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VISCOSITY-TYPE APPROXIMATION METHOD FOR EFFICIENT
SOLUTIONS IN VECTOR OPTIMIZATION

Thai Doan Chuong and Jen-Chih Yao*

Abstract. The paper is devoted to developing the viscosity-type approximation
algorithm of finding efficient solutions to the vector optimization problem for
a mapping between finite dimensional Hilbert spaces with respect to the partial
order induced by a pointed closed convex cone. We prove that under some
suitable conditions either the sequence generated by our method converges
to an efficient solution or its cluster points belong to the set of all efficient
solutions of this problem.

1. INTRODUCTION

The purpose of this paper is to develop and justify the iterative algorithm of the
so-called viscosity-type approximation to find efficient (or Pareto) solutions for a
general class of vector optimization problems in finite-dimensional Hilbert spaces
described as follows.

Let X and Y be finite dimensional Hilbert spaces. Given a pointed closed
convex cone C ⊂ Y, we consider the partial order �C in Y defined by

y �C y′ if and only if y′ − y ∈ C.(1.1)

In what follows we are not going to impose the nonempty interior assumption on
the ordering cone C, but to compare with the previous constructions and results
recall that for intC �= ∅, i.e., if the cone C is solid, the “weak” counterpart of (1.1)
is defined by

y ≺C y′ if and only if y′ − y ∈ intC.(1.2)
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Consider further an extended vector-valued mapping F : X → Y ∪ {+∞C} where
the symbol +∞C in the extended image space Y is defined and discussed in Sec-
tion 2. The main model of our study in this paper is the vector optimization problem
(VOP) formalized as

minC

{
F (x)

∣∣ x ∈ X
}
,(1.3)

where the “minC” is understood with respect to the ordering relation �C from (1.1).
We write x̄ ∈ ArgminC{F (x) | x ∈ X} to indicate that x̄ is an efficient (or

Pareto) solution of (1.3) if x̄ ∈ X and there is no x ∈ X satisfying F (x) �C F (x̄)
with F (x) �= F (x̄). When intC �= ∅, an element x̄ ∈ X is weakly efficient (or
weak Pareto) for this problem if there is no x ∈ X satisfying F (x) ≺C F (x̄).

Our main concern is to analyze the methods for finding efficient solutions of
problem (1.3). There are many publications devoted to the study of various methods
for vector optimization problems of finding efficient or/and weakly efficient solutions
(see, e.g., [5-9, 11-15] and the references therein). Let us briefly discuss some of
them.

The steepest descent method for weakly efficient solutions of multiobjective
optimization with C = Rn

+ being the nonnegative orthant of Rn was dealt with in
[12]; the same method for partial orders given by rather general cones in R

n was
presented in [14] and for Hilbert settings was given in [10]. An extension of the
projected gradient method to the case of constrained vector optimization with the
order given by a general cone in Rn can be found in [13]. Recently, a geometrical
interpretation of the weighting method for constrained vector optimization has been
done in [15].

It is worth noticing that Bonnel et al. [5] constructed a proximal point algorithm
to investigate a convex vector optimization problem (1.3) of finding weakly efficient
solutions for a mapping from a Hilbert space to a Banach space. Recently, Ceng
and Yao [7] studied the approximate proximal method as well as discussed an
extension to Bregman function based proximal algorithms for solving a weakly
efficient solution of (1.3).

The authors in [6] introduced and studied a certain hybrid approximate proximal
method of finding weakly efficient solutions to the convex constrained vector opti-
mization problem by utilizing and developing iterative processes from the fixed-point
theory for nonexpansive operators and combining them with algorithms for solving
some classes of monotone variational inequalities. Another results in this direction
are given in [9] where the authors developed new hybrid approximate proximal-
type algorithms to find efficient (or Pareto) solutions to problems of the convex
constrained vector optimization in both finite-dimensional and infinite-dimensional
spaces.

Very recent result in another direction is given in [8] where the authors intro-
duced and studied the so-called generalized viscosity approximation (or viscosity-
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type approximation) method of finding weakly efficient solutions to the vector opti-
mization problem for a mapping between finite dimensional spaces with the ordering
cone C = Rn

+ being the nonnegative orthant of Rn. Under some conditions, they
proved that any sequence generated by their method converges to a weakly efficient
solution.

It has been well recognized that the notion of weakly efficient solutions requiring
the nonempty interior assumption on ordering cones is more of some theoretical
interest being rather convenient for employing conventional techniques of scalar-
ization, separation, etc., but not being usually demanded by engineering, economic,
operations research, and other important applications of multiobjective optimization.
Moreover, in real-life applications it is often the case that only efficient solutions
(instead of weakly efficient ones) are of interest (see, e.g., Section 2.3 in [16]).

These observations strongly motivate us to focus on efficient solutions while
not weakly efficient ones to vector optimization problems. The present paper is
devoted to developing the viscosity-type approximation algorithm of finding efficient
solutions to vector optimization problems of (1.3). In the subsequent sections of our
paper we modify the algorithm in [8] to avoid the restrictive interiority assumption
in such a way that the constructed iterative sequence with the property either this
sequence converges to an efficient solution or its cluster points belong to the set of all
efficient solutions of the initial vector optimization problem (1.3). Among the major
modifications implemented below, we mention the construction and justification of
the so-called r-proper efficient solutions to the approximating problems instead of
weakly efficient ones as in [8] and the previous developments.

The rest of the paper is organized as follows. Section 2 contains some pre-
liminary material and basic definitions needed for the formulation and the proof
of the main result. The last section is devoted to the study of the viscosity-type
approximation algorithm. Under some suitable conditions, we prove that either the
sequence generated by the method converges to some efficient solution of (1.3) or
every cluster point of it is an efficient solution of this problem.

2. PRELIMINARIES

In this section we present the basic definitions and notations widely used in what
follows and also define and discuss some constructions and standing assumptions
that play important roles in establishing our main results in the subsequent sections.

Following [3], we consider the extended ordered space Y := Y ∪{−∞C ,+∞C}
and recall that a neighborhood of +∞C is defined as a set U ⊂ Y containing
a+C ∪{+∞C} for some a ∈ Y and its opposite −U is a neighborhood of −∞C .
The binary/ordering relations �C and ≺C defined in Section 1 are extended to Y
by −∞C �C y �C +∞C and −∞C ≺C y ≺C +∞C for all y ∈ Y . Observe that
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the embedding Y ⊂ Y is dense and continuous. The positive polar and the strict
polar to C are defined, respectively, by

C+ :=
{
� ∈ Y

∣∣ 〈y, �〉 ≥ 0 for all y ∈ C
}
,(2.1)

and

C+
s :=

{
� ∈ Y

∣∣〈y, �〉 > 0 for all y ∈ C\{0}}.(2.2)

Given a set Θ ⊂ Y , define the distance function to Θ by

d(y,Θ) = inf
{||y − z|| ∣∣ z ∈ Θ ∩ Y }

, y ∈ Y.

All the mappings F : X → Y ∪ {+∞C} under consideration are assumed to be
proper, i.e., not identically equal to +∞C with the domain

domF := {x ∈ X | F (x) �= +∞C}.
We extend by continuity every � ∈ C+\{0} to Y by putting 〈±∞C , �〉 = ±∞ (see
[3] for more details). A mapping F : X → Y ∪ {+∞C} is called positively lower
semicontinuous (see, [5]) if its extended real-valued scalarization x �→ 〈F (x), �〉
is lower semicontinuous (l.s.c.) for every � ∈ C+. F is called positively partially
continuous if if its extended real-valued scalarization x �→ 〈F (x), �〉 is continuous
on every closed convex subset of domF for every � ∈ C+. F : X → Y ∪ {+∞C}
is C-convex if

F
(
(1 − λ)x+ λx′

) �C (1 − λ)F (x) + λF (x′) for all x, x′ ∈ X and λ ∈ [0, 1].

Our standing assumptions in this paper are that C �= {0} and that the ob-
jective mapping F in (1.3) is positively lower semicontinuous, positively partially
continuous and C-convex.

Recall that F : Ω ⊂ X → Y is Gâteaux differentiable at x0 ∈ Ω if there exists
a matrix DF (x0) such that for any v ∈ X,

DF (x0)v = lim
t→0+

F (x0 + tv) − F (x0)
t

.

DF (x0) is called the Gâteaux derivative of F at x0. If F is Gâteaux differentiable
at every x ∈ Ω, then F is said to be Gâteaux differentiable on Ω.

We say that x̄ is a properly efficient solution to (1.3) and denote it by

x̄ ∈ ArgminC
p
{
F (x)

∣∣ x ∈ X}
if there is a pointed closed convex cone K ⊂ Y such that C\{0} ⊂ intK and we
have x̄ ∈ ArgminK{F (x)| x ∈ X}.
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It follows from [5, Theorem 2.1] that

ArgminC
p
{
F (x)

∣∣ x ∈ X
}

=
⋃

�∈C+
s

[
argmin

{〈F (x), �〉∣∣ x ∈ X
}]
,(2.3)

provided that the objective mapping F of the vector optimization problem (1.3) is C-
convex. Moreover, we can also verify the validity of x̄ ∈ ArgminC

p{F0(x)| x ∈ Ω}
if and only if x̄ ∈ ArgminC

p{F̃0(x)| x ∈ X} for the unconstrained cost mapping
F̃0 : X → Y ∪ {+∞C} defined by

F̃0(x) =

{
F0(x) if x ∈ Ω,
+∞C if x ∈ X\Ω,

where Ω ⊂ X and F0 is a mapping from Ω to Y.
Next we define, given r ∈ (0, 1], the restricted polar

Kr :=
{
� ∈ Y

∣∣ 〈y, �〉 ≥ r||y|| · ||�|| for all y ∈ C
}

(2.4)

and observe that Kr\{0} ⊂ C+
s for every r ∈ (0, 1] and that Kr2 ⊂ Kr1 whenever

0 < r1 < r2 ≤ 1. We say that x̄ ∈ X is a r-properly efficient solution to (1.3) (see
[9]) if there is � ∈ Kr \ {0} such that x̄ ∈ argmin{〈F (x), �〉| x ∈ X}. The set
of r-properly efficient solutions to (1.3) is denoted by Argminrp

C {F (x) | x ∈ X};
thus we have by definition that

ArgminC
rp

{
F (x)

∣∣ x ∈ X
}

=
⋃

�∈Kr\{0}

[
argmin

{〈F (x), �〉∣∣ x ∈ X
}]
.(2.5)

Another standing assumption imposed in this paper is as follows:

(H) There exists r ∈ (0, 1] such that Kr �= {0}.(2.6)

As shown in [5, Remark 4], the property (2.6) is automatic if the interior of the
polar C+ from (2.1) is nonempty. Thus it is worth mentioning to this that, as it
follows from [17, Proposition 1.10], the assumption (2.6) is always fulfilled in our
setting. We refer the reader to [5] where this assumption has been introduced and
discussed in detail for more general settings.

Let us now recall some notions and their properties in [1]. Let Ω ⊂ X be a
nonempty set. The asymptotic cone of Ω, denoted by Ω∞, is the set of all vectors
d ∈ X that are limits in the direction of the sequences {xn} ⊂ Ω, namely

Ω∞ =
{
d ∈ X | ∃tn → +∞, ∃xn ∈ Ω with lim

n→+∞
xn

tn
= d

}
.
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In the case that Ω is convex and closed, for any x0 ∈ Ω,

Ω∞ = {d ∈ X | x0 + td ∈ Ω ∀t > 0}.
For any proper function f : X → R ∪ {+∞}, the asymptotic function of f is
defined as the function f∞ such that epif∞ = (epif)∞ where epif = {(x, t) ∈
X × R | f(x) ≤ t} is the epigraph of f. Consequently, we can give the analytic
representation of the asymptotic function f∞ as follows:

f∞(d) = inf
{

lim inf
n→∞

f(tndn)
tn

| tn → +∞, dn → d

}
,

where {tn} and {dn} are sequences in R and X , respectively.
As shown in [1, Corollary 2.5.1], (IΩ)∞ = IΩ∞ where IΩ is the indicator

function to Ω, i.e.,

IΩ(x) =

{
0 if x ∈ Ω,
+∞ otherwise.

Lemma 2.1. ([1, Proposition 2.6.1]). Let fi : X → R ∪ {+∞}, i = 1, ..., p, be
a collection of proper functions, f :=

∑p
i=1 fi, and suppose that f is proper, i.e.,

domf = ∩p
i=1domfi �= ∅. Then f∞(d) ≥ ∑p

i=1(fi)∞(d) for all d satisfying the
condition: if (fi)∞(d) = +∞ (respectively −∞) for some i, then (fj)∞(d) > −∞
(respectively < +∞) for j �= i.

If in addition all the functions are l.s.c. and convex, then the equality holds in
the inequality.

The function f : X → R ∪ {+∞} is said to be coercive if f∞(d) > 0 for all
d �= 0. The following result is from [1, Propositions 3.1.2 and 3.1.3].

Lemma 2.2. Let f : X → R ∪ {+∞} be proper, l.s.c. and convex, then the
following three statements are equivalent:

(i) f is coercive;
(ii) the optimal set {x ∈ X | f(x) = inf f} is nonempty and compact;
(iii) lim inf

||x||→+∞
f(x)
||x|| > 0.

As an immediate consequence of [1, Theorem 3.4.1], we have the following
result.

Lemma 2.3. Let f : X → R ∪ {+∞} be l.s.c. and proper. If the optimal set

{x ∈ X | f(x) = inf f} �= ∅,
then f∞(d) ≥ 0 for all d �= 0.
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3. VISCOSITY-TYPE APPROXIMATION ALGORITHM

In this section we develop a new viscosity-type approximation algorithm for
finding efficient solutions to the vector optimization problem (1.3) based on using
the so-called coercive viscosity vector functions. For the scalar case, the reader can
find more information and references on this remarkable class of functions and their
applications to optimization in [2].

By a coercive viscosity vector function (see [8] for the more strict type) G : X →
C ∪ {+∞C} we mean a proper, C-convex, positively lower semicontinuous vector
function with domG a closed convex set. Moreover, this function is continuous
and Gâteaux differentiable on domG and its Gâteaux derivative DG(·) enjoys the
following properties:

(a) DG(·) is continuous on domG;
(b) there exists x′ ∈ domG such that DG(x′) = 0.

The mapping G : Rk → Rk
+ defined by

G(x) = ||x||2e1 + ||x||2e2 + · · ·+ ||x||2ek
where e1 = (1, 0, · · · , 0), e2 = (0, 1, · · · , 0), · · · , ek = (0, 0, · · · , 1) ∈ Rk is a
simple example for a coercive viscosity vector function.

Let us now describe the scheme of the viscosity-type approximation algorithm
for finding efficient solutions to (1.3) developed in this section and called for sim-
plicity VTA. The new algorithm does not impose any interiority assumptions on the
ordering cone under consideration while using the standing assumptions formulated
in Section 2 with some r ∈ (0, 1] from (2.6) as well as use r-proper efficient
solutions to the subproblems instead of weakly efficient ones as in [8].

VTA requires the following data: a sequence of positive real numbers {αn} and
a sequence {βn} ⊂ [0, 1] satisfying αn → 0, βn → 0. VTA generates a sequence of
iterates {xn} ⊂ X in the following way:

Initialization: Choose x0 ∈ domF .
Stopping rule: If xn ∈ ArgminC{F (x) | x ∈ X} for the iterate xn, then we let

xn+p = xn for all p ≥ 1.
Iterative step: If xn /∈ ArgminC{F (x)| x ∈ X} for the iterate xn, we first

compute zn by

zn ∈ Argminrp
C

{
F (x) + αnG(x)

∣∣ x ∈ Ωn

}
(3.1)

with the set Ωn = {x ∈ X | F (x) �C F (xn)} and r ∈ (0, 1] from (2.6) and then
take as the next iterate any xn+1 ∈ X satisfying

xn+1 = (1− βn)zn + βnxn.(3.2)
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To justify the well-posedness of VTA and show that either the sequence generated
by the method converges to an efficient solution or its cluster points belong to the set
of all efficient solutions of (1.3) in the next theorem, we keep the standing assump-
tions of the paper formulated in Section 2 and impose the following assumptions:

(A) The set ArgminC
rp{F (x)| x ∈ X} is nonempty and bounded.

(B) (see [7]) F is C+-asymptotically uniformly continuous, that is, for every
bounded sequences {xn}, {zn} ⊂ X such that ||xn − zn|| → 0 as n → ∞
and each sequence {�n} ⊂ C+ converging to some � ∈ C+, it holds:

〈F (xn) − F (zn), �n − �〉 → 0 as n→ ∞.

Theorem 3.4. In addition to the standing assumptions on the data of problem
(1.3) formulated in Section 2, suppose that the assumptions (A) and (B) are fulfilled.
Then we have:

(i) VTA is well defined, i.e., the sequence of iterates {xn} is determined for any
starting point x0 ∈ domF from the initiation step.

(ii) Either {xn} converges to an efficient solution of (1.3) or every cluster point
of {xn} in VTA belongs to the set of all efficient solutions of (1.3).

Proof. We devide the proof of the theorem into three steps.
Step 1: Justification of well-posedness of the method. Choose x 0 ∈ domF

in the initiation step and assume that the algorithm reaches the nth iteration xn,
n = 0, 1, . . .. Let us show that the next iteration can be constructed according to
the algorithm scheme, i.e., xn+1 exists. By the stopping rule of the algorithm this
is certainly the case if xn ∈ ArgminC{F (x)| x ∈ X}.

Otherwise, i.e., when condition xn /∈ ArgminC{F (x)| x ∈ X} is satisfied for
the fixed n = 0, 1, . . . . By the assumption (A) and (2.5), there exist � ∈ Kr \ {0}
and x̂ ∈ ArgminC

rp{F (x)| x ∈ X} such that

x̂ ∈ argmin{〈F (x), �〉| x ∈ X}.
By the C-convexity and positively lower semicontinuity of F , we have 〈F (·), �〉 is
convex and l.s.c. on X. This implies that argmin{〈F (x), �〉| x ∈ X} is closed and
thus compact by using again the assumption (A) and the fact that

argmin{〈F (x), �〉| x ∈ X} ⊂ ArgminC
rp{F (x)| x ∈ X}.

By virtue of Lemma 2.2, we have

(�F )∞(d) > 0 ∀d �= 0,(3.3)
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where (�F )(x) = 〈F (x), �〉 for all x ∈ X. Define further a function ϕn : X →
R ∪ {+∞} by

ϕn(x) := 〈F (x), �〉+ IΩn(x) + αn〈G(x), �〉,(3.4)

where Ωn := {x ∈ X | F (x) �C F (xn)}. By the C-convexity and positively lower
semicontinuity of F and G we conclude that the scalarized functions 〈F (·), �〉 and
〈G(·), �〉 are convex and l.s.c. as well as Ωn is convex and closed, and thus the
extended function ϕ is l.s.c. and convex. From the definition of the indicator
function, we have

(IΩn)∞(d) = I(Ωn)∞(d) =

{
0 if d ∈ (Ωn)∞
+∞ otherwise.

(3.5)

Besides, from the property (b) of G, there exists x′ ∈ domG such that

〈DG(x′), �〉 = 0,

which implies that the following optimization problem:

min{〈G(x), �〉 | x ∈ X}

has a nonempty solution set. According to Lemma 2.3, we deduce that

(�G)∞(d) ≥ 0 ∀d �= 0.(3.6)

Combining (3.3), (3.5) with (3.6) and using Lemma 2.1, we get

(ϕn)∞(d) = (�F )∞(d) + (IΩn)∞(d) + (�G)∞(d) > 0 ∀d �= 0.

Thus it allows us to establish the existence of minimizers for ϕn by Lemma 2.2.
By (2.5) we observe that such a minimizer satisfies (3.1) and can be taken as zn.
Hence the next iterate xn+1 computed by (3.2) is well-defined.

Step 2: Boundedness of the sequence {xn} and proximity of consecutive iterates.
If the stopping rule applies at some iteration, then the sequence of iterates remains
constant thereafter; thus it converges to the stopping iterate which is an efficient
solution of (1.3). From now on we assume without loss of generality that the
stopping rule never applies.

We shall show that there exists M > 0 such that ||xn|| ≤M for all n. Suppose
for contradiction that ||xn|| → +∞ as n→ ∞. By (3.3) and Lemma 2.2, we have

lim inf
||xn||→+∞

〈F (xn), �〉
||xn|| > 0.(3.7)
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On the other hand, by the fact that zn ∈ Ωn and the C-convexity of F , we deduce
from (3.2) that

F (xn+1) �C (1 − βn)F (zn) + βnF (xn) �C F (xn) ∀n.(3.8)

Thus F (xn) �C F (x0) for all n and so 〈F (xn), �〉 ≤ 〈F (x0), �〉 for all n. This
implies that

lim inf
||xn||→+∞

〈F (xn), �〉
||xn|| ≤ lim inf

||xn||→+∞
〈F (x0), �〉

||xn|| = 0.(3.9)

Combining (3.7) with (3.9) gives a contradiction. Thus the sequence {xn} must
be bounded. A similar argument shows that {zn} is also bounded.

Step 3: Optimality of the cluster points of the sequence {x n}. Since {xn} is
bounded, it has some cluster points. We shall show that all of cluster points are
efficient solutions of (1.3). Let x̄ be one of the cluster points of {xn} and {xnk

} be
a subsequence of {xn} which converges to x̄. To justify next that x̄ is an efficient
solution to the vector optimization problem (1.3), consider the scalarized function
ψ�(x) = 〈F (x), �〉 and show that

ψ�(x̄) ≤ ψ�(xn) for all � ∈ C+ and n ≥ 0,(3.10)

where the positive polar C+ is defined in (2.1). Since F is assumed to be positively
lower semicontinuous and C-convex, the function ψ� : X → R ∪ {+∞} is lower
semicontinuous and convex and so ψ�(x̄) ≤ lim inf

k→∞
ψ�(xnk

). Besides by (3.8), we
have F (xn+1) �C F (xn). Thus

ψ�(xn+1) ≤ ψ�(xn) ∀n ≥ 0.(3.11)

Consequently, lim inf
k→∞

ψ�(xnk
) = inf

{
ψ�(xn)

}
which gives ψ�(x̄) ≤ inf {ψ�(xn)}.

Hence we have (3.10) and conclude from it that

F (x̄) �C F (xn) for all n ≥ 0.(3.12)

Since zn solves the auxiliary vector optimization problem in (3.1), we get by (2.5)
that there is �n ∈ Kr\{0} with some r ∈ (0, 1] from (2.6) such that zn also solves
the problem

min ηn(x) subject to x ∈ Ωn,(3.13)

where ηn : X → R ∪ {+∞} is defined by

ηn(x) := 〈F (x), �n〉 + αn〈G(x), �n〉.(3.14)
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Since the solution to (3.13) is not altered through multiplication of �n by positive
scalars, we assume without loss of generality that ||�n|| = 1 for all n ≥ 0. It follows
from the definitions of Ωn and G that Ωn ⊂ domF and so Ωn ∩ domG is a closed
convex set and is contained in domF. As F is positively partially continuous and
G is continuous on domG, we have ηn is continuous on Ωn ∩ domG. Since zn
satisfies the first order optimality conditions for the convex problem (3.13), applying
now [18, Theorem 3.16], we find un ∈ X such that

un ∈ ∂ηn(zn) and 〈un, x− zn〉 ≥ 0(3.15)

for all x ∈ Ωn. We conclude from (3.14) and (3.15) that

un = vn + αn〈DG(zn), �n〉 with some vn ∈ ∂ψ�n(zn).(3.16)

Assume on the contrary that x̄ is not efficient for (1.3). Then there exists x̃ ∈ X

such that

F (x̃) �C F (x̄) and F (x̃) �= F (x̄).(3.17)

Recall that �n ∈ Kr \ {0} for the restricted polar (2.4) with some r ∈ (0, 1] from
(2.6) and that ‖�n‖ = 1 for all n ≥ 0. So there is a subsequence {�nk

} of {�n}
which converges to some point �̄ ∈ Y with ‖�̄‖ = 1. Let us show that �̄ ∈ C+

s

where the strict polar C+
s is defined in (2.2). Indeed, for every y ∈ C we get

〈y, �nk
〉 ≥ r||y||. Since the linear form � �→ 〈y, �〉 is continuous, by passing to

the limit as k → ∞, we arrive at 〈y, �̄〉 ≥ r||y||. The latter ensures that �̄ ∈ C+
s .

Observe that the established assertion �̄ ∈ C+
s implies together with (3.17) the strict

inequality

〈F (x̄) − F (x̃), �̄〉 > 0.(3.18)

On the other hand, from (3.2) and the convexity of ψ�nk
we get

(3.19)

〈F (xnk+1), �nk
〉

= ψ�nk
(xnk+1) = ψ�nk

(
βnk

xnk
+ (1 − βnk

)znk

)
≤ βnk

ψ�nk
(xnk

) + (1− βnk
)ψ�nk

(znk
)

= βnk

(
ψ�nk

(xnk
)− ψ�nk

(znk
)
)

+ ψ�nk
(znk

)

= βnk
〈F (xnk

) − F (znk
), �nk

〉 + ψ�nk
(znk

)

= βnk
〈F (xnk

) − F (znk
), �nk

− �̄〉 + βnk

(
ψ

�̄
(x̄) − ψ

�̄
(znk

)
)

+βnk

(
ψ

�̄
(xnk

) − ψ
�̄
(x̄)

)
+ ψ�nk

(znk
).
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Furthermore, it follows from (3.12) and (3.17) that F (x̃) �C F (x̄) �C F (xn) and
hence x̃ ∈ Ωn for all n ≥ 0. The latter implies together with (3.15) and (3.16) that

(3.20)

ψ�nk
(x̃) − ψ�nk

(znk
)

≥ 〈vnk
, x̃− znk

〉
= 〈unk

, x̃− znk
〉 − αnk

〈DG(znk
), �nk

〉(x̃− znk
)

≥ −αnk
〈DG(znk

), �nk
〉(x̃− znk

)

≥ −αnk
||DG(znk

)|| · ||x̃− znk
||.

Using now (3.10), we derive from (3.19) and (3.20) that

(3.21)

〈F (x̃) − F (x̄), �nk
〉

≥ 〈F (x̃) − F (xnk+1), �nk
〉 = ψ�nk

(x̃) − ψ�nk
(xnk+1)

≥ ψ�nk
(x̃) − ψ�nk

(znk
)− βnk

(〈F (xnk
) − F (znk

), �nk
− �̄〉

−βnk

(
ψ

�̄
(x̄) − ψ

�̄
(znk

)
)− βnk

(
ψ

�̄
(xnk

) − ψ
�̄
(x̄)

)
≥ −αnk

||DG(znk
)|| · ||x̃− znk

||
−βnk

(〈F (xnk
) − F (znk

), �nk
− �̄〉 − βnk

(
ψ

�̄
(x̄) − ψ

�̄
(znk

)
)

−βnk

(
ψ

�̄
(xnk

) − ψ
�̄
(x̄)

)
.

We next take the inferior limit of the rightmost expression in (3.21). Note that
lim

n→∞αn = 0 and {||x̃ − zn||} is bounded. As DG(·) is continuous, Y is finite
dimensional and {zn} is bounded, we conclude that {DG(zn)} is also bounded.
Note further that lim

n→∞βn = 0 and the boundedness of {xn} and {zn}, which follows
from (3.2) that lim

n→∞ ||xn+1− zn|| = lim
n→∞βn||xn − zn|| = 0. This together with the

fact that lim
k→∞

xnk
= x̄ imply that lim

k→∞
znk

= x̄ and therefore lim
k→∞

||xnk
−znk

|| = 0.

The latter together with the assumption (B) ensure that

lim
k→∞

〈F (xnk
) − F (znk

), �nk
− �̄〉 = 0.

Meantime, the lower semicontinuity of the function ψ
�̄

gives us

lim inf
k→∞

ψ
�̄
(xnk

) ≥ ψ
�̄
(x̄).

Thus ψ
�̄
(x̄) ≤ lim inf

k→∞
ψ

�̄
(xnk

) ≤ ψ
�̄
(x0) by (3.11). Since lim

k→∞
βnk

= 0, we
therefore get

lim inf
k→∞

βnk

(
ψ

�̄
(xnk

) − ψ
�̄
(x̄)

)
= lim inf

k→∞
βnk

(
lim inf
k→∞

ψ
�̄
(xnk

) − ψ
�̄
(x̄)

)
= 0.
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A similar manner shows that lim inf
k→∞

βnk

(
ψ

�̄
(znk

) − ψ
�̄
(x̄)

)
= 0. By above argu-

ments, we can conclude that the inferior limit of the rightmost expression in (3.21)
as k → ∞ is zero. Hence we get from (3.21) that

〈F (x̃) − F (x̄), �̄〉 ≥ 0.

This contradicts (3.18) and thus justifies that x̄ is indeed an efficient solution of the
vector optimization problem (1.3).
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