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WELL-POSEDNESS OF SYSTEMS OF EQUILIBRIUM PROBLEMS

Rong Hu, Ya-Ping Fang, Nan-Jing Huang and Mu-Ming Wong*

Abstract. In this paper we introduce the concepts of well-posedness and
generalized well-posedness for a system of equilibrium problems. We derive
a metric characterization of well-posedness by considering the diameter of
approximating solution set and a Furi-Vignoli type characterization of gener-
alized well-posedness by considering the Kuratowski noncompactness measure
of approximating solution set. Under suitable conditions, we prove that the
well-posedness of a system of equilibrium problems is equivalent to the exis-
tence and uniqueness of its solution.

1. INTRODUCTION

The concept of well-posedness was first introduced by Tykhonov [37] for a
minimization problem, which has been known as Tykhonov well-posedness. The
Tykhonov well-posedness of a minimization problem means the existence and unique-
ness of minimizers, and the convergence of every minimizing sequence toward the
unique minimizer. The importance of Tykhonov well-posedness for a minimization
problem has been widely recognized by researchers from theoretical and practical
fields. For details, we refer the readers to [7, 12, 19, 31, 36] and the references
therein. The concept of well-posedness has been generalized to several problems
related to minimization problems for past decades. As known, under convexity and
differentiability assumptions, a minimization problem is equivalent to a variational
inequality problem. This fact motivates researchers to study the well-posedness of
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various variational inequality problems. Lucchetti and Patrone [31] introduced the
first notion of well-posedness for a variational inequality in the literature. Since
then, some concepts of well-posedness have been introduced and studied for several
classes of variational inequality problems (see, e.g., [1, 9, 10, 14, 15, 28, 30]). The
concept of well-posedness has also been generalized to Nash equilibrium problems
(see, e.g., [29, 32-35]) and fixed point problems (see, e.g., [26, 27]). Blum and Oet-
tli [8] introduced and studied the equilibrium problem, which provides a unifying
formulation of minimization problems, variational inequality problems, complemen-
tarity problems, Nash equilibrium problems and fixed point problems. Recently,
Fang et al [15] further considered the well-posedness of equilibrium problems.

On the other hand, some new contributions have been given to the theories of
variational inequalities and equilibrium problems. Some authors introduced and
studied systems of variational inequalities (see, e.g., [5, 6, 16, 20, 21, 38]). The
motivations originate from the fact that under suitable conditions, a Nash equilibrium
problem is equivalent to a system of variational inequalities (see, e.g., [22]). Some
authors further introduced and studied systems of various equilibrium problems
(see, e.g., [2, 3, 4, 17, 18, 23]). The purpose of this paper is to investigate the
well-posedness of a system of equilibrium problems. We generalize the concept
of well-posedness to a system of equilibrium problems and derive some metric
characterizations of well-posedness. Under suitable conditions, we further prove
that the well-posedness of a system of equilibrium problems is equivalent to the
existence and uniqueness of its solution.

2. PRELIMINARIES AND NOTATIONS

Let E and K be two Banach spaces and let D ⊂ E and K ⊂ X be two nonempty
sets. Let f : D × K × K → R and g : K × D × D → R be two functions. The
system of equilibrium problems is formulated as follows: find (x∗, u∗) ∈ D × K

such that

(SEP ) :

{
f(x∗, u∗, u) ≥ 0, ∀u ∈ K,

g(u∗, x∗, x) ≥ 0, ∀x ∈ D.

The system of equilibrium problems includes as special cases systems of variational
inequalities considered in [38, 5, 20, 21].

In the sequel we recall some concepts.

Definition 2.1. [8]. A bifunction ϕ : K × K → R is said to be monotone if

ϕ(u, v) + ϕ(v, u) ≤ 0, ∀u, v ∈ K.

Definition 2.2. [8]. Let K be convex. A bifunction ϕ : K × K → R̄ is said
to be hemicontinuous if for each x, y ∈ K ,
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lim sup
t→0+

ϕ(x + t(y − x), y) ≤ ϕ(x, y).

The following Minty type lemma plays a very important role in the theory of
equilibrium problems.

Lemma 2.1. [8]. Let K be convex and let ϕ : K × K → R be a monotone
and hemicontinuous bifunction. Assume that

(i) ϕ(u, u) ≥ 0 for all u ∈ K.
(ii) for every u ∈ K, ϕ(u, ·) is convex.

Then for given u∗ ∈ K,
ϕ(u∗, v) ≥ 0, ∀v ∈ K

if and only if
ϕ(v, u∗) ≤ 0, ∀v ∈ K.

To derive a Furi-Vignoli type characterization of generalized well-posedness, we
need the following concepts.

Definition 2.3. (see [25]). Let A be a nonempty subset of E . The measure of
noncompactness µ of the set A is defined by

µ(A) = inf{ε > 0 : A ⊂ ∪n
i=1Ai, diamAi < ε, i = 1, 2, · · · , n},

where diam means the diameter of a set.

Definition 2.4. Let A, B be nonempty subsets of E . The Hausdorff metric
H(·, ·) between A and B is defined by

H(A, B) = max{e(A, B), e(B, A)},
where e(A, B) = supa∈A d(a, B) with d(a, B) = inf b∈B ‖a − b‖. Let {An} be a
sequence of nonempty subsets of E . We say that An converges to A in the sense
of Hausdorff metric if H(An, A) → 0. It is easy to see that e(An, A) → 0 if and
only if d(an, A) → 0 for all selection an ∈ An. For more details on this topic, we
refer the readers to [24, 25].

3. WELL-POSEDNESS AND METRIC CHARACTERIZATIONS

In this section we introduce the concepts of well-posedness and generalized well-
posedness for (SEP ) and give some metric characterizations of well-posedness and
generalized well-posedness.

Definition 3.1. A sequence {(xn, un)} is called an approximating sequence
for (SEP ) if (xn, un) ∈ D × K for all n ∈ N and there exists 0 < εn → 0 such
that for all n ∈ N ,
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{
f(xn, un, u) + εn ≥ 0, ∀u ∈ K,

g(un, xn, x) + εn ≥ 0, ∀x ∈ D.

Definition 3.2. We say that (SEP ) is well-posed if (SEP ) has a unique
solution and every approximating sequence for (SEP ) converges strongly to the
unique solution; We say that (SEP ) is generalized well-posed if the solution set
S of (SEP ) is nonempty and every approximating sequence for (SEP ) has a
subsequence which converges strongly to some point of S.

To give some metric characterizations of well-posedness and generalized well-
posedness, we consider the following approximating solution set:

Ω(ε)={(x, u) ∈ D×K : f(x, u, v)+ε≥0, ∀v ∈ K and g(u, x, y)+ε≥0, ∀y ∈ D}.
Obviously, Ω(ε1) ≤ Ω(ε2) whenever 0 ≤ ε1 ≤ ε2.

The following theorem derives a metric characterization of well-posedness of
(SEP ).

Theorem 3.1. Let D and K be nonempty, closed and convex subsets of
Banach spaces E and X respectively. Assume that f : D × K × K → R and
g : K × D × D → R satisfy the following conditions:

(i) for every (x, u) ∈ D × K, f(x, u, u) ≥ 0 and g(u, x, x) ≥ 0.
(ii) for every (x, u) ∈ D×K, f(x, ·, ·) and g(u, ·, ·) are monotone and hemicon-

tinuous.
(iii) for every (x, u) ∈ D × K, f(·, u, ·) and g(·, x, ·) are convex and lower

semicontinuous.

Then (SEP ) is well-posed if and only if

Ω(ε) 	= ∅, ∀ε > 0, and diam Ω(ε) → 0 as ε → 0.

Proof. Suppose that (SEP ) is well-posed. Then there exists unique (x ∗, u∗) ∈
D × K such that {

f(x∗, u∗, u) ≥ 0, ∀u ∈ K,

g(u∗, x∗, x) ≥ 0, ∀x ∈ D.

Obviously Ω(ε) 	= ∅ since (x∗, u∗) ∈ Ω(ε) for all ε > 0. If diam Ω(ε) 	→ 0 as
ε → 0, then there exist l > 0, 0 < εn → 0, and (xn, un), (yn, vn) ∈ Ω(εn) such
that

‖(xn, un) − (yn, vn)‖ > l, ∀n ∈ N.

Clearly (xn, un) and (yn, vn) are approximating sequences for (SEP ). By the
well-posedness of (SEP ), they have to converge strongly to the unique solution
(x∗, u∗) of (SEP ), a contradiction.
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Conversely, suppose that Ω(ε) 	= ∅ for all ε > 0 and diam Ω(ε) → 0 as
ε → 0. Let {(xn, un)} be an approximating sequence for (SEP ). Then there exists
0 < εn → 0 such that for all n ∈ N ,

(1)

{
f(xn, un, u) + εn ≥ 0, ∀u ∈ K,

g(un, xn, x) + εn ≥ 0, ∀x ∈ D.

This means (xn, un) ∈ Ω(εn) for all n ∈ N . Taking into account diam Ω(ε) → 0
as ε → 0, {(xn, un)} is a Cauchy sequence and so it converges strongly to (x̄, ū) ∈
D × K. From (1) and conditions (ii)-(iii), we get

(2)
f(x̄, v, ū) ≤ lim inf

n→∞ f(xn, v, un)

≤ lim inf
n→∞ {−f(xn, un, v)} ≤ lim inf

n→∞ εn = 0, ∀v ∈ K

and

(3)
g(ū, y, x̄) ≤ lim inf

n→∞ g(un, y, xn)

≤ lim inf
n→∞ {−g(un, xn, y)} ≤ lim inf

n→∞ εn = 0, ∀y ∈ D.

By assumptions, it is easy to see that f(x̄, ·, ·) and g(ū, ·, ·) satisfy all the assumptions
of Lemma 2.1 respectively. It follows from (2)-(3) and Lemma 2.1 that

f(x̄, ū, v) ≥ 0, ∀v ∈ K and g(ū, x̄, y) ≥ 0, ∀y ∈ D.

Thus (x̄, ū) solves (SEP ).
To complete the proof, it is sufficient to prove that the solution of (SEP ) is

unique. This follows directly from diam Ω(ε) → 0 as ε → 0.

When (SEP ) has more than one solutions, the diameter of Ω does not tend
to zero. In this case, we consider the Kuratowski noncompactness measure of
approximating solution set instead of the diameter and obtain a Furi-Vignoli type
characterization of generalized well-posedness.

Theorem 3.2. Let D and K be nonempty, closed and convex subsets of real
Banach spaces E and X respectively. Let f : D ×K ×K → R and g : K ×D ×
D → R be such that for every (x, u) ∈ D × K, f(·, ·, u) and g(·, ·, x) are upper
semicontinuous. Then (SEP ) is generalized well-posed if and only if

Ω(ε) 	= ∅, ∀ε > 0, and µ(Ω(ε)) → 0 as ε → 0.
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Proof. Suppose that (SEP ) is generalized well-posed. Then the solution set
S of (SEP ) is nonempty compact. Clearly Ω(ε) 	= ∅ since S ⊂ Ω(ε) for all ε > 0.
If µ(Ω(ε)) 	→ 0 as ε → 0, then there exists δ > 0 such that

(4) µ(Ω(ε)) > δ > 0, ∀ε > 0.

By the compactness of S, there exists a finite set {w1, w2, · · · , wm} ⊂ S such that

(5) S ⊂ ∪m
k=1B(wk,

δ

2
),

where B(wk,
δ
2 ) denotes the open ball centered at wk with radius δ

2 . Clearly, wk ∈
Ω(ε) for every ε > 0. By (4), for every n = 1, 2, · · · , k, there exists zn = (xn, un) ∈
Ω(1/n) such that

(6) zn /∈ ∪k
i=1B(wi,

δ

2
)

since Ω(1/n) cannot be covered by finitely many sets with diameter less that δ. It is
easy to see that {zn} is an approximating sequence for (SEP ). By the generalized
well-posedness of (SEP ), {zn} has a subsequence converging strongly to some
point of S. But as is seen in (5)-(6), {zn} has no subsequence converging to some
point of S, a contradiction.

Conversely, assume that

Ω(ε) 	= ∅, ∀ε > 0, and µ(Ω(ε)) → 0 as ε → 0.

We first show that Ω(ε) is closed for all ε > 0. Let (xn, un) ∈ Ω(ε) with (xn, un) →
(x̂, û). It follows that {

f(xn, un, u) + ε ≥ 0, ∀u ∈ K,

g(un, xn, x) + ε ≥ 0, ∀x ∈ D.

Since f(·, ·, u) and g(·, ·, x) are upper semicontinuous,{
f(x̂, û, u) + ε ≥ 0, ∀u ∈ K,

g(û, x̂, x) + ε ≥ 0, ∀x ∈ D.

This yields (x̂, û) ∈ Ω(ε) and so Ω(ε) is closed. Observe that

S = ∩ε>0Ω(ε).

Since
µ(Ω(ε)) → 0,
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Theorem on p.412 in [25] can be applied and one concludes that S is nonempty,
compact, and

(7) e(Ω(ε), S) = H(Ω(ε), S) → 0 as ε → 0.

Let {(xn, un)} ⊂ D × K be an approximating sequence for (SEP ). Then there
exists 0 < εn → 0 such that{

f(xn, un, u) + εn ≥ 0, ∀u ∈ K,

g(un, xn, x) + εn ≥ 0, ∀x ∈ D.

This means that (xn, un) ∈ Ω(εn). It follows from (7) that

d((xn, un), S) ≤ e(Ω(εn), S) → 0.

Taking into account the compactness of S, there exists (x̄n, ūn) ∈ S such that

‖(xn, un) − (x̄n, ūn)‖ = d((xn, un), S) → 0.

Again from the compactness of S, {(x̄n, ūn)} has a subsequence {(x̄nk
, ūnk

)}
converging strongly to (x̄, ū) ∈ S. Hence the corresponding subsequence {(xnk

,
unk

)} of {(xn, un)} converges strongly to (x̄, ū). Thus (SEP ) is generalized well-
posed.

4. UNIQUENESS AND WELL-POSEDNESS

A classical result on the well-poseness of a minimization problem is that under
suitable conditions, the well-posedness is equivalent to the existence and uniqueness
of its solution. In this section we shall establish an analogous result for the well-
posedness of systems of equilibrium problems.

Theorem 4.1. Let D and K be nonempty, closed and convex subsets of finite-
dimensional Banach spaces E and X respectively. Assume that f : D×K×K → R

and g : K × D × D → R satisfy the following conditions:

(i) for every (x, u) ∈ D × K, f(x, u, u) ≥ 0 and g(u, x, x) ≥ 0.
(ii) for every (x, u) ∈ D×K, f(x, ·, ·) and g(u, ·, ·) are monotone and hemicon-

tinuous.
(iii) for every (x, u) ∈ X × K, f(·, u, ·) and g(·, x, ·) are convex and lower

semicontinuous.
Then (SEP ) is well-posed if and only if it has a unique solution.
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Proof. The necessity holds trivially. For the sufficiency, suppose that (SEP )
has a unique solution (x∗, u∗). It follows that{

f(x∗, u∗, u) ≥ 0, ∀u ∈ K,

g(u∗, x∗, x) ≥ 0, ∀x ∈ D.

Since f(x∗, ·, ·) and g(u∗, ·, ·) are monotone, we get

(8)

{
f(x∗, u, u∗) ≤ −f(x∗, u∗, u) ≤ 0, ∀u ∈ K,

g(u∗, x, x∗) ≤ −g(u∗, x, x∗) ≤ 0, ∀x ∈ D.

Let {(xn, un)} be an approximating sequence for (SEP ). Then there exists 0 <

εn → 0 such that

(9)

{
f(xn, un, u) + εn ≥ 0, ∀u ∈ K,

g(un, xn, x) + εn ≥ 0, ∀x ∈ D.

Since f(xn, ·, ·) and g(un, ·, ·) are monotone, from (9) we get

(10) f(xn, u, un) ≤ −f(xn, un, u) ≤ εn, ∀u ∈ K

and

(11) g(un, x, xn) ≤ −g(un, xn, x) ≤ εn, ∀x ∈ D.

We assert that {(xn, un)} is bounded. Indeed, if {(xn, un)} is unbounded, without
loss of generality, we can suppose that ‖(xn, un)‖ → +∞. Set

tn =
1

‖(xn, un) − (x∗, u∗)‖ and (yn, vn) = (1 − tn)(x∗, u∗) + tn(xn, un).

Without loss of generality, we can suppose that tn ∈ (0, 1) and (yn, vn) → (ȳ, v̄)
with (ȳ, v̄) 	= (x∗, u∗) since E × X is finite-dimensional. It follows from (8),
(10)-(11) and conditions (ii)-(iii) that

f(ȳ, u, v̄) ≤ lim inf
n→∞ f(yn, u, vn)

≤ lim inf
n→∞ {tnf(xn, u, un) + (1 − tn)f(x∗, u, u∗)}

≤ lim inf
n→∞ tnεn = 0, ∀u ∈ K(12)

and
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g(v̄, x, ȳ) ≤ lim inf
n→∞ g(vn, x, yn)

≤ lim inf
n→∞ {tng(un, x, xn) + (1− tn)g(u∗, x, x∗)}

≤ lim inf
n→∞ tnεn = 0, ∀x ∈ D.(13)

Lemma 2.1 together with (12)-(13) implies that{
f(ȳ, v̄, u) ≥ 0, ∀u ∈ K,

g(v̄, ȳ, x) ≥ 0, ∀x ∈ D.

Thus (ȳ, v̄) is also a solution of (SEP ), a contradiction to the uniqueness of solution.
Thus {(xn, un)} is bounded. Let {(xnk

, unk
)} be any subsequence of {(xn, un)}

such that (xnk
, unk

) → (x̄, ū). Since f(·, un, ·) and g(·, xn, ·) are convex and lower
semicontinuous, from (10)-(11) we get

f(x̄, u, ū) ≤ lim inf
k→∞

f(xnk
, u, unk

) ≤ 0, ∀u ∈ K

and
g(ū, x, x̄) ≤ lim inf

k→∞
g(unk

, x, xnk
) ≤ 0, ∀x ∈ D.

This together with Lemma 2.1 yields{
f(x̄, ū, u) ≥ 0, ∀u ∈ K,

g(ū, x̄, x) ≥ 0, ∀x ∈ D.

Since (x∗, u∗) is the unique solution of (SEP ), we get (x̄, ū) = (x∗, u∗) and
(xn, un) converges to (x∗, u∗). Therefore, (SEP ) is well-posed.

Theorem 4.2. Let D and K be nonempty, closed and convex subsets of finite-
dimensional Banach spaces E and X respectively. Assume that f : D×K×K → R

and g : K × D × D → R satisfy the following conditions:
(i) for every (x, u) ∈ D × K, f(x, u, u) ≥ 0 and g(u, x, x) ≥ 0.
(ii) for every (x, u) ∈ D×K, f(x, ·, ·) and g(u, ·, ·) are monotone and hemicon-

tinuous.
(iii) for every (x, u) ∈ X × K, f(·, u, ·) and g(·, x, ·) are convex and lower

semicontinuous.
If there exists some ε > 0 such that Ω(ε) is nonempty bounded, then (SEP ) is
generalized well-posed.

Proof. Let {(xn, un)} be an approximating sequence for (SEP ). Then there
exists 0 < εn → 0 such that
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{
f(xn, un, u) + εn ≥ 0, ∀u ∈ K,

g(un, xn, x) + εn ≥ 0, ∀x ∈ D.

Clearly {(xn, un)} ∈ Ω(ε) for all sufficiently large n. Taking into account the
boundedness of Ω(ε), there exists a subsequence {(xnk

, unk
)} of {(xn, un)} such

that (xnk
, unk

) → (x̄, ū) as k → ∞. By same arguments as in Theorem 4.1, (x̄, ū)
is a solution of (SEP ). Therefore, (SEP ) is generalized well-posed.

We note that Theorem 4.2 says nothing but that under suitable conditions, the
generalized well-posedness of (SEP ) is equivalent to the existence of solutions.
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