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MEAN SQUARE ERROR SYNCHRONIZATION IN NETWORKS
WITH RING STRUCTURE

Viorica Mariela Ungureanu and Sui-Sun Cheng

Abstract. A class of stochastic networks with ring structure is considered in
which the flow of information depends on a Markov chain. We find sufficient
conditions such that the mean square differences between the even or odd
or all units in the network will eventually tend to zero. Such probabilistic
synchronization then leads to pattern formation in our networks. Although
we have discussed only one or two colored patterns, it is hoped that our
investigations will lead to more interesting patterns in stochastic networks in
the future.

1. INTRODUCTION

Patterns in nature are of great interests to many people. Therefore building
mathematical models that exhibits (statistically) orderly outcomes are important is-
sues in neuromorphic engineering. Some of the well known pattern-forming models
are partial differential systems of the form

∂u

∂t
= F (u, t),

where F is generically a differential operator and u = u(x, t) are sought as its
solutions, that exhibit the desired orderly distributions.

There are also models based on discrete time coupled dynamical systems (see e.g.
[12-14]). Indeed, the Game of Life is a cellular automaton and it is a well known
example which exhibits many interesting patterns. In [1], a network model is built
and the concept of synchronization is introduced to explain the formation of patterns
over time. Roughly, we imagine there is a network of (finitely many or infinitely
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many) compartments (patches, colonies, neural units, etc.) ..., u1, u2, ..., un, ... .

Each compartment ui has a state value depending on the time period it is in. There-
fore we may denote the state value by u

(t)
i where t is a nonnegative integer. The

compartments interact with each other in a given manner at the time period t and
subsequently the state values changes. Such interaction can therefore be expressed
as

u(t+1) = G
(
u(t), t

)
,

where u(t) is the vector
(
..., u

(t)
1 , ..., u

(t)
n , ...

)†
and G is generically a function. Given

an initial distribution u (0), we may find u(1), u(2), . . . , from the above governing
equation and ultimately u(0) may evolve into one u(∞) with orderly distribution (e.g.
(..., 1, 0, 0, 1, 0, 0, ...)†, where the dagger denotes the transposition). If this is the
case, we may say that a pattern formation is observed. There are perhaps different
manners to describe the mechanism of pattern formation, but one plausible idea
is to attribute pattern formation to synchronization and stability. More precisely,
we may try to show that different groups of neural units synchronize in the sense
that any two ui, uj in the same group behaves like u

(t)
i ≈ u

(t)
j for all large t, or

more precisely, limt→∞
∣∣∣u(t)

i − u
(t)
j

∣∣∣ = 0. Then additional stability conditions that
guarantee convergence to a steady state will induce pattern formation.

In this paper, we are interested in networks consisting of n units u1, u2, ..., un

placed in a clockwise manner on the vertices of a regular n-gon so that each unit
interacts with its two immediate neighbors. To be specific, let u

(t)
2 and u

(t+1)
2 be

the state values of the second unit at two consecutive time periods. If u
(t)
1 > u

(t)
2 ,

then part of the information content of u1 flows into u2, so that

u
(t+1)
2 − u

(t)
2 = a

(
u

(t)
1 − u

(t)
2

)
.

Similarly, part of the information content of u3 is shifted to u2 if u
(t)
3 > u

(t)
2 . By

superposition, we may then assume that

(1) u
(t+1)
2 − u

(t)
2 = a

(
u

(t)
1 − u

(t)
2

)
+ a

(
u

(t)
3 − u

(t)
2

)
= a

(
u

(t)
1 − 2u

(t)
2 + u

(t)
3

)
.

Evidently, we have analyzed above only the case where the information contained
by the neighbors u1 and u3 of u2 is greater than the one in u2. We notice that
(1) remains valid in the other cases. For example, if u

(t)
2 > u

(t)
1 and u

(t)
3 > u

(t)
2

it is clear that some information will flow from u3 into u2 and from u2 into u1,
respectively. Therefore u

(t+1)
2 = u

(t)
2 + a

(
u

(t)
3 − u

(t)
2

)
− a

(
u

(t)
2 − u

(t)
1

)
and we

get (1).
The parameter a is naturally called the ‘diffusion constant’. In [1], we assume

that a is a ‘deterministic constant’ (see also [2], [3], [10] for other deterministic
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models). However, in general, this parameter may be subject to random fluctuations
and depends on the time period t. In this paper, we will consider a relatively simple
case in which

a = a(t, r(t)),

satisfies:

(H1) {r(t)}∞t=0 is a homogeneous Markov chain with the state space Z, the set
of integers, and the time space N, the set of nonnegative integers, and the
infinite transition matrix

Q = (qi,j)

defined by
qi,j = P {r(t + 1) = j|r(t) = i} ;

(H2) the transition matrix Q = (qi,j) satisfies qi,j = 0 for j ∈ Z\{i − m0, ...,
i, ..., i+ m0}, where m0 ∈ N;

(H3) for each t ∈ N, {a(t, i)}i∈Z ⊂ R+ = [0,∞) is bounded.

Thus we may now write

u
(t+1)
2 = u

(t)
2 + a(t, r(t))

(
u

(t)
1 − 2u

(t)
2 + u

(t)
3

)
.

In view of the techniques that will be used to handle our network, we may go one
step further if we assume that

u
(t+1)
2 = f

(
t, u

(t)
2

)
+ a(t, r(t))

(
f
(
t, u

(t)
1

)
− 2f

(
t, u

(t)
2

)
+ f

(
t, u

(t)
3

))
,

where f : N × R → R is a Lipschitz function which satisfies

(2) |f(t, u)− f(t, v)| ≤ Γ(t) |u − v| , u, v ∈ R,t ∈ N

for some positive function Γ : N → (0,∞).
Finally, we also assume that the activation of each unit is uniform, so that the

following dynamical system holds:

(3)

u
(t+1)
1 =f

(
t, u

(t)
1

)
+a(t, r(t))

(
f
(
t, u

(t)
n

)
−2f

(
t, u

(t)
1

)
+f

(
t, u

(t)
2

))
,

u
(t+1)
2 =f

(
t, u

(t)
2

)
+a(t, r(t))

(
f
(
t, u

(t)
1

)
−2f

(
t, u

(t)
2

)
+f

(
t, u

(t)
3

))
,

...

u
(t+1)
n =f

(
t, u

(t)
n

)
+a(t, r(t))

(
f
(
t, u

(t)
n−1

)
−2f

(
t, u

(t)
n

)
+f

(
t, u

(t)
1

))
.
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If the coefficient a(t, i) does not depend on i, that is a(t, i) = a (t) , t ∈
N, i ∈ Z, then (3) is deterministic and, given the initial distribution u (0) =(
u

(0)
1 , ..., u

(0)
n

)†
, we can generate the sequence

{
u(0), u(1), u(2), ...

}
in a unique

manner. We can also associate with ui and uj the state value sequences
{
u

(0)
i , u

(1)
i ,

u
(t)
i , ...

}
and

{
u

(0)
j , u

(1)
j , u

(2)
j , ...

}
, respectively. If

lim
t→∞

∣∣∣u(t)
i − u

(t)
j

∣∣∣ = 0,

the units ui and uj are said to be “completely in synchronization”.1 More generally,
let Λ be a subset of {u1, u2, ..., un} . We say that the units ui, i ∈ Λ are in syn-
chronization if all the mutually distinct units in Λ are in synchronization. In case
Λ = {u1, u2, ..., un} , we also say that our network is in synchronization. In [1],
conditions are obtained that guarantee synchronization in the deterministic case.

However, if the random walk assumption is general, the concept of synchroniza-
tion will need modifications. In this paper, we will consider the mean square error
synchronization. We will also derive several synchronization criteria for all the odd
units u1, u3, ..., or all the even units u2, u4, ..., or all units to be in synchronization
in our stochastic model:

A B

B A

A B

B A

A two colored pattern in a ring with 8 nodes

C C

C C

C C

C C

A one colored pattern in a ring with 8 nodes

We remark that complete synchronization of coupled neurons with ring structure
or star-shaped structure have been studied. See e.g. [12] in which a continuous
time model with ring structure is studied numerically; and [13] in which a discrete
1We may treat (3) as a system of coupled units each behaves in identical manner. Hence the terminolgy
“complete synchronization” can be adopted from [12]. For simplicity, we will however use the more
simple term “synchronization” in later discussions.
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time model with star-shaped structure is studied. But to the best of our knowledge,
probabilistic synchronization of coupled systems is new. Besides, in this paper, we
emphasize the concept of complete synchronization in a subgroup of the units in the
network which is essential in explaining the formation of patterns in ring structures.

2. MEAN SQUARE ERROR SYNCHRONIZATION

We need some preparatory terminologies to proceed and to explain the concept
of mean square error synchronization.

Let H be a real separable Hilbert space and L(H) the set of all bounded linear
operators on H. We write 〈., .〉 for the inner product and ‖.‖ for norms of elements
in H and of operators belonging to L (H). The adjoint of an operator V ∈ L(H)
will be denoted by V ∗ as usual. We will say that S ∈ L (H) is nonnegative (and
we will write S ≥ 0) if S is self-adjoint and 〈Sx, x〉 ≥ 0, x ∈ H . We will also
denote by E the Banach subspace of L(H) formed by all self-adjoint operators, by
L+(H) the cone of all nonnegative operators of E and by IH (or simply I) the
identity operator on H. For any S ∈ L (H) we will denote by ρ (S) the spectral
radius of S.

Now, consider B a real Banach space endowed with the norm ‖·‖ . A sequence
{gn}n∈N ⊂ B is bounded if there exists M > 0 such that ‖gn‖ ≤ M for all
n ∈ N. We will denote by l∞B the set of all infinite sequences g = {gi}i∈Z, gi ∈ B
satisfying ‖g‖∞ = supi∈Z ‖gi‖ < ∞. It is easy to see that l∞B is a real linear space
with the usual termwise addition and (real) scalar multiplication. Moreover, l∞B is
a Banach space with the norm ‖.‖∞. In particular, if B is the Banach space L(H)
(respectively E), we will denote by l∞L(H) (respectively l∞E ) the Banach space l∞B .

If H is the Hilbert space Rn, n ∈ N, n ≥ 2 , endowed with the inner product
〈x, y〉 = x1y1 + x2y2 + ...+ xnyn, x = (x1, x2, ..., xn) , y = (y1, y2, ..., yn) , x, y ∈
Rn and the norm ‖x‖ =

√〈x, x〉, then the more suggestive notation SL (Rn) is
used for the Banach subspace E ⊂ L(H). Correspondingly, the Banach space l∞E
will be denoted by l∞SL(Rn).

We say that the element X ∈ l∞E is nonnegative iff X (i) ∈ L+(H) for all i ∈ Z
and we write X ≥ 0. Let us denote by K∞ the cone of all nonnegative elements of
l∞E . The cone K∞ induces the following order on l∞E : X ≥ Y iff X − Y ∈ K∞.
An element X ∈ K∞ is called positive if there exists γ > 0 such that X ≥ γΦ,

where Φ = (..., IH, IH , IH , ...) ∈ l∞E . A sequence {Xn}n∈N ⊂ K∞ is uniformly
positive iff there exists γ > 0 such that Xn ≥ γΦ for all n ∈ N.

Let (Ω,F , P ) be a probability space. If ξ is a random variable, then we will
denote by E(ξ) the expectation (mean) of ξ. For any σ algebra G of subsets of F ,
G ⊂ F , we denote by E [ξ|G] the conditional expectation (mean) of ξ with respect
to G. If Gη is the σ-algebra generated by the random variable η, then we also use
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the notation E[ξ|η] for the conditional expectation of ξ with respect to Gη. We
recall that E [ξ|η = x], the conditional expectation on the event η = x, is defined
as it follows:

(4) E[ξ|η = x] =
1

P{η(ω) = x}
∫

χ{η(ω)=x}ξ(ω)P (dω),

if P{ω|η(ω) = x} > 0 and E [ξ|η = x] = 0, if P{ω|η(ω) = x} = 0.

Assume that (H1) and (H2) hold and let us denote P t
j = P (r(t) = j) for

t ∈ N,j ∈ Z. It is known (see [5] and [6]) that if ξ is an integrable, Rn valued
random variable on (Ω,F , P ), then

(5) E[ξ (ω)] =
∞∑

j=−∞
P t

j E[ξ (ω) |r(t) = j].

Given x ∈ Rn and k ∈ N the system (3) with the initial condition

(6) u(k) =
(
u

(k)
1 , ..., u(k)

n

)†
= x,

will generate a sequence
{
u(t)

}
t≥k

. This sequence is called a solution of (3), (6).

Definition 1. If for any l ∈ Z, k ∈ N and x ∈ Rn, the components ui =
{u(t)

i }t≥k and uj = {u(t)
j }t≥k of the solution

{
u(t)

}
t≥k

of (3), (6) satisfy

lim
t→∞E

[∣∣∣u(t)
i − u

(t)
j

∣∣∣2 | r(k) = l

]
= 0,

then we will say that ui and uj are synchronized in conditional mean. If Λ is a subset
of {u1, ..., un} and ui and uj are synchronized in conditional mean for all ui, uj ∈
Λ, then we will say that system (3),(6) is Λ-synchronized in conditional mean. If ui

and uj are synchronized in conditional mean for all ui, uj ∈ {u1, u2, ..., un}, then
we will say that system (3), (6) is synchronized in conditional mean.

Definition 2. If for any k ∈ N and x ∈ Rn, the components ui, uj of the
solution

{
u(t)

}
t≥k

of (3), (6) satisfy

lim
t→∞E

∣∣∣u(t)
i − u

(t)
j

∣∣∣2 = 0,

then ui and uj are said to be synchronized in mean square error.
As in Definition 1 we can define the notions of Λ-synchronization in mean

square error and synchronization in mean square error, respectively.
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3. ASYMPTOTIC BEHAVIOR OF BACKWARD DISCRETE TIME SYSTEMS

Throughout this section we assume that (H1)-(H3) hold. Let {Vt}t∈N ⊂ l∞L(H).
For any t ∈ N, we introduce the function Vt : l∞E → l∞E ,

(7) Vt (S) (i) = V ∗
t (i)

i+m0∑
j=i−m0

qijS (j)Vt (i) , T ∈ l∞E , i ∈ Z

where Vt (i) is the i-th component of Vt ∈ l∞L(H). It is clear that Vt is a well defined,
linear and bounded operator. Moreover, we see that Vt (K∞) ⊂ K∞. For any fixed
N0 ∈ N∗ := N/{0}, we consider the following backward difference equation

YN0,t = Vt (YN0,t+1) , t < N0(8)

YN0,N0 = Φ,(9)

Let us define the following linear operator T (t, k) , t, k ∈ N, t ≥ k :

(10)
T (t, k) = Vk · · · Vt−1, t > k

T (k, k) = Il∞E , k ∈ N.

(Here Il∞E is the identity operator on l∞E ). Clearly T (t, k) (K∞) ⊂ K∞. We see
that T (t, k)T (m, t) = T (m, k) for all m, t, k ∈ N, m ≥ t ≥ k and T (t, k) is
monotone, that is T (t, k) (R) ≤ T (t, k) (S) for all R, S ∈ l∞E satisfying R ≤ S.

It is not difficult to see that for any fixed N0 ∈ N\{0}, the difference equation
(8), (9) has a unique solution

(11) YN0,t = T (N0, t) (Φ) .

The solution {YN0,t}t≤N0
of (8),(9) is said to possess the property (E) if there

are β > 1, α ∈ (0, 1) such that for all N0, t ∈ N,t ≤ N0,

‖YN0,t‖∞ ≤ βαN0−t.

The following result is known (see [11], [8], [9]).

Lemma 1. If Γ ∈ L (l∞E ) and Γ (K∞) ⊂ K∞ then ‖Γ‖ = ‖Γ (Φ)‖∞ .

An infinite dimensional version of Theorem 3.4 in [4] is the following:

Theorem 1. The following statements are equivalent:

(a) The solution {YN0,k}k≤N0
of (8), (9) has the property (E).
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(b) There are β > 1 and α ∈ (0, 1) such that

‖T (t, k)‖ ≤ βαt−k.

for all t, k ∈ N,t ≥ k. (Here ‖T (t, k)‖ = sup‖S‖∞=1,S∈l∞E
‖T (t, k) (S)‖∞.)

(c) The equation

(12) Zt = Vt (Zt+1) + Φ

has a unique, bounded on N and uniformly positive solution {Z t}t∈N ⊂ K∞,

i.e. there exists M > 0, such that (12) has a unique solution which satisfies

(13) Φ ≤ Zt ≤ MΦ, t ∈ N.

The proof is quite similar to that provided in [4, Theorem 3.4]. However
we note that, unlike our case, the ordered Banach space considered in [4] is finite
dimensional and the cone of its nonnegative elements satisfies a regularity condition.
This regularity condition was required to ensure the convergence of several series.
In our situation the ordered Banach space l∞E is infinite dimensional and the cone
K∞ is not regular (that is a monotone decreasing and bounded below sequence from
l∞E , x1 ≥ x2 ≥ ... ≥ xt ≥ ... ≥ x is not necessarily convergent in l∞E ).

For this reason, we sketch the proof of the result stated above and we will see
that the series convergence can be obtained when the regularity condition is missing.

Proof. The equivalence (a) ⇔ (b) follows from the properties of the operator
T (t, m), m, t ∈ N, m ≥ t, (11) and from Lemma 1.

(b) ⇒ (c): Assume that (b) holds. Then

∞∑
N0=t

‖T (N0, t) (Φ)‖∞ ≤
∞∑

N0=t

βαN0−t = β
1

1 − α

and Zt =
∑∞

N0=t T (N0, t) (Φ) is convergent in l∞E . It is easy to see that Zt ∈ K∞.
Since Vt is continuous on l∞E , it follows that Zt verifies (12) and (13) is satisfied

for M = β/ (1 − α) and any t ∈ N.
Assuming that Zt, Wt ∈ K∞ are two uniformly positive and bounded on N

solutions of (12) and iterating, we deduce that

‖Zt − Wt‖∞ ≤ (‖Zm‖∞ + ‖Wm‖∞) ‖T (m, t) (Φ)‖∞ ≤ 2Mβαm−t

for all m ≥ t, m, t ∈ N. As m → ∞, we obtain ‖Zt − Wt‖∞ = 0 for all t ∈ N.
It follows the uniqueness of the solution.
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(c) ⇒ (b): Assume that (12) has a solution Zt ∈ K∞, which satisfies the
condition (13). We set fN0,t = T (N0, t) (ZN0) , N0 ≥ t, t, N0 ∈ N. By (12) and
(13) we obtain

(
1 − 1

M

)
fN0,t ≥ fN0+1,t. Iterating we get fN0,t ≤

(
1 − 1

M

)N0−t
Zt,

for all N0 ≥ t, t, N0 ∈ N. Using (13) and the monotonicity of T (t, m) we deduce
that (b) holds.

In the time invariant case, where Vt = V ∈ l∞L(H) for any t ∈ N, we use the
notation V for Vt and we obtain the following result:

Proposition 1. The following statements are equivalent:

(a) The solution {YN0,t}t≤N0
of (8), (9) has the property (E).

(b) ρ(V) < 1, where ρ(V) denotes the spectral radius of V .
(c) There exists a unique solution Z ∈ K∞ of the equation

(14) Z = V (Z) + Φ

Proof. (a) ⇔ (b): First we note that, in the time invariant case, we have
T (t, m) = V t−m. In view of Theorem 1, statement (a) is equivalent to “there are
β > 1 and α ∈ (0, 1) such that

∥∥V t−m
∥∥ ≤ βαt−m for all t, m ∈ N,t ≥ m”. Hence,

if (a) holds, then ρ(V) = limt→∞ t
√‖V t‖ ≤ α < 1 and (b) is clearly true. The

converse follows immediately in the same manner.

(a) ⇔ (c): Since Zt =
∞∑

N0=t

T (N0, t)(Φ) =
∞∑

k=1

Vk(Φ) + Φ does not depend on

t, the equivalence follows from the proof of Theorem 1.

The above proposition was proved in [8] for H = R.

Remark 1. From the proof of Theorem 1 (respectively of Proposition 1), it
follows easily that if equation (12) (respectively (14)) has a bounded on N and
uniformly positive (respectively positive) solution, then such a solution is unique.

4. THE SPECIAL CASE n = 6

To motivate the main results, let us consider system (3) in the case n = 6. We
may easily check that, for all t ≥ k, u

(t+1)
1 − u

(t+1)
5

u
(t+1)
2 − u

(t+1)
4

 = A1 (t, r (t))

 f
(
t, u

(t)
1

)
− f

(
t, u

(t)
5

)
f
(
t, u

(t)
2

)
− f

(
t, u

(t)
4

)
 ,(15)
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 u
(t+1)
2 − u

(t+1)
6

u
(t+1)
3 − u

(t+1)
5

 = A1 (t, r (t))

 f
(
t, u

(t)
2

)
− f

(
t, u

(t)
6

)
f
(
t, u

(t)
3

)
− f

(
t, u

(t)
5

)
 ,(16)

 u
(t+1)
3 − u

(t+1)
1

u
(t+1)
4 − u

(t+1)
6

 = A1 (t, r (t))

 f
(
t, u

(t)
3

)
− f

(
t, u

(t)
1

)
f
(
t, u

(t)
4

)
− f

(
t, u

(t)
6

)
 ,(17)

(18)


u

(t+1)
1 − u

(t+1)
2

u
(t+1)
6 − u

(t+1)
3

u
(t+1)
5 − u

(t+1)
4

 = B1 (t, r (t))


f
(
t, u

(t)
1

)
− f

(
t, u

(t)
2

)
f
(
t, u

(t)
6

)
− f

(
t, u

(t)
3

)
f
(
t, u

(t)
5

)
− f

(
t, u

(t)
4

)
 ,

where

A1 (t, i) =

(
1 − 2a (t, i) a (t, i)

a (t, i) 1 − 2a (t, i)

)
, t ∈ N, i ∈ Z,

B1 (t, i) =


1 − 3a (t, i) a (t, i) 0

a (t, i) 1− 2a (t, i) a (t, i)

0 a (t, i) 1 − 3a (t, i)

 , t ∈ N, i ∈ Z.

Let us discuss (15). The initial distribution (at the time period k) of the sys-

tem (15) is w =

(
x1 − x5

x2 − x4

)
, where x = (x1, x2, x3, x4, x5, x6)† is the initial

distribution of the system (3) at the moment t = k. Obviously,

(19)


∣∣∣u(t+1)

1 − u
(t+1)
5

∣∣∣∣∣∣u(t+1)
2 − u

(t+1)
4

∣∣∣


≤
( |1−2a (t, r (t))| |a (t, r (t))|

|a (t, r (t))| |1−2a (t, r (t))|

)
·

∣∣∣f (t, u

(t)
1

)
−f

(
t, u

(t)
5

)∣∣∣∣∣∣f (t, u
(t)
2

)
−f

(
t, u

(t)
4

)∣∣∣


We adopt the following notation |w| =

( |x1 − x5|
|x2 − x4|

)
,

U (t + 1) =


∣∣∣u(t+1)

1 − u
(t+1)
5

∣∣∣∣∣∣u(t+1)
2 − u

(t+1)
4

∣∣∣
 ,
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F (t, U (t)) =


∣∣∣f (t, u(t)

1

)
− f

(
t, u

(t)
5

)∣∣∣∣∣∣f (t, u(t)
2

)
− f

(
t, u

(t)
4

)∣∣∣
 , and

A (t, i) =

( |1 − 2a (t, i)| |a (t, i)|
|a (t, i)| |1 − 2a (t, i)|

)
.

Then (19) may be written as

(20) U (t + 1) ≤ A (t, r (t))F (t, U (t))

and

(21) F (t, U (t)) ≤ Γ (t) U (t)

for all t ∈ N.
In what follows we will use the following order on Rn: x ≥ y iff xi ≥ yi for

i = 1, 2, .., n.

Definition 3. We say that S ∈ SL (Rn) has the property (P1) iff 〈Su, v〉 ≥ 0
for all u, v ∈ Rn, u, v ≥ 0.

Remark 2. If S, L ∈ SL (Rn) have the property (P1), then 〈L∗SLu, u〉 ≤
〈L∗SLv, v〉 for all u, v ∈ Rn, 0 ≤ u ≤ v. Indeed, it is clear that 〈Su, u〉 ≤ 〈Sv, v〉
for all u, v ∈ Rn such that 0 ≤ u ≤ v. Since Lu ≤ Lv for all 0 ≤ u ≤ v, we get
〈SLu, Lu〉 ≤ 〈SLv, Lv〉 and the conclusion follows.

Let h ∈ l∞SL(R2) such that h (i) has the property (P1) for any i ∈ Z. Evidently,
A (t, i) has the property (P1) for any t ∈ N and i ∈ Z. Using Remark 2, (20) and
(21), we get

E [〈h (r (t + 1))U (t + 1) , U (t + 1)〉 |r (k) = l]

≤ E [〈A∗ (t, r (t)) h (r (t + 1))A (t, r (t))F (t, U (t)) , F (t, U (t))〉 |r (k) = l]

≤ Γ (t)2 E [〈A∗ (t, r (t))h (r (t + 1))A (t, r (t))U (t) , U (t)〉 |r (k) = l]

for all l ∈ Z. Applying the properties of a Markov chain (see also the proof of
Theorem 1 in [8]), we see that the last term is just

Γ (t)2
∞∑

j=−∞
E
[〈[

qr(t),jA
∗ (t, r (t))h (j)A (t, r (t))

]
U (t) , U (t)

〉 |r (k) = l
]
.

Let us consider the mapping Lt : l∞SL(R2) → l∞SL(R2) defined by

(22) (Lth) (i) = Γ (t)2
∞∑

j=−∞
qi,jA

∗ (t, i)h (j)A (t, i) , i ∈ Z, h ∈ l∞SL(R2).
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By (H1)-(H3), it follows that Lt ∈ L
(
l∞SL(R2)

)
. We note that if h (i) has the

property (P1) for any i ∈ Z, then Lt (h) (i) has the property (P1) for any i ∈ Z and
t ∈ N. Moreover, Lt (K∞) ⊂ K∞ (Lt is a nonnegative operator on the ordered
Banach space l∞SL(R2)). Hence

E [〈h (r (t + 1))U (t + 1) , U (t + 1)〉 |r (k) = l]

≤ E [〈Lt (h) (r (t))U (t) , U (t)〉 |r (k) = l] .

Now it is easy to verify by induction that

(23)
E [〈h (r (t + 1))U (t + 1) , U (t + 1)〉 |r (k) = l]

≤ 〈Lk · · · Lt−1Lt (h) (l) |w| , |w|〉 .

We just proved the following theorem.

Theorem 2. Assume that (H1)-(H3) hold. If u =
{
u(t)

}
t≥k

is the solution of
(3),(6) and U, |w| are defined as above, then for all l ∈ Z, k ∈ N and x ∈ R6,

(24) E
[
‖U (t + 1)‖2 |r (k) = l

]
≤ 〈Lk · · · Lt−1Lt (Φ) (l) |w| , |w|〉 .

Obviously (24) is obtained by taking h = Φ in (23) (i.e. h (i) = I2, i ∈ Z).
A direct consequence of Theorems 1 and 2 is the following result.

Theorem 3. Assume that the hypotheses of the above theorem hold. If there
exists a unique uniformly positive and bounded on N solution {Z t}t∈N of the
equation

(25) Zt = LtZt+1 + Φ,

then there exist β > 1 and α ∈ (0, 1) such that for all l ∈ Z, x ∈ R 6 and t, k ∈ N,

t ≥ k,

(26) E
[
‖U (t)‖2 |r (k) = l

]
≤ βαt−k ‖w‖2 .

Proof. Assume that there is a unique, uniformly positive and bounded on N
solution {Zt}t∈N of (25). By taking E = SL

(
R2
)
, Vt (i) = A (t, i), i ∈ Z, t ∈ N

in Theorem 1, we see that Vt = Lt, t ∈ N and for all l ∈ Z ,

〈Lk · · · Lt−1Lt−1 (Φ) (l) |w| , |w|〉 = 〈T (t, k) (Φ) (l) |w| , |w|〉
≤ ‖T (t, k) (Φ)‖∞ ‖w‖2 ≤ ‖T (t, k)‖ ‖w‖2 ≤ βαt−k‖w‖2.
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The conclusion follows from (24).
We note that under the hypotheses of Theorem 3, it follows that the system (3),

(6) is {u1, u5}-, {u2, u4}- synchronized in conditional mean.
Since the operator T (t, k) does not depend on the components u

(t)
i , i ∈ {1, .., 6},

of the solution u(t), we get the following result.

Corollary 1. If the hypotheses of the above theorem hold, then, for any
x ∈ R6, the system (3), (6) is {u1, u5}-, {u2, u4}-, {u2, u6}-, {u3, u5}-, {u3, u1}-
and {u4, u6}-synchronized both in conditional mean and mean error.

Proof. Applying Theorem 3, it follows that there are β > 1 and α ∈ (0, 1)
such that, for all x ∈ R6, l ∈ Z, {i, j} ∈ {{1, 5}, {2, 4}} and t, k ∈ N,t ≥ k, we
have

E

[∣∣∣u(t)
i − u

(t)
j

∣∣∣2 | r(k) = l

]
≤ βαt−k ‖w‖2 .

From (5), we get

E

[∣∣∣u(t)
i − u

(t)
j

∣∣∣2] =
∞∑

l=−∞
P k

l E

[∣∣∣u(t)
i − u

(t)
j

∣∣∣2 | r(k) = l

]
≤ βαt−k ‖w‖2 .

Thus limt→∞ E

[∣∣∣u(t)
i − u

(t)
j

∣∣∣2 | r(k) = l

]
= 0 for any l ∈ Z, respectively limt→∞

E

[∣∣∣u(t)
i − u

(t)
j

∣∣∣2] = 0 for k ∈ N, x ∈ Rn and {i, j} ∈ {{1, 5}, {2, 4}}. Hence sys-

tem (3), (6) is {u1, u5}-, {u2, u4}-synchronized both in conditional mean and mean
error. The conclusions of Theorem 3 remain true for systems (16),(17) and, reason-
ing as above, we see that (3),(6) is {u2, u6}-, {u3, u5}-, {u3, u1}- and {u4, u6}-
synchronized both in conditional mean and mean error for any x ∈ R6.

Since synchronization is a transitive and reflexive relation, it is clear that if (3),
(6) is {u2, u6}-, {u3, u5}-, {u3, u1}- and {u4, u6}-synchronized both in conditional
mean and mean error, then we may come up with our first important observation,
that it is {u1, u3, u5}- and {u2, u4, u6}-synchronized both in conditional mean and
mean error (cf. [1]).

Example 1. Let ξt, t ∈ N, be a sequence of independent random variables, with
the same distribution function. We assume that they have the Binomial Distribution

Bp
n :=

n∑
k=1

Ck
npk (1 − p)n−k εk,

with parameters n = 3 and p = 1/2. Here n is the number of independent trials,
p is the probability of success and εk is the Dirac measure on Z associated with
k ∈ Z, εk (A) = χA (k) for any A ⊂ Z .
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Now, let us consider the system (3), (6) for n = 6, where f : N × R →
R,f (t, x) = x, a (t, i) = a (i) = 1/2

(
1 − 1

|i|+2

)
and {r(t)}t∈N is the random

walk defined by

((*)) r (t) = ξ0 + ... + ξt, t ∈ N.

It is well known that {r(t)}t∈N is a Markov process having the transition matrix
Q = (qij)i,j∈Z defined by

qij = B
1/2
3 ({j − i}) =

(
1
2

)3 3∑
k=0

Ck
3 εk ({j − i}) .

A simple computation shows that qij = 0 if i < j or j > i+3 and qii = qii+3 = 1/8,

qii+1 = qii+2 = 3/8 . Hence the transition matrix is

i i+1 i+2

Q =

i



. . . . . .

1/8 3/8 3/8 1/8 0 ...

0 1/8 3/8 3/8 1/8 0
0 0 1/8 3/8 3/8 1/8
... 0 0 1/8 3/8 3/8
.. 0 0 0 1/8 3/8

.. .. .. .. .. ..


.

Evidently, hypotheses (H1)-(H3) are satisfied. We will prove that (3), (6) is
{u1, u3, u5}- and {u2, u4, u6}-synchronized both in conditional mean and mean
error. First, we see that

A (i) = A (t, i) =

 1
|i|+2 1/2

(
1 − 1

|i|+2

)
1/2

(
1 − 1

|i|+2

)
1

|i|+2

 .

Evidently

‖A (i)‖ = sup
‖x‖=1,x=(x1,x2)∈R2

|〈A (i)x, x〉| ≤ 1
|i|+ 2

+ 1/2
(

1 − 1
|i|+ 2

)
<

3
4
.

On the other hand, we notice that, under the above settings, the operator defined by
(22) and denoted by L (because it does not depend on t) has the property

‖(Lh) (i)‖ =

∥∥∥∥∥∥
∞∑

j=−∞
qi,jA

∗ (t, i)h (j)A (t, i)

∥∥∥∥∥∥ ≤
(

3
4

)2 ∞∑
j=−∞

qi,j ‖h (j)‖ .
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This implies ‖LΦ‖ = supi∈Z ‖(LΦ) (i)‖ ≤ (
3
4

)2
. Since L (K∞) ⊂ K∞, it follows

from Lemma 1 that ‖L‖ = ‖LΦ‖ ≤ (
3
4

)2. Consequently, r (L) < 1. In view
of Proposition 1, Theorem 3 and Remark 1, system (3),(6) is {u1, u3, u5}- and
{u2, u4, u6}-synchronized both in conditional mean and mean error.

The following computations illustrate the theoretical results. Generating ran-
domly the values of the Markov process considered in this example, we may ob-
tain the sequence r (0) = 1, r (1) = 2, r (2) = 4, r (3) = 6, r (4) = 9, r (5) =
9, ..., r (13) = 21, ... .

The information contained by the six units of our network, at different time
periods, are given below

t=0

u
(0)
1 u

(0)
2

u
(0)
6 u

(0)
3

u
(0)
5 u

(0)
4

=

t=0

1 2
6 3

5 4
→

t=1

3 2
4 3

5 4
→ ...

t=4

→
3.3216 3.2682

3.6783 3.3216
3.7317 3.6783

→ ... →

t=14

3.4882 3.5109
3.5117 3.4882

3.4890 3.5117
→ ...

For t = 14 and beyond, the {u1, u3, u5}- and {u2, u4, u6}-synchronization be-
comes “visible” since the values of the units u1, u3, u5 are approximately 3.51 and
the ones of u2, u4, u6 are very close to 3.48.

Now we consider system (18) with the initial distribution v = (x1−x2, x6−x3,

x5 − x4)† (at the moment t = k), where x = (x1, x2, x3, x4, x5, x6)† is the initial
value of (3) . We denote

B (t, i) =

 |1 − 3a (t, i)| |a (t, i)| 0
|a (t, i)| |1 − 2a (t, i)| |a (t, i)|

0 |a (t, i)| |1 − 3a (t, i)|


and we introduce the function Mt : l∞SL(R3) → l∞SL(R3) defined by

(27) (Mth) (i) = Γ (t)2
∞∑

j=−∞
qi,jB

∗ (t, i)h (j)B (t, i) , i ∈ Z, h ∈ l∞SL(R3).

Reasoning as above, we will obtain the analogue of Theorem 3 and Corollary 1,
respectively.

Theorem 4. Assume that (H1)-(H3) hold. If u =
{
u(t)

}
t≥k

is the solution
of (3), (6) and there is a unique, uniformly positive and bounded on N solution
{Lt}t∈N of
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Lt = MtLt+1 + Φ,

then there exist β > 1 and α ∈ (0, 1) such that for all l ∈ Z, x ∈ R 6 and t, k ∈ N,
t ≥ k,

E

 ∑
{i,j}∈{{1,2},{6,3},{5,4}}

[
u

(t)
i − u

(t)
j

]2 |r (k) = l

 ≤ βαt−k ‖v‖2 .

Corollary 2. If the hypotheses of the above theorem hold, then , for any
x ∈ R6, the system (3), (6) is {u1, u2}-, {u6, u3}- and {u5, u4}-synchronized both
in conditional mean and mean error.

If the hypotheses of Theorems 3, 4 hold, then the system (3),(6) is synchronized
both in conditional mean and mean error for any x ∈ R6. Indeed, if we consider
the graph with vertices 1, 2, 3, 4, 5, 6 and the edges {1, 5}, {2, 4}, {2, 6}, {3, 5},
{3, 1}, {4, 6}, {1, 2}, {6, 3} and {5, 4} we see that it is connected. The conclusion
follows. Therefore we now have a one colored pattern formed in our stochastic
network.

5. GENERAL RESULTS

Now, we turn our attention to the cases n = 2m or n = 2m + 1 where m ≥ 1.

For all t ∈ N and i ∈ Z, we denote π (t, i) =

( |1 − 3a (t, i)| |a (t, i)|
|a (t, i)| |1 − 3a (t, i)|

)
,

and we introduce the functions Λt, Ψt : l∞R → l∞R and Πt : l∞R2 → l∞R2 defined by

(Λth) (i) = [1 − 4a (t, i)]2 Γ (t)2
∞∑

j=−∞
qi,jh (j) ,

(Ψth) (i) = [1 − 3a (t, i)]2 Γ (t)2
∞∑

j=−∞
qi,jh (j) ,

(Πth) (i) = Γ (t)2
∞∑

j=−∞
qi,jπ

∗ (t, i)h (j)π (t, i) , i ∈ Z.

Obviously Λt, Ψt ∈ L (l∞R ) , Πt ∈ L
(
l∞R2

)
and Λt, Ψt, Πt satisfy the requirements

of Lemma 1.
Let us consider system (3), (6) in the cases n = 2, 3, 4.
Suppose n = 2. As in [1] it follows∣∣∣u(t+1)

1 − u
(t+1)
2

∣∣∣ ≤ Γ (t) |1 − 4a (t, r (t))|
∣∣∣u(t)

1 − u
(t)
2

∣∣∣ .
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If n = 3 then∣∣∣u(t+1)
1 − u

(t+1)
2

∣∣∣ ≤ Γ (t) |1− 3a (t, r (t))|
∣∣∣u(t)

1 − u
(t)
2

∣∣∣ ,∣∣∣u(t+1)
1 − u

(t+1)
3

∣∣∣ ≤ Γ (t) |1− 3a (t, r (t))|
∣∣∣u(t)

1 − u
(t)
3

∣∣∣
and for n = 4 we have

∣∣∣u(t+1)
1 − u

(t+1)
5

∣∣∣∣∣∣u(t+1)
2 − u

(t+1)
4

∣∣∣
 ≤ Γ (t)π (t, r (t))


∣∣∣u(t)

1 − u
(t)
5

∣∣∣∣∣∣u(t)
2 − u

(t)
4

∣∣∣


Let l ∈ Z, t ∈ N, t > k. Arguing as in the proof of Theorem 2, we see that for
n = 2 we get

E

[∣∣∣u(t)
1 − u

(t)
2

∣∣∣2 |r (k) = l

]
≤ 〈Λk · · · Λt−1 (φ) (l) |x1 − x2| , |x1 − x2|〉 ,

and for n = 3 we obtain

E

[∣∣∣u(t)
1 − u

(t)
2

∣∣∣2 |r (k) = l

]
≤ 〈Ψk · · · Ψt−1 (φ) (l) |x1 − x2| , |x1 − x2|〉 ,

E

[∣∣∣u(t)
1 − u

(t)
3

∣∣∣2 |r (k) = l

]
≤ 〈Ψk · · · Ψt−1 (φ) (l) |x1 − x3| , |x1 − x3|〉 ,

where φ = (..., 1, 1, 1, ...) ∈ l∞R . If n = 4 we have

E


∥∥∥∥∥∥

∣∣∣u(t)

1 − u
(t)
2

∣∣∣∣∣∣u(t)
4 − u

(t)
3

∣∣∣
∥∥∥∥∥∥

2

|r (k) = l


≤
〈

Πk · · · Πt−1 (Φ) (l)

( |x1 − x2|
|x4 − x3|

)
,

( |x1 − x2|
|x4 − x3|

)〉
.

Let us introduce the following equations

zt = Λtzt+1 + φ,(28)

zt = Ψtzt+1 + φ,(29)

Zt = ΠtZt+1 + Φ,(30)

The next result is a version of Theorem 3 and Corollary 1 for the cases n =
2, 3, 4. (The proof is very similar and will be omitted).

Theorem 5. Assume that (H1)-(H3) hold.
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(a) If n = 2 (respectively n = 3) and there exists a unique, uniformly positive
and bounded on N solution {z t}t∈N of (28) (respectively (29)), then system
(3), (6) is synchronized both in conditional mean and mean error for any
x ∈ R2 (respectively x ∈ R3 ).

(b) If n = 4 and there is a unique, uniformly positive and bounded on N solution
{Zt}t∈N of (30), then system (3), (6) is synchronized both in conditional
mean and mean error for any x ∈ R4.

Now we consider the system (3) for n = 2m, m ≥ 3. For any t ∈ N, i ∈ Z, we
set

A1 (t, i) =


1 − 2a (t, i) a (t, i) 0 0

a (t, i) 1 − 2a (t, i) a (t, i) 0

0 a (t, i) .... a (t, i)

0 0 a (t, i) 1− 2a (t, i)


m−1×m−1

and

B1 (t, i) =


1− 3a (t, i) a (t, i) 0 0

a (t, i) 1 − 2a (t, i) a (t, i) 0

0 a (t, i) .... a (t, i)

0 0 a (t, i) 1 − 3a (t, i)


m×m

.

It is easy to verify that

(31)



u
(t+1)
1 − u

(t+1)
3

u
(t+1)
2m − u

(t+1)
4

u
(t+1)
2m−1 − u

(t+1)
5

....

u
(t+1)
m+3 − u

(t+1)
m+1


= A1 (t, r (t))



f
(
t, u

(t)
1

)
− f

(
t, u

(t)
3

)
f
(
t, u

(t)
2m

)
− f

(
t, u

(t)
4

)
f
(
t, u

(t)
2m−1

)
− f

(
t, u

(t)
5

)
....

f
(
t, u

(t)
m+3

)
− f

(
t, u

(t)
m+1

)


,

respectively

(32)



u
(t+1)
1 − u

(t+1)
2

u
(t+1)
2m − u

(t+1)
3

u
(t+1)
2m−1 − u

(t+1)
4

....

u
(t+1)
m+2 − u

(t+1)
m+1


= B1 (t, r (t))



f
(
t, u

(t)
1

)
− f

(
t, u

(t)
2

)
f
(
t, u

(t)
2m

)
− f

(
t, u

(t)
3

)
f
(
t, u

(t)
2m−1

)
− f

(
t, u

(t)
4

)
....

f
(
t, u

(t)
m+2

)
− f

(
t, u

(t)
m+1

)


.
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The initial distributions, at the time period t = k, of the systems (31) and (32)
are w(m−1) = (x1 − x3, x2m − x4, x2m−1 − x5, ..., xm+3 − xm+1)† and v(m) =
(x1 − x2, x2m − x3, x2m−1 − x4, ..., xm+2 − xm+1)†), respectively, where x =
(x1, x2, ...., x2m)† is the initial distribution of the system (3).

In what follows we will denote by [M ]p,q the element on line p and column
q of a given matrix M . As in the previous section, for any i ∈ Z and t ∈ N,
A (t, i) (respectively B (t, i)), denotes the (m− 1)× (m− 1) (respectively m×m)
matrix defined by [A (t, i)]p,q =

∣∣∣[A1 (t, i)]p,q

∣∣∣ , p, q ∈ {1, ..m − 1} (respectively

[B (t, i)]p,q =
∣∣∣[B1 (t, i)]p,q

∣∣∣ , p, q ∈ {1, ..m}).
Now we consider the function Lt : l∞SL(Rm−1) → l∞SL(Rm−1) defined by formula

(22), where A (t, i) is defined above and h ∈ l∞SL(Rm−1). It is clear that Lt ∈
L
(
l∞SL(Rm−1)

)
, Lt (K∞) ⊂ K∞ and Lt (h) (i) , i ∈ Z, t ∈ N has the property

(P1) if h (i) has the property (P1) for all i ∈ Z.
Analogously, we define the function Mt : l∞SL(Rm) → l∞SL(Rm) by formula (27),

where B (t, i) is the matrix introduced above and h ∈ l∞SL(Rm).
All the properties of Mt mentioned in the last section for n = 6 remain true

(in a corresponding form) for n = 2m.
Reasoning exactly as in the case n = 6, we obtain the following result, which

extends Theorems 3, 4 to the general case n = 2m, m ≥ 3.

Theorem 6. Assume that (H1)-(H3) hold and n = 2m where m ≥ 3.

(i) If there is a unique, uniformly positive and bounded on N solution {Z t}t∈N ⊂
l∞SL(Rm−1) to

(33) Zt = LtZt+1 + Φ,

then there are β > 1 and α ∈ (0, 1) such that for all t, k ∈ N,t ≥ k and all
l ∈ Z,

E

 ∑
{i,j}∈{{1,3},{2m,4},{2m−1,5},....{m+3,m+1}}

[
u

(t)
i −u

(t)
j

]2
|r (k)= l

≤βαt−k
∥∥w(m−1)

∥∥2
.

(ii) If there is a unique, uniformly positive and bounded on N solution {L t}t∈N ⊂
l∞SL(Rm) to

(34) Lt = MtLt+1 + Φ,

then there are β > 1 and α ∈ (0, 1) such that for all t, k ∈ N that satisfy
t ≥ k and all l ∈ Z,
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E

 ∑
{i,j}∈{{1,2},{2m,3},{2m−1,4},....{m+2,m+1}}

[
u

(t)
i −u

(t)
j

]2
|r (k)= l

≤βαt−k
∥∥v(m)

∥∥2
.

A direct consequence of the above theorem is the following result.

Theorem 7. Assume that (H1)-(H3) hold and n = 2m where m ≥ 3. If
there exists a unique uniformly positive and bounded (on N) solution {Z t}t∈N ⊂
l∞SL(Rm−1) and {Lt}t∈N ⊂ l∞SL(Rm) to (33) and (34), respectively, then the solution
of (3), (6) is synchronized both in conditional mean and mean error for any x ∈
R2m.

Proof. It is easy to see that Theorem 6 (i) implies that the solution of (3),
(6) is {u1, u3}-, {u2m, u4}-, {u2m−1, u5}-, ..., {um+3, um+1}-synchronized both
in conditional mean and mean error. Analogously, applying Theorem 6 (ii), it
follows that the solution of (3), (6) is {u1, u2}-, {u2m, u3}-, {u2m−1, u4}-, ...,
{um+2, um+1}-synchronized both in conditional mean and mean error. Now, we
consider the graph with the vertices 1, 2, ..., 2m and the edges {1, 3}, {2m, 4},
{2m−1, 5}, ..., {m+3, m+1}, {1, 2}, {2m, 3}, {2m−1, 4}, ..., {m+2, m+1}.
Obviously, this is a connected graph and it is easy to deduce that any solution of
(3), (6) is synchronized both in conditional mean and mean error.

Proposition 2. Assume that (H1)-(H3) hold and n = 2m, where m ≥ 3.
If there is a unique, uniformly positive and bounded on N solution {Z t}t∈N ⊂
l∞SL(Rm−1)to (33), then the solution of (3), (6) is {u1, u3, u5, ..., u2m−1}- and
{u2, u4, u6, ..., u2m}-synchronized both in conditional mean and mean error.

Proof. It is clear that system (3) is ‘invariant’ with respect to the numeration of
its units. More precisely, as in [1], we define the rotation σ of a vector (z1, z2, ..., zn)
by σ (z1) = zn, σ (z2) = z1, ..., σ (zn) = zn−1. In view of Theorem 6(i), the
solution of (3), (6) is {u1, u3}-, {u2m, u4}-, {u2m−1, u5}-, ..., {um+3, um+1}-
synchronized both in conditional mean and mean error. After one rotation, we apply
Theorem 6(i) again and we deduce that (3), (6) is {u2, u4}-, {u1, u5}-, {u2m, u6}-,
..., {um+4, um+2}-synchronized both in conditional mean and mean error. If we
consider the graph with the vertices 1, 2, ..., 2m and the edges {u1, u3}, {u2m, u4},
{u2m−1, u5}, ..., {u2, u4}, {u1, u5}, {u2m, u6}, ..., {um+4, um+2}, then we may
identify two connected components {1, 3, 5, ..., 2m− 1} and {2, 4, 6, ..., 2m}. The
conclusion follows.

Now let us consider the system (3), (6) for n = 2m + 1, m ≥ 2. For all i ∈ Z
and t ∈ N, we set
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C1 (t, i) =


1 − 2a (t, i) a (t, i) 0 0

a (t, i) 1− 2a (t, i) a (t, i) 0

0 a (t, i) .... a (t, i)

0 0 a (t, i) 1 − 3a (t, i)


m×m

and we define the matrix C (t, i) by [C (t, i)]p,q =
∣∣∣[C1 (t, i)]p,q

∣∣∣ , for all p, q ∈
{1, ..m}.

We obtain the system

u
(t+1)
1 − u

(t+1)
3

u
(t+1)
2m+1 − u

(t+1)
4

u
(t+1)
2m − u

(t+1)
5

....

u
(t+1)
m+3 − u

(t+1)
m+2


= C1 (t, r (t))



f
(
t, u

(t)
1

)
− f

(
t, u

(t)
3

)
f
(
t, u

(t)
2m+1

)
− f

(
t, u

(t)
4

)
f
(
t, u

(t)
2m

)
− f

(
t, u

(t)
5

)
....

f
(
t, u

(t)
m+3

)
− f

(
t, u

(t)
m+2

)


.

with the initial distribution, at time t = k, ν (m) = (x1 − x3, x2m+1 − x4, x2m −
x5, ..., xm+3 − xm+2)†.

We introduce the function Xt : l∞SL(Rm) → l∞SL(Rm), t ∈ N defined by

(35) (Xth) (i) = Γ (t)2
∞∑

j=−∞
qi,jC

∗ (t, i)h (j)C (t, i) , i ∈ Z, h ∈ l∞SL(Rm).

Clearly Xt ∈ L
(
l∞SL(Rm)

)
,Xt (K∞) ⊂ (K∞) and (Xth) (i) has the property (P1)

for any i ∈ Z and t ∈ N provided h (i) has the property (P1) for any i ∈ Z.
Arguing as in Section 4. we obtain the following results.

Theorem 8. Assume that (H1)-(H3) hold and n = 2m+1 where m ≥ 2. If there
is a unique, uniformly positive and bounded on N solution {P t}t∈N ⊂ l∞SL(Rm) to
the equation

(36) Pt = XtPt+1 + Φ,

then there are β > 1 and α ∈ (0, 1) such that for all t, k ∈ N,t ≥ k and all l ∈ Z,

E

 ∑
{i,j}∈{{1,3},{2m+1,4},{2m,5},....{m+3,m+2}}

[
u

(t)
i − u

(t)
j

]2
|r (k)= l

≤βαt−k
∥∥ν(m)

∥∥2
.
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Theorem 9. Assume that the hypotheses of the above theorem hold. Then
the solution of system (3), (6) is synchronized both in conditional mean and mean
error for any x ∈ R2m+1.

Proof. We deduce by Theorem 8 that (3), (6) is {u1, u3}-, {u2m+1, u4}-,
{u2m, u5}-, ..., {um+3, um+2}-synchronized both in conditional mean and mean
error. After one rotation, we use again Theorem 8 to show that (3),(6) is {u2, u4}-,
{u1, u5}-, {u2m+1, u6}-, ..., {um+4, um+3}-synchronized both in conditional mean
and mean error. The graph with the vertices 1, 2, ...., 2m and the edges {1, 3},
{2m + 1, 4}, {2m, 5},....{m + 3, m + 2}, {2, 4}, {1, 5}, {2m + 1, 6}, ..., {m +
4, m + 3} is connected and the conclusion follows.

Example 2. Let us consider system (3), (6) for n = 6. Assume that (H1) holds
and the transition matrix Q = (qi,j) is defined by qi,i−1 = 1/2, qi,i = 1/2, for all
i ∈ Z and qi,j = 0 otherwise. We also assume that a (t, 2i + 1) = 1/2, a (t, 2i) =
0, t ∈ N, i ∈ Z and f (t, u) =

(
1/

√
2
)
u, u ∈ R, t ∈ N. Obviously, for all

t ∈ N,i ∈ Z we have Γ (t) = 1/
√

2, A (t, 2i) = I2, B (t, 2i) = I3, A (t, 2i + 1) =

A =

(
0 1/2

1/2 0

)
and B (t, 2i + 1) = B =

 1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

 . Note that

(H1)-(H3) hold and we are in the time invariant case. The problem is whether (3),
(6) is synchronized or not. In view of Proposition 1, Remark 1 and Theorem 7,
it suffices to study the existence of positive solutions to equations (33) and (34).
Since (33) and (34) can be equivalently rewritten as

(37)

 Z (2i) = 1
4 [Z (2i− 1) + Z (2i)] + I2

Z (2i + 1) = 1
4A∗ [Z (2i) + Z (2i + 1)] A + I2

and

(38)

 L (2i) = 1
4 [L (2i− 1) + L (2i)] + I3

L (2i + 1) = 1
4B∗ [L (2i) + L (2i + 1)]B + I2

,

respectively, we only have to discuss the solvability of (37) and (38). First, we notice

that Z (2i + 1) =
(

13/11 0
0 13/11

)
, Z (2i) =

(
19/11 0

0 19/11

)
, i ∈ Z, is a

positive solution to (37). Obviously, such a solution is unique according to Remark
1. It remains to study (38). Since L (2i) = 1

3L (2i − 1) + 4
3I3, we see that

(39) L (2i + 1) =
1
4
B∗
[
1
3
L (2i − 1) + L (2i + 1)

]
B +

1
3
B∗B + I3.
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Assume that L (2i + 1) = L for all i ∈ Z. Then we obtain the equation

(40) L =
1
3
B∗LB +

1
3
B∗B + I3.

Since the eigenvalues of 1/
√

3B are 1/
√

3,−1/
(
2
√

3
)

and 1/
(
2
√

3
)
, we deduce

that ρ
(
1/

√
3B
)

< 1 and
∥∥1/

√
3B
∥∥ < 1. Therefore, the deterministic system

xn+1 = 1/
√

3Bxn is uniformly exponentially stable (see Definition 4 in the next
section). It is known (see Theorem 11, for example) that (40) has a unique positive
solution. By a direct computation we get

L =


16
11

3
11

3
11

3
11

16
11

3
11

3
11

3
11

16
11

 .

Then L (2i + 1) = L and L (2i) = 1
3L + 4

3I3, i ∈ Z, is a positive solution of (38).
Applying Theorem 7 it follows that the solution of system (3), (6) is synchronized

both in conditional mean and mean error for any x ∈ R6.
Using (3), (6), it is not difficult to deduce that limt→∞ E

∥∥u(t)|r (k) = i
∥∥2

= 0.
Consequently u(t) → 0 P.a.s.

Now, we observe that the hypotheses of Theorem 7 remain true if in the above
example (Example 2) we replace the function f (t, u) =

(
1/

√
2
)
u by any of the

following functions f̃ (t, u) =
(
1/

√
2
)
u + 2, f̂ (t, u) =

(
1/

√
2
)
u + 2+ (−1)t and

f (t, u) =
(
1/

√
2
)
u+t (−1)t, u ∈ R, t ∈ N. Let us denote by ũ(t), û(t) and u(t) the

solutions of (3),(6) corresponding to f̃ (t, u) , f̂ (t, u) and f (t, u) , respectively. Rea-
soning as in Example 2 we see that limt→∞ E

∥∥(ũ(t+1) − (2
√

2 + 4)
) |r (k) = i

∥∥2
=

0, i.e. ũ(t+1) → 2
√

2 + 4 P.a.s. Since

û(t) = ũ(t) +
√

2√
2 + 1

(
(−1)t−1 + (−1)k (

√
2)k−t

)
(1, 1, 1, 1, 1, 1)T

it follows that (3), (6) (where f (t, u) is replaced by f̂ (t, u)) is synchronized both
in conditional mean and mean error and generates a dynamic pattern which looks
as a blinking star. Also, if we consider (3), (6) with f (t, u) replacing f (t, u) we
observe that it is synchronized both in conditional mean and mean error and the
vector

û(t) = u(t)+(−1)t−1 t
(
2+

√
2
)−2−(−√

2
)k−t [

k
(
2+

√
2
)− 2

](√
2 +1

)2 (1, 1, 1, 1, 1, 1)T

mimics a glowing and blinking star.

Example 3. The mathematical setting remains as in Example 2, excepting that
n = 5. We have to study the synchronization property of the system (3), (6), via
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Theorem 9. We note that C (t, 2i) = I2 and C (t, 2i + 1) = C =

(
0 1/2

1/2 1/2

)
for all i ∈ Z. Equation (36) can be rewritten as

(41)

{
P (2i) = 1

4 [P (2i − 1) + P (2i)] + I2

P (2i + 1) = 1
4C∗ [P (2i) + P (2i + 1)]C + I2

.

Reasoning as above, we deduce that if there exists a solution P (2i + 1) = P,
P (2i) = 1/3P + 4/3I2 for all i ∈ Z of equation (41) then

(42) P =
1
3
C∗PC +

1
3
C∗C + I2.

By computation, we see that P =

(
131
109

24
109

24
109

155
109

)
is a positive solution of (42) and

consequently P (2i + 1) = P, P (2i) = 1/3P +4/3I2, i ∈ Z is positive solution of
(41). This solution is unique from Remark 1.

Applying Theorem 9, it follows that the solution of system (3),(6) is synchro-
nized both in conditional mean and mean error for any x ∈ R5.

6. CONNECTIONS WITH THE DETERMINISTIC CASE

In this section we assume that n ∈ N, n > 5 and a (t, i) = a (t) , i ∈ Z,t ∈ N in
system (3). Evidently (3) is deterministic and the matrices A (t, i) , B (t, i) , C (t, i)
(or A1 (t, i) , B1 (t, i) , C1 (t, i)), defined in the previous section, do not depend
upon i ∈ Z . Hence we will use the short notation A (t) , B (t) , C (t) (respectively
A1 (t) , B1 (t) , C1 (t)) for these matrices. Actually it has no sense to work on spaces
of infinite sequences of linear operators. Therefore, keeping the notation, we replace
the functions defined by (22), (27) and (35) with

Lt : SL
(
Rm−1

)→ SL
(
Rm−1

)
,Lt (h) = Γ (t)2 A∗ (t)hA (t)

Mt : SL (Rm) → SL (Rm) ,Mt (h) = Γ (t)2 B∗ (t) hB (t) ,

Xt : SL (Rm) → SL (Rm) ,Xt (h) = Γ (t)2 C∗ (t)hC (t) .

Then the equations (33), (34) and (36), may be rewritten as

Zt = Γ (t)2 A∗ (t) Zt+1A (t) + I,

Lt = Γ (t)2 B∗ (t)Lt+1B (t) + I,

Pt = Γ (t)2 C∗ (t)Lt+1C (t) + I.



Mean Square Error Synchronization in Networks 2429

Directly from Theorems 7, 9, we obtain the following results.

Corollary 3. Assume that (H3) holds and n = 2m where m ∈ N, m ≥ 3.
If there are unique, uniformly positive and bounded on N solutions {Z t}t∈N ⊂
SL

(
Rm−1

)
and {Lt}t∈N ⊂ SL (Rm) to the equations

Zt = Γ (t)2 A∗ (t)Zt+1A (t) + IRm−1 and(43)

Lt = Γ (t)2 B∗ (t) Zt+1B (t) + IRm,(44)

respectively, then the solution of system (3), (6) is synchronized for any x ∈ R 2m.

Corollary 4. Assume that (H3) holds and n = 2m + 1 where m ∈ N,m ≥ 2.
If there is a unique, uniformly positive and bounded on N solution, {P t}t∈N ⊂
SL (Rm) , of the equation

Pt = Γ (t)2 C∗ (t) Pt+1C (t) + IRm ,

then the solution of system (3), (6) is synchronized for any x ∈ R2m+1.

In [1] (see Theorems 1, 2) it is proved the following result:

Theorem 10. Assume that Γ (t) = Γ for all t ∈ N.

(i) If n = 2m, m ≥ 3, lim supt→∞ ρ (A1 (t)) < 1/Γ and lim supt→∞ ρ (B1 (t)) <
1/Γ, then every solution of (3) is synchronized.

(ii) If n = 2m + 1, m ≥ 2, lim supt→∞ ρ (C1 (t)) < 1/Γ, then every solution of
(3) is synchronized.

In what follows we will compare the above results. First, we recall some well-
known results (see [7] and the references therein).

Let H be a real separable Hilbert space and An ∈ L (H) , n ∈ N. We consider
the system

(45) xn+1 = Anxn, xk = x ∈ H, n ≥ k

and we denote byX (n, k)=An−1 ···Ak the evolution operator associated with (45).

Definition 4. The system (45) is uniformly exponentially stable iff there exist
β ≥ 1, a ∈ (0, 1) such that

(46) ‖X(n, k)x‖ ≤ βan−k ‖x‖
for all n ≥ k ≥ 0 and x ∈ H .

The following result is known [7].
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Theorem 11.

(i) The system (45) is uniformly exponentially stable iff there exist m, M > 0
and a unique solution P = (Pn)n∈N to the Lyapunov equation

(47) Pn = A∗
nPn+1An + I.

satisfying

(48) m ‖x‖2 ≤ 〈Pnx, x〉 ≤ M ‖x‖2

for all n∈ N and x ∈ H .
(ii) In the time invariant case, where An = A for all n ∈ N, the system (45) is

uniformly exponentially stable iff the Lyapunov equation

P = A∗PA + I,

has a unique positive solution.

Proposition 3. Assume that An ∈ L (H) , n ∈ N is a sequence of normal
operators. If limn→∞ ρ (An) < 1, then there exist β ≥ 1 and a ∈ (0, 1) such that
(46) holds for all n ≥ k ≥ 0 and x ∈ H .

Proof. Clearly ‖X(n, k)x‖ = ‖An−1 · · · Akx‖ ≤ ‖An−1‖ · · · ‖Ak‖ ‖x‖ =
ρ (An−1) · · · ρ (Ak) ‖x‖ for all x ∈ H. From the hypothesis it follows that there
exists n0 ∈ N and l ∈ (0, 1) such that ρ (An) ≤ l for all n ≥ n0. Hence for all
n ≥ k ≥ n0 we have ‖An−1‖ · · · ‖Ak‖ = ρ (An−1) · · · ρ (Ak) ≤ ln−k. Now it is
clear that for all n ≥ k ≥ 0 and x ∈ H

‖X(n, k)x‖ ≤ ln−k ‖x‖ .

The conclusion follows.

The converse is not true as we will show in the following counter example.

Counter Example. Let A2m+1 = A1 = 1/2

( −1 1

1 −1

)
= 1/2(

1−2a a

a 1−2a

)
a=1

and A2m =A0 =
(

0 1/2
1/2 0

)
=
(

1 − 2a a

a 1 − 2a

)
a=1/2

for all m ∈ N. Evidently, An ∈ L (H) , n ∈ N is a sequence of normal operators.

The spectrum of A1, A0 and A1A0 = 1/2

(
1
2 −1

2

−1
2

1
2

)
is {0,−1}, { 1

2,−1
2}

and {0, 1/2}, respectively. Now, it is clear that ρ (A1A0) < 1, ρ (A1) = 1 and
ρ (A2) < 1. An easy computation shows that (46) holds, while limn→∞ ρ (An)
does not exist.
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We can easily prove the following result. The details are left to the reader.

Lemma 2. With the notation of this section, assume that A 1 (t) and A (t)
(respectively B1 (t) and B (t)) are (m − 1) × (m − 1) , m ∈ N, m ≥ 3 (respec-
tively m × m, m ∈ N, m ≥ 3) matrices and let t ∈ N be fixed. We denote
by P

(t)
m (λ), Q

(t)
m (λ) , G

(t)
m (λ) and H

(t)
m (λ) the characteristic polynomials of the

matrices A1 (t) , A (t), B1 (t) and B (t) , respectively.

(a) If m ≥ 3 and 1 − 2a (t) < 0, then Q
(t)
m (λ) = (−1)m P

(t)
m (−λ) , otherwise

the two characteristic polynomials coincide.

(b) If m ≥ 5 and 1/2 < a (t) , we have H
(t)
m (λ) = (−1)m G

(t)
m (−λ) , λ ∈ R; if

m ≥ 5 and a (t) ≤ 1/3, then H
(t)
n (λ) = G

(t)
n (λ) , λ ∈ R.

Remark 3. Assume that n = 2m, m ∈ N, m ≥ 3 and t ∈ N are fixed. The
following statements are easy consequences of the above lemma:

(a) If 1 − 2a (t) ≥ 0, the eigenvalues of the matrices A (t) and A1 (t) coincide;
if 1− 2a (t) < 0, then λ is an eigenvalue of A (t) iff −λ is an eigenvalue of
A1 (t). (In other words, the spectral radii of A (t) and A1 (t) are equal for
all t ∈ N.)

(b) If a (t) ∈ [0, 1/3]∪ (1/2,∞), then the spectral radii of B (t) and B1 (t) are
equal for all t ∈ N.

We already show that the results in this paper stay true in the deterministic case
(see Corollaries 3, 4). The next proposition prove that they are stronger then the
one in [1], for a large class of values of a (t) .

Proposition 4.

(i) Assume a (t) ∈ [0, 1/3]∪(1/2,∞) for all t ∈ N. If the hypotheses of Theorem
10 (i) and (H3) hold, then the hypotheses of Corollary 3 are fulfilled.

(ii) Assume a (t) ∈ [0, 1/3] for all t ∈ N. If the hypotheses of Theorem 10 (ii)
and (H3) hold, then the hypotheses of Corollary 4 are fulfilled.

Proof. (i) Lemma 2 and Remark 3 show that lim supt→∞ ρ (A (t)) , limsupt→∞
ρ (B (t)) < 1/Γ. By Proposition 3, it follows that, for all t ≥ k ≥ 0, there
exist β ≥ 1, a ∈ (0, 1) such that ‖XY (t, k)x‖ ≤ βat−k ‖x‖ , Y = A, B, where
XY (t, k), Y = A, B, are the evolution operators associated to the systems

xt+1 = ΓA (t)xt, xk = x ∈ Rm−1,

xt+1 = ΓB (t) xt, xk = x ∈ Rm,



2432 Viorica Mariela Ungureanu and Sui-Sun Cheng

respectively. In view of Theorem 11, we see that (43), (44) admit unique, bounded
on N and uniformly positive solutions. The proof of statement ii) is similar and
will be omitted.

The above proposition shows that if n ≥ 5, then the sufficient conditions given
in [1] for the synchronization of the system (3), are stronger then the ones introduced
in this paper. It can easily be proved that this conclusion remains true in the cases
where n = 2, 3 and 4.

7. CONCLUDING REMARKS

In our previous discussions, we have emphasized on one or two colored patterns.
We can also ask for three or more colored patterns (see the following figure)

A B

D C

C D

B A

or we can discuss patterns formation in stochastic networks with different underlying
structure such as the star-shaped structure in [14] and the two coupled ring structure
in [3] (in which a number of interesting patterns can be found).

We have also emphasized on probabilistic parameters that satisfy Markov chain
assumptions. But we can also deal with more general stochastic networks. Therefore
we have only established some elementary results in an open territory of research.
It is hoped, however, that our investigations will make it easier for the reader to
enter this vast territory in nonlinear statistical science.
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