X ,

f(x1 + x2) ∈ {f(x1) + f(x2)} − C;

(iii) sublinear if it is both positively homogeneous and subadditive.

Condition A. If P is a nonempty convex set, then T(P ; x̄) is a closed convex
cone.

Theorem 3.3. Let C be a pointed convex cone in Y , K be a convex set in X ,
F : K → 2Y be a C-convex set-valued map with nonempty values, and x̄ ∈ K and
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ȳ ∈ F (x̄) be given. If Condition A is satisfied and the T-epiderivative D e
T
F (x̄, ȳ)

exists, then it is sublinear.

Proof. Since F is C-convex, epi(F ) is a convex set. Then by Condition A,
the T-cone T(epi(F ); (x̄, ȳ)) is a closed convex cone and, therefore, the epigraph
of De

T
F (x̄, ȳ) is a closed convex cone. The rest of the proof lies on the lines of the

proof of Theorem 4 in [16].

Remark 3.1. We note that the adjacent cone T (epi(F ); (x̄, ȳ)) is a closed con-
vex cone and hence epi (De

AF (x̄, ȳ)) is a closed convex cone. Therefore, Theorem
3.3 holds without convexity of K, C-convexity of F and Condition A. For further
detail, we refer to [8].

Theorem 3.4. Let Y = R and assume that there are functions f, g : X → R

with epi(f) ⊃ T(epi(F ); (x̄, ȳ)) ⊃ epi(g). Then, the T-epiderivative De
T
F (x̄, ȳ) is

given by

(3.1) De
TF (x̄, ȳ)(x)=min{y∈R : (x, y)∈T(epi(F ); (x̄, ȳ))} for all x∈X.

Proof. Although it is similar to the proof of Theorem 1 in [16], we include it
for the sake of reader’s convenience. We define the functional De

T
F (x̄, ȳ) : X →

R
⋃
{−∞} by

(3.2) De
TF (x̄, ȳ)(x) = inf{y ∈ R : (x, y) ∈ T(epi(F ); (x̄, ȳ))} for all x ∈ X.

Since epi(g) ⊂ T(epi(F ); (x̄, ȳ)) for every x ∈ X , there is at least one y ∈ R with
(x, y) ∈ T(epi(F ); (x̄, ȳ)). So, De

T
F (x̄, ȳ) is well defined on X . Now we will

show that it is a T-epiderivative.
Let x ∈ X be an arbitrary element. Then by (3.1), there is an infimal sequence

{yn}n∈N ⊂ R converging to De
T
F (x̄, ȳ) with (x, yn) ∈ T(epi(F ); (x̄, ȳ)). Since

the T-cone is closed, we have

(3.3) (x, De
TF (x̄, ȳ)(x)) ∈ T (epi(F ); (x̄, ȳ)) .

Since epi(f) ⊃ T(epi(F ); (x̄, ȳ)) ⊃ epi(g), we have −∞ < f(x) ≤ De
T
F (x̄, ȳ)(x),

and hence (3.1) is satisfied. It follows that

epi (De
TF (x̄, ȳ)) = T (epi(F ); (x̄, ȳ)) .

Hence, De
T
F (x̄, ȳ) is a T-epiderivative of F at (x̄, ȳ).

By using the same argument as in the proof of Corollary 1 in [16], we can easily
derive the following result.
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Corollary 3.1. Let Y = R and K = X . Let F : X → R be a single-
valued convex functional which is continuous at x̄. Assume that the Condition A is
satisfied. Then the T-epiderivative D e

T
F (x̄, ȳ) is given by (3.1).

Theorem 3.5. Let (x̄, ȳ) ∈ graph(F ) be given and F : X → R be a single-
valued function. If the T-epiderivative D e

T
F (x̄, ȳ) exists, then it is lower semicon-

tinuous.

Proof. Since the T-cone is closed, the T-epigraph of De
T
F (x̄, ȳ) is also closed.

The conclusion follows from the fact that a function is lower semicontinuous if and
only if its epigraph is closed.

Theorem 3.6. Let (x̄, ȳ) ∈ graph(F ) be given. If De
T
F (x̄, ȳ) and De

GF (x̄, ȳ)
exist, and G (epi(F ); (x̄, ȳ))⊂T (epi(F ); (x̄, ȳ)), then De

GF (x̄, ȳ)(x)∈{De
T
F (x̄, ȳ)

(x)}+ C for all x ∈ K, where C is a closed pointed convex cone in Y .

Proof. Let x ∈ K be any arbitrary element. Then

(x, De
GF (x̄, ȳ)(x)) ∈ epi (De

GF (x̄, ȳ)) = G (epi(F ); (x̄, ȳ))

⊂ T (epi(F ); (x̄, ȳ)) = epi (De
TF (x̄, ȳ)) ,

and so De
GF (x̄, ȳ)(x) ∈ {De

T
F (x̄, ȳ)(x)}+ C.

Following the lines in [15] one can also prove certain calculus rules for epi-
derivatives. We restrict ourselves to a simple rule for scalar multiplication (cf. [15,
Thm. 2.1]).

Condition B. For every λ > 0

T(m(epi(F )); m(x̄, ȳ)) = mT(epi(F ), (x̄; ȳ))

for m : X × Y → X × Y with m(x, y) = (x, λy).

Theorem 3.7. Let (x̄, ȳ) ∈ graph(F ) be given, let De
T
F (x̄, ȳ) exist, and let

Condition B be satisfied. Then for every λ > 0, D e
T
(λF )(x̄, λȳ) exists and

De
T(λF )(x̄, λȳ) = λDe

TF (x̄, ȳ).

Proof. The assertion follows from the equations
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epi(De
T
(λF )(x̄, λȳ) = T(epi(λF ); (x̄, λȳ))

= T({(x, ỹ) : x ∈ X, ỹ ∈ λF (x) + C}; (x̄, λȳ))

= T({(x, λy) : x ∈ X, y ∈ F (x) + C}; (x̄, λȳ))

= T(m(epi(F )); m(x̄, ȳ))

= m(T(epi(F ); (x̄, ȳ))

= m(epi(De
T
F (x̄, ȳ))

= {(x, λỹ) : x ∈ X, ỹ ∈ De
TF (x̄, ȳ) + C}

= {(x, y) : x ∈ X, y ∈ λDe
TF (x̄, ȳ) + C}

= epi(λDe
T
F (x̄, ȳ)).

4. OPTIMALITY CONDITIONS IN SET OPTIMIZATION

Now we apply the concept of T-epiderivatives to optimality conditions in set
optimization. Our main focus is on sufficient conditions which cannot be handled
by contingent derivatives in an appropriate way.

Let C be a closed convex pointed cone in Y with int C �= ∅ (i.e. C is solid)
and A be a nonempty subset of Y . An element a ∈ A is called a minimal element
(respectively, weak minimal element) of A if

({a} − C) ∩ A ⊂ {a} + C or equivalently, ({a} − C) ∩ A = {a}.(
respectively, (A−{a})∩(−int C)=∅ or equivalently, ({a}−int C)∩A=∅

)
.

Consider the set-valued vector optimization problem (in short, VOP)

min
x∈K

F (x),

where K is a nonempty subset of X and F : K → 2Y is a set-valued map with
nonempty values.

A pair (x̄, ȳ) with x̄ ∈ K and ȳ ∈ F (x̄) is called a minimizer (respectively,
weak minimizer) of VOP if ȳ is a minimal element (respectively, weak minimal
element) of the set F (K) =

⋃
x∈K

F (x), that is,

({ȳ} − C) ∩ F (K) ⊂ {ȳ} + C or equivalently, ({ȳ} − C) ∩ F (K) = {ȳ}.(
respectively, (F (K)−{ȳ})∩(−int C)=∅ or equivalently, ({ȳ}−int C)∩F (K)=∅

)
.

More precisely, (x̄, ȳ) ∈ graph(F ) is a weak minimizer of VOP if

F (x) − {ȳ} ⊂ Y \ (−int C) for all x ∈ K.
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We present an existence result for a minimal element of a nonempty noncompact
set.

Theorem 4.1. Let Y be a topological vector space and A be a nonempty
subset of Y . Assume that there exist nonempty compact subsets B and D of A

such that for each z ∈ A \ D, there exists ŷ ∈ B satisfying ŷ ∈ A ∩ (z − int C).
Then, A has a minimal element.

Proof. (Thanks to one of the referees to provide this short proof). Since B and
D are compact, (B ∪D) is compact as well. By Corollary 3.8 in [21], we can find
ȳ ∈ B ∪ D satisfying

(4.1) (B ∪ D) ∩ (ȳ − C) = {ȳ}.

We will prove that ȳ is a minimal point of A. Arguing by contradiction, assume
that it is not the case, then there is some y ∈ A with y �= ȳ satisfying

(4.2) y ∈ ȳ − C.

Thus, y /∈ D by (4.1). By the imposed coercivity condition, we find ŷ ∈ B such
that ŷ ∈ A ∩ (y − int C), and thus

(4.3) ŷ ∈ y − int C.

Combining (4.2) and (4.3), and taking into account that C + int C = int C due to
the convexity and conical property of C we have

ŷ ∈ y − int C ⊂ ȳ − C − int C = ȳ − int C ⊂ ȳ − C \ {0}.

hence, ŷ ∈ B ∩ (ȳ − C) and ŷ �= ȳ, which contradicts the relation (4.1). This
contradiction justifies the minimality of ȳ to A. The proof is complete.

Remark 4.1. The coercivity condition “Assume that there exist nonempty
compact subsets B and D of A such that for each z ∈ A \ D, there exists ŷ ∈ B

satisfying ŷ ∈ A∩ (z − int C)” in Theorem 4.1 is satisfied if the set A is compact.

Corollary 4.1. Let X and Y be topological vector spaces, K be a nonempty
subset of X and F : K → 2Y be a set-valued map with nonempty values. Assume
that there exist a nonempty compact subsets B and D of F (K) such that for each
z ∈ F (K) \D, there exists ŷ ∈ B satisfying ŷ ∈ F (K) ∩ (z − int C). Then, there
exists a minimizer of VOP.

We consider the following generalized vector T-variational inequality problem
(for short, T-GVVIP): Find (x̄, ȳ) ∈ X × Y with x̄ ∈ K and ȳ ∈ F (x̄) such that

De
TF (x̄, ȳ)(x− x̄) /∈ −int C for all x ∈ K.
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Definition 4.1. Let x̄ ∈ K and ȳ ∈ F (x̄) be given. A set-valued map
F : K → 2Y is called T-pseudoconvex at (x̄, ȳ) if

De
TF (x̄, ȳ)(x−x̄) /∈ −int C for all x ∈ K ⇒ y−ȳ /∈ −int C for all y ∈ F (x).

It is called G-pseudoconvex at (x̄, ȳ) if we replace De
T
F (x̄, ȳ) by De

GF (x̄, ȳ) in the
above relation.

As a simple example we consider the set-valued map F : R → 2R with F (x) =
{− 1

1+x2 } + R+ for all x ∈ R. For x̄ = 0 and ȳ = −1 we have by Theorem 3.4
for the contingent epiderivative De

CF (0,−1)(x) = 0 for all x ∈ R. Since for every
y ∈ F (x) with x ∈ R

y − ȳ = y + 1 ≥ − 1
1 + x2︸ ︷︷ ︸
≥−1

+1 ≥ 0,

the set-valued map F is C-pseudoconvex at (0,−1).

Theorem 4.2. Let (x̄, ȳ) ∈ graph(F ) be given. If De
T
F (x̄, ȳ) exists, F is T-

pseudoconvex at (x̄, ȳ), then every solution (x̄, ȳ) of T-GVVIP is a weak minimizer
of VOP.

Proof. It directly follows from the definition of T-pseudoconvexity of F .

Proposition 4.1. Let De
GF (x̄, ȳ) and De

T
F (x̄, ȳ) be exist, G (epi(F ); (x̄, ȳ)) ⊂

T(epi(F ); (x̄, ȳ)), and C be a closed pointed solid convex cone in Y . If F is G-
pseudoconvex at (x̄, ȳ), then it is T-pseudoconvex at (x̄, ȳ), that is, if

De
GF (x̄, ȳ)(x− x̄) /∈ −int C for all x ∈ K ⇒ y − ȳ /∈ −int C for all y ∈ F (x)

then

De
T
F (x̄, ȳ)(x− x̄) /∈ −int C for all x ∈ K ⇒ y − ȳ /∈ −int C for all y ∈ F (x).

Proof. Assume that for all x̄ ∈ K and ȳ ∈ F (x̄), we have

(4.4) De
TF (x̄, ȳ)(x− x̄) /∈ −int C for all x ∈ K

and there exists y ∈ F (x) such that y − ȳ ∈ −int C. Then, by G-pseudoconvexity
of F at (x̄, ȳ), there exists z ∈ K such that

(4.5) De
GF (x̄, ȳ)(z − x̄) ∈ −int C.
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By Theorem 3.6,

(4.6) De
GF (x̄, ȳ)(z − x̄) ∈ {De

T
F (x̄, ȳ)(z − x̄)}+ C.

From (4.5) and (4.6), we obtain

De
T
F (x̄, ȳ)(z − x̄) ∈ {De

GF (x̄, ȳ)(z − x̄)} − C ⊂ −int C − C = −int C

which is a contradiction of (4.4).

Proposition 4.2. Let F : K → 2Y be a set-valued map and (x̄, ȳ) ∈ graph(F )
for which De

T
F (x̄, ȳ) exists. If

(4.7) F (x) − {ȳ} ⊂ {De
T
F (x̄, ȳ)(x − x̄)} + C for all x ∈ K

then F is T-pseudoconvex at (x̄, ȳ).

Proof. Let

(4.8) De
TF (x̄, ȳ)(x− x̄) /∈ −int C for all x ∈ K.

Since (4.7) holds for all x ∈ K, we have

(4.9) y − ȳ ∈ {De
T
F (x̄, ȳ)(x− x̄)} + C for all y ∈ F (x).

Combining (4.8) and (4.9), we obtain

y − ȳ /∈ −int C for all y ∈ F (x).

Hence, F is T-pseudoconvex at (x̄, ȳ).

Proposition 4.3. Let F : K → 2Y be a set-valued map and (x̄, ȳ) ∈
graph(F ) for which De

RF (x̄, ȳ) and De
T
F (x̄, ȳ) exist and R (epi(F ); (x̄, ȳ)) ⊂

T (epi(F ); (x̄, ȳ)). Then (4.4) holds and hence F is T-pseudoconvex at (x̄, ȳ).

Proof. Let y ∈ F (x) − {ȳ} be arbitrarily chosen. Then ȳ + y ∈ F (x) ⊂
F (x) + C. This implies that ȳ + tnyn ∈ F (x̄ + tnxn) + C with tn = 1, yn = y
and xn = x − x̄. By the definition of the radial epiderivative, we have y ∈
De

RF (x̄, ȳ)(x− x̄) + C.
By Theorem 3.6,

y ∈ De
RF (x̄, ȳ)(x− x̄) + C ⊆ {De

TF (x̄, ȳ)(x − x̄)} + C + C

= {De
TF (x̄, ȳ)(x − x̄)} + C.

Thus, y ∈ {De
T
F (x̄, ȳ)(x − x̄)} + C and hence F (x) − {ȳ} ⊆ {De

T
F (x̄, ȳ)(x −

x̄)} + C.
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Remark 4.2.

(a) It is clear from Lemma 3 in [16] and Theorem 2.3 in [8] that (4.4) holds
for De

CF (x̄, ȳ) and De
AF (x̄, ȳ) if K is a convex set and F : K → 2Y is a

C-convex set-valued map. In this case, F is T-pseudoconvex at (x̄, ȳ).

(b) Let C be a pointed proper convex cone with int C �= ∅ and (x̄, ȳ) ∈
graph(F ). If De

RF (x̄, ȳ) exists, then it is proved by Flores-Bazán [10] that

De
RF (x̄, ȳ)(x− x̄) /∈ −int C for all x ∈ K

if and only if (x̄, ȳ) is a weak minimizer of VOP.

Definition 4.2. Let (x̄, ȳ) ∈ graph(F ) be given. A T-epiderivative is called a
T-variation of F at (x̄, ȳ) if

De
TF (x̄, ȳ)(x−̄x)∈−int C for some x∈K ⇒ ∃ y∈F (K) such that y−ȳ ∈−int C.

Remark 4.3. This means that a negative T-epiderivative of F at (x̄, ȳ) implies
the existence of a point strictly less than ȳ. This implication extends the known
standard result that a negative directional derivative implies that function values
locally decrease on a ray. In the case of a T-variation, we do not consider a short
ray but only one point. By the proof of Thm. 7 in [16] the contingent epiderivative
is a T-variation.

Theorem 4.3. Let (x̄, ȳ) ∈ graph(F ) be given. If (x̄, ȳ) is a weak minimizer
of VOP and De

T
F (x̄, ȳ) is a T-variation of F at (x̄, ȳ), then (x̄, ȳ) is a solution of

T-GVVIP.

Proof. Suppose that there is an x ∈ K such that

De
TF (x̄, ȳ)(x − x̄) ∈ −int C.

Since De
T
F (x̄, ȳ) is a T-variation of F at (x̄, ȳ), there exists a y ∈ F (x) such that

y− ȳ ∈ −int C, that is, (x̄, ȳ) is not a weak minimizer of VOP. This completes the
proof.

Theorem 4.4. Let (x̄, ȳ) ∈ graph(F ) be given. If (x̄, ȳ) is a weak minimizer
of VOP and the S-epiderivative D e

SF (x̄, ȳ) exists, then

De
SF (x̄, ȳ)(x− x̄) /∈ −int C for all x ∈ K.
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Proof. Suppose that there is an x ∈ K such that

(4.7) y := De
SF (x̄, ȳ)(x − x̄) ∈ −int C.

By definition of the S-epiderivative (x−x̄, y)∈epi(De
SF (x̄, ȳ))=S(epi(F ); (x̄, ȳ)).

Then, there exist sequences {tn} ⊂ (0,∞), {xn} ⊂ K with xn → x̄, and yn ∈
F (xn) + C such that

tn((xn, yn) − (x̄, ȳ)) → (x − x̄, y).

Hence, we have
tn(yn − ȳ) → y ∈ −int C.

Therefore, there exists an integer N ∈ N such that

tn(yn − ȳ) ∈ −int C for all n ≥ N

resulting in
yn − ȳ ∈ −int C for all n ≥ N

which contradicts that (x̄, ȳ) is a weak minimizer of VOP.

5. EXISTENCE OF SOLUTIONS OF GENERALIZED VECTOR

T-VARIATIONAL INEQUALITIES

We shall use the following particular forms of Corollaries 3.2 and 4.1 in [23]
to establish the existence results for solutions of T-GVVIP.

Theorem A. ([23]). Let X be a nonempty convex subset of a Hausdorff topolog-
ical vector space E . Let S : X → 2X be a set-valued map such that the following
conditions hold:

(i) For all x ∈ X , x /∈ S(x) and S(x) is convex;
(ii) For all y ∈ X , S−1(y) = {x ∈ X : y ∈ S(x)} is open in X ;
(iii) There exist a nonempty compact convex subset C ⊆ X and a nonempty

compact subset K of X such that for each x ∈ X \ K, there exists ŷ ∈ C
satisfying x ∈ S−1(ŷ).

Then, there exists a point x̄ ∈ X such that S(x̄) = ∅.

Definition 5.1. ([24]). Let E be a topological vector space and let C be a
lattice with a minimal element, denoted by 0. A mapping Φ : 2E → C is called
a measure of noncompactness provided that the following conditions hold for any
M, N ∈ 2E :

(a) Φ (coM) = Φ(M), where coM denotes the closed convex hull of M .
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(b) Φ(M) = 0 if and only if M is precompact.
(c) Φ(M ∪ N ) = max{Φ(M), Φ(N )}.

Definition 5.2 ([24]). Let E be a topological vector space, X ⊆ E , and let Φ be a
measure of noncompactness on E . A set-valued map (correspondence) T : X → 2E

is called Φ-condensing provided that if M ⊆ X with Φ(T (M)) ≥ Φ(M) then M

is relative compact, that is, M is compact.

Remark 5.1. ([23]). Note that every set-valued map defined on a compact
set is Φ-condensing for any measure of noncompactness Φ. If E is locally convex,
then a compact set-valued map (that is, T (X ) is precompact) is Φ-condensing for
any measure of noncompactness Φ. Obviously, if S : X → 2E is Φ-condensing and
T : X → 2E satisfies T (x) ⊆ S(x) for all x ∈ X , then T is also Φ-condensing.

Theorem B. Let X be a nonempty closed convex subset of a Hausdorff topo-
logical vector space E and let Φ be a measure of noncompactness on E . Let
S : X → 2X be a set-valued map such that the following conditions hold:

(i) For all x ∈ X , x /∈ S(x) and S(x) is convex;
(ii) For all y ∈ X , S−1(y) = {x ∈ X : y ∈ S(x)} is open in X ;
(iii) S is Φ-condensing.

Then, there exists a point x̄ ∈ X such that S(x̄) = ∅.

We establish some existence results for solutions of T-GVVIP.

Theorem 5.1. Let X and Y be Hausdorff topological vector spaces, K be a
nonempty convex subset of X and F : K → 2Y be a C-convex set-valued map with
nonempty convex values such that for all y ∈ Y , F −1(y) = {x ∈ K : y ∈ F (x)} is
open in K and the graph of F , graph(F ) = {(x, y) ∈ K×Y : y ∈ F (x)} is closed
in K×Y . Let the Condition A be satisfied. For each u ∈ K, let {(x, y) ∈ K×Y :
De

T
F (x, y)(u−x) /∈ −int C} be a closed subset of K×Y . Assume that there exist

a nonempty compact convex subset B1 × B2 ⊆ K × Y and a nonempty compact
subset D1×D2 of K×Y such that for each (û, v̂) ∈ K×Y \D1×D2, there exists
(ŷ1, ŷ2) ∈ B1 ×B2 satisfying De

T
F (û, v̂)(ŷ1 − û) ∈ −int C and ŷ2 ∈ F (ˆ̂v). Then,

there exists a solution (x̄, ȳ) ∈ K × Y with x̄ ∈ K and ȳ ∈ F (x̄) of T-GVVIP.

Proof. Define a set-valued map P : K × Y → 2K as

P(x, y) = {u ∈ K : De
TF (x, y)(u− x) ∈ −int C} for all (x, y) ∈ K × Y.

Then, x /∈ P(x, y) for all (x, y) ∈ K × Y . If x ∈ P(x, y), then

De
TF (x, y)(0) ∈ −int C.
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Since the T-epiderivative is positively homogeneous and subadditive (Theorem 3.3),
we have

0 = De
T
F (x, y)(0) ∈ −int C,

a contradiction.
Again, by using the positive homogeneity and subadditivity of the T-epiderivative,

it is easy to see that P(x, y) is convex for all (x, y) ∈ K × Y .
By the assumption, the complement [P−1(u)]c = {(x, y) ∈ K×Y : De

T
F (x, y)

(u−x) /∈ −int C} of P−1(u) = {(x, y) ∈ K ×Y : De
T
F (x, y)(u−x) ∈ −int C}

is closed in K × Y .
Now, we define another set-valued map S : K × Y → 2K×Y as

S(x, y) =

{
P(x, y)× F (x), if (x, y) ∈ graph(F )
K × F (x), if (x, y) /∈ graph(F ).

Then, clearly (x, y) /∈ S(x, y) for all (x, y) ∈ K×Y and S(x, y) is convex because
P(x, y), F (x) and K are convex. For all (u, v) ∈ K × Y ,

S−1(u, v) =
[
P−1(u) ∩ (K×Y ) ∩ (F−1(v)×Y )

]
⋃[

(K×Y \ graph(F )) ∩ (K×Y ) ∩ (F−1(v)×Y )
]

=
[
P−1(u) ∩ (F−1(v)×Y )

]⋃ [
(K×Y \ graph(F )) ∩ (F−1(v)×Y )

]
.

Since P−1(u) is open in K × Y , F−1(v) is open in K and K × Y \ graph(F ) is
open in K × Y , we have S−1(u, v) is open in K × Y .

Then all the conditions of Theorem A (where X = K ×Y is nonempty convex
subset of X × Y ) are satisfied. Hence, there exists (x̄, ȳ) ∈ K × Y such that
S(x̄, ȳ) = ∅. If (x̄, ȳ) /∈ graph(F ), then K × F (x̄) = ∅ which implies that either
K = ∅ or F (x̄) = ∅, a contradiction to our assumption that K is nonempty and
F (x) is nonempty for all x ∈ K. Therefore, (x̄, ȳ) ∈ graph(F ) and so x̄ ∈ K and
ȳ ∈ F (x̄) such that

P(x̄, ȳ) × F (x̄) = ∅.

Since ȳ ∈ F (x̄) �= ∅, we have P(x̄, ȳ) = ∅. Thus,

De
TF (x̄, ȳ)(u− x̄) /∈ −int C for all u ∈ K.

This completes the proof.

Remark 5.2.

(a) For all y ∈ Y , F−1(y) = {x ∈ K : y ∈ F (x)} is open in K if F is lower
semicontinuous on Y .
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(b) The graph of F , graph(F ) = {(x, y) ∈ K × Y : y ∈ F (x)} is closed in
K × Y if F is upper semicontinuous with nonempty compact values.

(c) The last assumption (coercivity condition) in the previous theorem holds if K
is a compact convex subset of X and Y is a compact space.

Let X and Z be topological vector spaces and let U be a nonempty subset of
X . Let G : U → 2Z \ {∅} be a set-valued map and g : U → Z be a single-valued
map. Recall that g is called a selection of G on U if g(x) ∈ G(x) for all x ∈ U .
Furthermore, the function g is called a continuous selection of G on U if it is a
selection of G and continuous on U .

Theorem 5.2. Let X and Y be Hausdorff topological vector spaces, K be a
nonempty convex subset of X and F : K → 2Y be a C-convex set-valued map with
nonempty values such that it has a selection f : K → Y . Let the Condition A be
satisfied. For each u ∈ K, let {(x, y) ∈ K×Y : De

T
F (x, f(x))(u−x) /∈ −int C}

be a closed subset of K × Y . Assume that there exist a nonempty compact convex
subset B ⊆ K and a nonempty compact subset D of K such that for each û ∈ K\D,
there exists ŷ ∈ B satisfying D e

T
F (û, f(û))(ŷ − û) ∈ −int C. Then, there exists a

solution (x̄, ȳ) ∈ K × Y with x̄ ∈ K and ȳ = f(x̄) ∈ F (x̄) of T-GVVIP.

Proof. For each x ∈ K, we define a set-valued map S : K → 2K as

S(x) = {u ∈ K : De
T
F (x, f(x))(u− x) ∈ −int C}.

Then, it is clear that x /∈ S(x) for all x ∈ K. It can be easily seen that S(x) is
convex for all x ∈ K. By our assumption

[S−1(u)]c = {(x, y) ∈ K × Y : De
TF (x, f(x))(u− x) /∈ −int C}

is closed in K. Thus all the conditions of Theorem A are satisfied and hence there
exists x̄ ∈ K such that S(x̄) = ∅, that is,

De
TF (x̄, f(x̄))(u − x̄) /∈ −int C for all u ∈ K.

Let ȳ = f(x̄) ∈ F (x̄). Then, there exists x̄ ∈ K and ȳ = f(x̄) ∈ F (x̄) such that

De
TF (x̄, ȳ)(u− x̄) /∈ −int C for all u ∈ K.

This completes the proof.

Theorem 5.3. Let X and Y be Hausdorff topological vector spaces, K be a
nonempty closed convex subset of X and F : K → 2Y be a C-convex set-valued
map with nonempty convex values such that for all y ∈ Y , F −1(y) = {x ∈ K :
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y ∈ F (x)} is open in K and the graph of F , graph(F ) = {(x, y) ∈ K × Y :
y ∈ F (x)} is closed in K × Y . Let the Condition A be satisfied. For each
u ∈ K, let {(x, y) ∈ K × Y : De

T
F (x, y)(u− x) /∈ −int C} be a closed subset of

K ×Y . Let Φ be a measure of noncompactness on X ×Y and the set-valued map
T : (x, y) �→ K × F (x) from K × Y to itself be Φ-condensing. Then, there exists
a solution (x̄, ȳ) ∈ K × Y with x̄ ∈ K and ȳ ∈ F (x̄) of T-GVVIP.

Proof. Let P and S be the same as defined in the proof of Theorem 5.1. In view
of Theorem B, it is sufficient to show that the set-valued map S is Φ-condensing.
By the definition of S , we have

S(x, y) ⊆ T (x, y) = K × F (x) for all (x, y) ∈ K × Y.

Since T is Φ-condensing, by Remark 5.2, S is Φ-condensing. This completes the
proof.

By using the same argument as in the proof of Theorem 5.3, we can easily
derive the following result.

Theorem 5.4. Let X and Y be Hausdorff topological vector spaces, K be a
nonempty closed convex subset of X and F : K → 2Y be a C-convex set-valued
map with nonempty values such that it has a selection f : K → Y . For each
u ∈ K, let {(x, y) ∈ K × Y : De

T
F (x, f(x))(u−x) /∈ −int C} be a closed subset

of K×Y . Let the Condition A be satisfied. Let Φ be a measure of noncompactness
on X × Y and the set-valued map T : (x, y) �→ K × F (x) from K × Y to itself
be Φ-condensing. Then, there exists a solution (x̄, ȳ) ∈ K × Y with x̄ ∈ K and
ȳ = f(x̄) ∈ F (x̄) of T-GVVIP.

6. CONCLUSION

This paper presents a unified approach to epiderivatives and its use in set op-
timization. Since the concept of an epiderivative depends on the used notion of a
tangent cone, the known epiderivatives are quite different. In this article we work
out the basic mathematical structure being necessary for epiderivatives in optimiza-
tion. It turns out that one needs only some few properties of tangent cones for
an efficient use of epiderivatives in optimization, as for optimality conditions and
variational inequalities.
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