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RINGS WITH INDECOMPOSABLE RIGHT MODULES LOCAL

Surjeet Singh

Abstract. Every indecomposable module over a generalized uniserial ring
is uniserial, hence local. This motivates one to study rings R satisfying the
condition (*): R is a right artinian ring such that every finitely generated,
indecomposable right R-module is local. The rings R satisfying (*) have been
recently studied by Singh and Al-Bleahed (2004), they have proved some
results giving the structure of local right R-modules. In this paper some more
structure theorems for local right R-modules are proved. Examples given
in this paper show that a rich class of rings satisfying condition (*) can be
constructed. Using these results, it is proved that any ring R satisfying (*) is
such that mod-R is of finite representation type. It follows from a theorem
by Ringel and Tachikawa that any right R-module is a direct sum of local
modules. If M is right module over a right artinian ring such that any finitely
generated submodule of any homomorphic image of M is a direct sum of local
modules, it is proved that it is a direct sum of local modules. This provides
an alternative proof for that any right module over a right artinian ring R
satisfying (*) is a direct sum of local modules.

0. INTRODUCTION

It is well known that an artinian ring R is generalized uniserial if and only if
every finitely generated indecomposable right R-module is uniserial. Every uniserial
module is local. This motivated Tachikawa [10] to study a ring R satisfying the
condition (*): R is a right artinian ring such that every finitely generated indecom-
posable right R-module is local. Consider the dual condition (**): R is left artinian
such that every finitely generated indecomposable left R-module is uniform. If a
ring R satisfies (*), it is proved by Tachikawa that R admits a finitely generated
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injective cogenerator Qr, then B = End(Qg) satisfies (**). Tachikawa had stud-
ied a ring R satisfying (*) through the corresponding ring B, but he did not give
structure of local right R-modules. Singh and Al-Bleahed [8] have studied rings R
satisfying (*) without using the duality, and they have proved some structure theo-
rems on local right R-modules. In section 2, structure of a local right R-modules is
further investigated. By using these results it is proved in Theorem 2.14 that R is of
finite representation type. In section 3, general right R-modules are investigated. It
is well known that exceptional rings as defined by Dlab and Ringel (see [2] or [3])
are balanced ring, and any right module over an exceptional (1, 2)-ring is a direct
sum of local modules. It follows from [2, Proposition 3] and also from [8, Theorem
2.13] that any exceptional (1, 2)-ring also satisfies (*). It follows from [9, Corollary
4.4]., that any right R-module is a direct sum of local modules. A direct proof of
this result is given, by proving the following: If M is a right module over a right
artinian ring, such that any finitely generated submodule of any homomorphic image
of M is a direct sum of local modules, then A is a direct sum of local modules
(Theorem 3.4). As there is no known duality that can tell that a ring R satisfies (*)
if and only if it satisfies (**), it would be interesting to examine condition (**) by
itself. In section 4, some examples illustrating various results are given.

1. PRELIMINARIES

All rings considered here are with identity 1 # 0 and all modules are unital right
modules unless otherwise stated. Let R be a ring and M be an R-module. J(M),
E(M) and socle(M) denote radical, injecitve hull and socle of M respectively,
however J(R) will be denoted by J. If R is right artinian, then J(M) = MJ.
Further, N < M denotes that N is a submodule of M. A ring R is called a local
ring, if R/J is a division ring. Given two positive integers n, m, a ring R is
called an (n.m)-ring if it is a local ring, J? = 0 and for D = R/J, dim pJ =
n and dim Jp = m. Any (1,2) (or (2,1)) ring R is called an exceptional ring
if E(rR) (respectively E(Rg)) is of composition length 3 [4, p 446]. A module
in which the lattice of submodules is linearly ordered under inclusion, is called a
uniserial module, and module that is a direct sum of uniserial modules is called a
serial module [5, Chapter V]. If for a ring R, rR (Rg) is serial, then R is called
a left (right) serial ring. A ring that is local, both serial and artinian, is called a
chain ring. A ring R is said to be of finite right representation type, if it admits
only finitely many non-isomorphic indecomposable right R-modules [5, p 109]. If a
module M has finite composition length, then d(M') denotes the composition length
of M. For definitions of M-injective and M -projective modules one may refer to
[1, p 184].
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2. LocaL MoDULES

Consider the following condition on a ring R: (*) R is a right artinian ring such
that any finitely generated indecomposable right R-module is local.
The following is proved in [8, Proposition 2.2]

Proposition 2.1. Let R be a right artinian ring. Then R satisfies (*) if and
only if for any two non-simple local right R-modules A, B, simple submodules
S, T of A, B respectively, and any R-isomorphism ¢ : S — T, either o or o !
extends to an R-homomorphism from A to B or from B to A respectively.

Proposition 2.2. ([8]). Let R be a ring satisfying ().
(i) Any uniform right R-module is uniserial.

(if) R is left serial.

(iii) Let A, B be two uniserial right R-modules each of composition length at
least three. Then M = A @ B does not contain any local, non-uniserial
submodule of composition length 3.

(iv) Let Cy, Cy be two uniserial R-modules such that for some & > 2, C'1/Cy J* =
Cy/CoJ*, and C1.J*, CyJ* are non-zero, then Cy/Cy JF+1 =2 Cy /Oy Tk,

(v) Let Ap, Bg be two local modules such that d(A) = d(B), AJ? =0 = BJ?
For any simple submodule S of A, any R-monomorphismo : S — B extends
to an R-isomorphism from A onto B.

For any local module Ar, AJ is a direct is a direct sum of uniserial modules

[8, Lemma 2.7].

Theorem 2.3. ([8, Theorem 2.10]). Let R be a ring satisfying (*) and Ag be
a local module such that AJ = C1 @ Cy @ - - - ® C; for some uniserial modules C;.
Then the following hold.
(i) Either all C;/C;J are isomorphic or ¢ < 2.
(if) Any local submodule of A.J is uniserial.
(iii) If d(Cy) > 2, then either ¢t < 2 or any C; is simple for ¢ > 2.

Proposition 2.4. Let R be a ring satisfying (*).
(i) Let A; and A, be any two uniserial right R-modules. Then A,J @ AsJ does
not contain a submodule that is local but not uniserial.

(ii) If a non-zero homomorphic image of a uniserial right R-module L is injective,
then L is injective.

(iii) Let Ar be a local module, and AJ = C1 @ D, where C; is uniserial. Let
o be an R-endomorphism of A such that keroc N C'y = 0, and o is not an
automorphism. Then o(A) is a uniserial module of composition length more
than d(C1), A/D embeds in o(A) and no homomorphic image of A/D is
injective. If a module Br embeds in C7, then no non-zero homomorphic
image of B is injective.
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Let Ar be a local module, and AJ = C{ ®Cy @ .... ® C; for some uniserial
submodules C;. Let s = max{d(C;) : 1 < i < t}. Then for any simple
submodule S of A, and any uniserial submodule B of A of composition
length s, any R-homomorphism o : S — B extends to an R-endomorphism
of A; if in addition S is contained in a uniserial submodule of composition
length s, then o is an automorphism.

Proof.

(i)

(ii)
(iii)

(iv)

On the contrary suppose that A;.J & A,J contains a non-uniserial local sub-
module uR. Then u = uj + ug, 0 # w; € A;J, and wJ is a direct sum
of two non-zero uniserial submodules. As A; are uniserial, without loss of
generality we take u; R = A;J. Then uJ? = A;J3 @ A, J3. This gives that
(A1 @ As)/uJ? = By ® By for some uniserial modules with d(B;) > 3. But
uR/uJ? is local, non-uniserial of composition length 3, and it embeds in
B; @ Bs. This contradicts (2.2)(iii). Hence A;J @ A,J does not contain a
non-uniserial, local submodule

It is immediate from the fact that any uniform right R-module is uniserial.

By (2.3)(ii), o(A) is uniserial. As B = kero embeds in D, it is immediate
that d(c(A)) > d(A/D) = d(Cy) + 1. As BNC; =0, C; embeds in o(A).
Also, C; embeds in A/D, it also follows that A/D embeds in o(A4). As
o(A) is not injective, by (ii) no homomorphic image of A/D is injective.
The last part also follows from (ii)

Let C' = socle(B) and o : S — B be an R-homomorphism. Suppose the
contrary. As every uniserial R-module is quasi-injective, ¢t > 2, d(A) > s+2
and AJ contains no uniserial submodule of composition length more than
s. By (2.1), 07! : C — S extends to an R-endomorphism X of A. Then
A is not an automorphism, and A(4) C AJ. As X is one-to-one on B, we
get d(A(A)) > s+ 1. But by (2.3)(ii), A\(A) is uniserial, so we have a
contradiction. The last part again follows from (2.3)(ii). |

(2.1) gives the following.

Proposition 2.5. Let a ring R satisfy (*). Let Ar, Br be two local, modules
such that A is B-projective and B is A-projective. Let A1 < As < A, B1 < By <
B be such that A5/A; is simple and there exists an R-isomorphismo : Ay/A; —
B,/ Bj. Then either there exists an R-homomorphism A of A — B inducing o or
there exists an R-homomorphism \ : B — A inducing o ~*.

Henceforth, throughout this section R is a ring satisfying (*).

Lemma 2.6. Let Ar be a local module.



Rings with Indecomposable Right Modules Local 2265

(i) If AJ = C1 @ Cq, where C; are minimal submodules, then either A/C; or
A/Cy is injective.

(i) If AJ = Cy @ Cy, where C; are uniserial, then either A/C or A/C5 is such
that its every non-simple homomorphic image is injective. .

(iii) Suppose AJ = C; @ Cy @ .... ® C; such that each C; is uniserial and ¢ > 3.
Foreach 1 <i <t, let L; be the direct sum of all C; with j # 7. Then every
non-simple homomorphic image of any A/L; is injective.

(iv) Let AJ = C; ® Cy @ D with Cy and Cy both uniserial. Suppose for some
k, 1, C1J*/CyJ*T and CoJ! /Oy J 1 are isomorphic, and for some u > 1,
Cle—I—u 7& 0 7& CQJl+u, then Cle—l—u/Cle—I—u—I—l and CQJl+u/CQJl+u+1
are isomorphic.

Proof.

(i) If none of A/C; is injective, then A embeds in E(A/C1)J @ E(A/Cs)J,
which contradicts (2.4)(i). This proves (i).

(ii) By applying (i) to A/AJ? and by using Proposition (2.4)(ii), it follows.

(iif) For t>3,as all C;/C;J are isomorphic by (2.3), the result follows from (i).

(iv) It is enough to prove the result for « = 1. Suppose that C; J**1 /C}.J**2 and
CoJ1 /Co J+2 are not isomorphic. For some indecomposable idempotent
e € R, C1J*/C,J*2 and CyJ!/CyJ"+2 both are homomorphic images of
eR. This gives a local, non-uniserial module B of composition length 3 with
BJ = L1® Ly suchthat B/L, = CyJ*/C1J*? and B/Ly = CyJ' /C, J!F2,
Let A = A/(C1J*2 @ CyJ2). Then B embeds in the radical of the direct
sum of A/C; @ D and A/Cy, & D, which is a contradiction to (2.4)(i). This
proves the result. ]

Lemma 2.7. Let Ay be alocal module and B any module. For some C' < B,
let 0 : A — B/C be an R-homomorphism.

(i) There exists a local submodule D of A x B such that D = (a,b)R with aR
= Aand o(a) = b+ C. If D is uniserial and d(B) < d(A),then o can be
lifted to some R-homomorphism»n: A — B

(if) If A x B does not contain a local submodule D ; with d(D;) > d(A), then
A is B-projective.

(iii) If A x B has no non-uniserial local submodule and d(B) < d(A), then A is
B-projective.

Proof. (i) Let N = {(z,y) € AxB:o(z)=y+C}. Letm: AxB — A
be the natural projection. Then 7(NN') = A. There exists a local submodule D of N
such that (D) = A. Clearly D = (a,b)R with A = aR and o(a) = b+ C. Now
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d(D) > d(A). Suppose d(D) = d(A). Then D = A and n : A — B given by
n(ar) = br lifts o. In case D is uniserial and d(B) < d(A), then D = A, so once
again o can be lifted. After this (ii) is immediate. Under the hypothesis in (iii), the
hypothsis in (ii) holds, so A is B-projective. ]

Lemma 2.8. Let Ar and Bp be two uniserial modules and o : A — B/C be
an R-epimorphism for some C < B.

(i) If Ais not injective and d(B) < d(A), then either B is injective or o can be
lifted to some R-homomorphismn: A — B.

(if) If d(B) < d(A) and neither A nor B is injective, then A is B-projective.
(iif) Any uniserial right R-module is either injective or quasi-projective.

(iv) Let C = socle(A), and C < D < A with D/C a simple module. If C' =
D/C, then all the composition factors of A are isomorphic

Proof. By Lemma 2.7, there exists a local submodule D = (a,b))R C A x B
such that A = aR and o(a) = b+ C. Suppose d(B) < d(A). If D is uniserial, it
follows from (2.7)(i) that o lifts to an R-homomorphism n : A — B. Suppose D is
not uniserial. Then DJ = C; @ Cy for some non-zero uniserial submodules C;. Let
w4 and wp be the natural projections of A x B onto A and B respectively. Then
for one of the C; say Cy, m4(C1) = AJ. But mp(Cy) C BJ and d(B) < d(A), it
follows that C is isomorphic to A.J under 4. Therefore AJx BJ = Cy®(0x BJ),
DJ=Ci®(DJN(0x BJ))and Cy = DJN (0 x BJ). Suppose that neither A
nor B is injective, then D C E(A)J @ E(B).J, therefore by (2.4), D is uniserial.
Then, by using (2.7)(i), we get A is B-projective. From this (i), (ii) and (iii) follow.
(iv) is immediate from the fact that the injective hull of A is uniserial. |

Lemma 2.9. Let Agr be a local module such that AJ = A ® A, for some unis-
erial submodules A; and there exists an R-isomorphism o : soc(A1) — soc(As).

Let there exists an R-endomorphism p of A that extends o. Let M ; be the maximal
submodule of A;. Then:
(i) d(Ay) < d(Ag), A/A; is injective and A/Ms @ Ay is injective.

(i) If d(Ay) < d(As2), then A/A, is quasi-projective, A/(M; @ Az) is not injec-
tive and A/(My @ A;) is injective.

(iii) 1f d(Ay) = d(Az), then A/Ms ® A; =2 A/M; @ Az and both are injective.
(IV) If Al/AlJ = AQ/AQJ, then A1 = AQ.

Proof. Suppose f : eR — A is the projective cover of A. We take A =
eR/B and A; = C;/B for some right ideals B < C; < eR. Suppose there exists
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an R-endomorphism p of A that extends o. We can find an R-endomorphism \ of
eR that lifts 4. Then A(B) C B, A(socle(Ch)) + B = socle(Cy) + B ¢ C1 + B.
Hence C} is not invariant under the endomorphisms of eR, eR/C} is not quasi-
projective, therefore A/A; being isomorphic to eR/C,is not quasi-projective. By
(2.8)(iii), A/Aq is injective. As (A1) = Ay and p(Aq) N Ay =0, it follows that
d(A;) < d(Az) and A; embeds in As. Let M; < A;. Suppose d(A;) < d(As), it

follows that A/As is isomorphic to a submodule As, and hence A/(A,@® M) is not
injective. Therefore by (2.6)(i), A/(A1® Ms) is injective. As A/As is not injective,
by (2.8)(iii), it is quasi-projective. If d(A;) = d(As), then the isomorphism o gives
that A/A; @ M, and A/Ay @ M; are isomorphic, so once again, by (2.6)(i), both
are injective. The hypothesis in (iv) gives that A/(My @ A1) =2 A/(M; @ As), SO
they are injective by (i). By (ii), d(A;) = d(Asz).. Hence A; = A,.

Theorem 2.10. Let R be a local ring satisfying (*). If J2 # 0, then R is a
chain ring.

Proof. By (2.2), R is a left serial ring. If R is not right serial, we get a local,
right R-module A such that AJ = C; @ Cy with each C; uniserial, d(Cy) = 2,
d(Cy) = 1. As every composition factor of A is isomorphic to R/.J, it contradicts
(2.9)(iv). Hence R is a chain ring.

Lemma 2.11. Let Agr be a local module such that AJ = A; & Ay & L for
some uniserial modules A;, with d(A;) > 1, and L # 0. Then no two composition
factors of A, are isomorphic.

Proof. By (2.3), AJ/AJ? is homogeneous. Suppose, A; has two isomorphic
composition factors. Then for some s > 1, A;/A;J = AlJS/AlJSH. Let B =
A/(A1J**t! + L). Then B contradicts (2.9)(ii).

Theorem 2.12. Let Ar be a local module over a ring R satisfying (*) such
that AJ =C1 & Cy P ....® C, for some uniserial modules C'; such that ¢ > 2, and
d(Cy) > 2. Let Cy/C1J = C;/C;J for some ¢ > 1, then ¢t = 2. If A is projective,
then Cl = CQ

Proof. To start with, we take A = eR for some indecomposable idempotent
e. Suppose C;/CyJ = Cy/CyJ. So there exists an indecomposable idempotent
f € R, such that for some u, v € eJf, C; = uR, Co = vR. Then u, v € eJ f\J?.
As R is left serial, Rf = Ru = Rv. We get v = bu for some unit b in eRe,
Cy = bCy, d(Cy) = d(Cs). This contradicts (2.3)(iii) unless ¢t = 2. By (2.6)(iv),
soc(Cy) = soc(Cy), hence C1 = Cs. In general, as A is a homomorphic image of
an eR, where e = €2 is indecomposable, the result follows.
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Theorem 2.13. Let Ag be a local module such that AJ = C & Cs, where C;
are uniserial, and C,.J*/C, JF+1 = ©1.J/CJ!F £ 0, for some k < L.

(i) A/Cy has all its non-simple homomorphic images injective.

(if) No two composition factors of C's are isomorphic.

(iif) No composition factor of C'5 is isomorphic to a composition factor of C';.
(iv) A, A/C; and A/C, are all quasi-projective.

Proof. Let A : eR — A give the projective cover of A. TheneJ = D1® Dy L,
where Dy, D5 are uniserial and Cy = A\(D4). If L # 0, by (2.11), D;has no two
composition factors isomorphic, which is a contradiction. Hence L = 0, and eJ =
Dy ® Dy. For some s > 1, D;/DyJ = D1J°/D1J*"t. Thus eR/(Dy @ D1J)
embeds in D;/D;J5t!, therefore it is not injective. Consequently, by (2.6)(i),
eR/(D1 @ D2J) is injective. Then, by (2.4)(ii), every non-simple homomorphic
image of eR/D; is injective. If Dy has two isomorphic composition factors, the
interchange of the roles of Dy, Dy will give that every non-simple homomorphic
image of eR/ D, is injective, in particular, eR/(D2 @ D1.J) is injective, which is a
contradiction. Hence D5 has no two composition factors isomorphic.

Suppose eR/Dy is not quasi-projective. Then Dy is not invariant under the
R-endomorphisms of eR, consequently, there exists a hon-zero homomorphism of
Dy into Dy. Therefore Dy/DoJ = Dy1.JY/D1Jv+! for some v > 0. If v > 0, we
get eR/ D1 & D-J is not injective, which is a contradiction to (i) for eR. Hence
v = 0. Then eR/Ds @ D1 J is isomorphic to eR/D; @ Dsy.J, so once again it is
injective, which is a contradiction. Hence eR/ D5 is quasi-projective.

Suppose there exists an R-isomorphism o : D1.J!/D1J"™ — DoJ7 /Dy g7+t
for some i and j, with DyJ? # 0. If j < 4, then Dy/DoJ = DyJ%/DqJuH!
for some u, and as in the above paragraph, we get a contradiction. Hence i < j.
Then D1J*/D1J*t! =2 Dy/D1J = Dy J%/DyJ"*! for some u > 1. Then eR/eJ
>~ Do JU1 /Dy J% = DyJ5~1 /Dy J*. It follows that eR/e.J is isomorphic to the
top and bottom composition factors of eR/D, @ D;.J*, and to the top and bottom
composition factors of eR/ Dy @ Do J". At the same time Do/ D5.J is isomorphic to
a composition factor of eR/D; @ Dy J*. The periodicity of the composition factors
gives that Dy/D5.J is also isomorphic to a composition factor of eR/ D, @ D1.J%.
Thus Dy/DoJ is either isomorphic to a composition factor of D;/D;.J*® or it is
isomorphic to eR/eJ. In the former case, we get a contradiction to i < j, and in
the later case, every composition factor of eR/D; @ Do J" and of eR/ Dy @® D1J? is
isomorphic to eR/e J, and therefore D, /DyJ = D4/ DsJ, which is a contradiction.
Hence D; has no composition factor isomorphic to a composition factor of Dy.
Hence Cy = A(D-). It follows that any submodule of D; @& D, is invariant under
any R-endomorphism of eR. Consequently, A, A/C; and A/C, are all quasi-
projective. [ |
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Theorem 2.14. If a ring R satisfies (*), then there exist only finitely many
non-isomorphic, local right R-modules.

Proof. All indcomposabe finitely generated right R-modules are local. As R is
right artinian, there exists a bound on the composition lengths of the local modules
and on the number of possible semi-simple modules that occur as socles of the
local right R-modules. To prove the result it is enough to prove that given a triple
(Sr,n,Tr), where Sg is simple, Tr is semi-simple and n is a positive integer,
there do not exist more than two local modules Ag such that S = A/AJ, d(A) =
n and socle(A) = T.

Fix a local module Ar. Let Br be another local module such that A/AJ =
B/BJ, d(A) = d(B) and socle(A) = socle(B). If A is uniserial, then so is B,
and obviously Ag = Br. So we shall suppose that A is not uniserial. Now A, B
admit same projective cover, say eR.

Suppose AJ is semi-simple. Then BJ is also semi-simple. By (2.2)(v), A and
B are isomorphic.

Henceforth we shall suppose that AJ is not semi-simple. Then AJ = D1 &
Dy®..®D, BJ=H ®Hy®..dH,andeJ =C1®Cy P .... ® C; for some
uniserial modules D;, H;, Cj, with v < t. We take d(D;) > 2, d(H;) > 2 and
D1 a homomorphic image of C;.

Suppose. t > 3. Then all other C; for j > 2 are simple. As D; and H;
have same composition length, and by (2.11), no two composition factors of C; are
isomorphic, we get an isomorphicm o : socle(D;) — socle(Hy). Because of (2.1),
we can take o such that it extends to an R-homomorphism A : A — B. As in
(2.4)(iv), A is an isomorphism. Hence Ar = Bp.

Henceforth, we take ¢ = 2. Then u = 2. It follows that A/(Dy @ DsJ) is
either isomorphic to eR/Cy @ CoJ or to eR/Co ® C1J. As socle(A) = socle(B),
we take socle(D;) = socle(H;) for i = 1, 2. Suppose d(D;) = d(Hy). By using
(2.1), we can suppose that there exists an R-homomorphsm X : A — B such that
A(socle(Dy)) = socle(Hy). If A is not an isomorphism, then A\(A) is a uniserial
module contained in B.J such tha A(A)NHy =0, and d(A(A)) > d(H1). Therefore
d(A(A) + Hy) > d(BJ), which is a contradiction. Hence Ar = Bp.

Suppose d(D;) # d(H;). Because of (2.6)(ii), we take D; such that every
non-simple homomorphic image of A/D; is injective. If d(Dy) < d(Hs), then as
socle(Dy) = socle(Hs), A/Dy embeds in Hy, so A/D; is not injective, which
is a contradiction. Hence d(Hz) < d(Dy). Then B/H; embeds in D5, therefore
B/H; has no non-zero homomorphic image injective. Hence every non-simple
homomorphic image of B/H, is injective. Therefore, A/D; @ DyJ and B/Hy @
H,J are isomorphic, that gives Dy/DsJ = Hy/H,J and D1/D1J = Hy/HsJ.
Now d(D;) < d(H;), so Dy embeds in H;. Therefore D;/D4.J is isomorphic to a
composition factor of Hy. Thus D;/D;.J isisomorphic to a composition factor of H;
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as well as of Hs. Then by (2.13), no two composition factors of H; are isomorphic
and no two composition factors of H, are isomorphic. So there exists unique
positive integer ¢ such that Dy/D1J = HyJ!/HyJ**!. That gives Dy = HyJt
Thus d(D;) = d(Hy) —t and d(D2) = d(H2) + t. Hence by the cases discussed
above, the result follows. [ ]

3. DeEcomPosSITION THEOREM

Lemma 3.1. Let M be any right module over a ring R.

(i)

Let L be a finitely generated submodule of M such that L is a summand of
any finitely generated submodule of M containing L. Let S < M be such
that S is finitely generated and in M = M/L, S is a summand of every
finitely generated submodule of M. Then L+ S is a summand of any finitely
generated submodule of M containing L + S.

Let N < M such that N is finitely generated and is summand of any finitely
generated submodule of M containing N. Then NJ = MJ N N.

If L is a finitely generated submodule of M such that it is a summand of
every finitely generated submodule of M containing L, then any summand K
of L is also a summand of any finitely generated submodule of M containing
K.

Proof.

(i)

(iii)

Let L + .S < T, where T is a finitely generated submodule of M. Then T
=LeC,L+S=LeW forsome C < M,W < M. Therefore S = W
and S < C in M = M/L. By the hypothesis, C = S @ K for some K < M
containing L. Thus T'= S+ K =W+ K and WNK C L. As K is finitely
generated, K = LoV forsome V < K, T =(W+ L)+ V. Suppose for some
weW, zeL andveV w+z=v.Thenwe WNKCL veLNV
=0. Hence W+ L)V =T=S+L)aV.

Letz € MJNN. Then x = Y x;a; for some finitely many a; € M, a; € J.

(2
Set K =Y x;R+ N. Then K is finitely generated, z € KJ , K = N® P

for some JZD < K,and KJ=NJ @ PJ. Hence x € NJ.

Now L = K @ S for some S < L. Suppose K < T, a finitely generated
submodule of M. Then T +S =LV = K& (S@® V). This gives T =
KaoW,where W =Tn(SaV). ]

Definition 3.2. A module M is said to satisfy (¢) if any finitely generated
submodule of any homomorphic image of M is a direct sum of local modules having
finite composition lengths.
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Lemma 3.3. Let My be a module satisfying (¢) and R be right artinian. Let

A =@ A, < M such that, each A, is finitely generated and for any finite
aEA
subset X of A, Ax = > A, is a summand of any finitely generated submodule
aceX

of M containing it. Let S be a local submodule of M such that S'in M = M/A is
non-zero and is a summand of any finitely generated submodule of M containing
S.

(a) Let T' be any finite subset of A suchthat SN A =SNC, where C = Ar.
Then S in M/C is also a summand of any finitely generated submodule of
M/C containing S.

(b) There exists a local submodule S; of M such that AnS; =0, S; =S in
M /A, and for any finite subset I of A, Ar © S, is a summand of any finitely
generated submodule of M containing it.

Proof.

(a) It follows from (3.1)(ii) that AJ = MJNA. Now SNA=SJNA=S5JnN
(MJNA) =SnAJ. As S is finitely generated, we get a finite subset T'of A
such that SNA = SNCJ, where C = Ar. In M = M/C, let S be contained in
a finitely generated submodule 7', with C' < T'. Then T is finitely generated.
Now A = C @ D for some D < A. Consider Ty =T + D. In M/A, Ty =
Tand S < T). Therefore T; = S@ L forsome A < L, SNL=SNA
=SNCJ. WegetT =S+ (T'NL)with SN (LNT) C CJ. This gives
S+CO)N[(LNT)+Cl=C+[(S+C)N(LNT)=C,asCCLNT.

Hence, S in M/C' is a summand of 7T'.

(b) Let T be a finite subset of A such that SN A =SnCJ, where C = Ap. We
choose S to be of smallest composition length among those local submodules
S" for which S = S’. By the hypothesis, C + S = C' @ S; for some local
submodule S; of M. Thenin M/A, S = S; and d(S;) < d(S). That gives
d(S)=d(S1)and C+S=C®S. Hence ANS =0. Let X be any finite
subset of A. Now AN S = Ax NS = 0. Let T be any finitely generated
submodule of M containing Ax such that in M/Ax, S C T, then by (a), S
is a summand of 7. Now T'= Ay @©P for some P < T. In M/Ax, S C P,
P =S a@Q for some Q < M containing Ax. Therefore, T = S ® Q , as
SNQ CAx NS =0. But Ax is also a summand of ). Hence Ax & S is
a summand of T'. This proves the result. ]

Theorem 3.4. If a module Mp, satisfies satisfies (¢), where R is right artinian,
then M is a direct sum of local modules. Any module over a ring R saisfying (*)
is a direct sum of local modules.
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Proof. Let zR be a local submodule of M of smallest composition length
such that 2R ¢ MJ Let T be a finitely generated submodule of A containing

zR. Now T'=& ZA for some local submodules A;. Let m; : T'— A; be the

projections giving thls decomposition of 7. If for every i, either m(zR) C A;J or
A; € M J, then xR C M.J, which is a contradiction. Thus for some i, m;(xR) ¢
A;J and A; ¢ MJ. Then m;(zR) = A;, d(x;R) = A;. Therefore m; maps =R
isomorphically onto A;. Hence xR is a summand of T'. Let F' be the family of all
those local submodules of M that are summand of any finitely generated submodule
that contains them. Thus F is non-empty. A subfamily F' of F is said to satisfy
condition (S), if the sum of the members of F' is direct and the sum of any
finite subfamily of F' is a summand of any finitely generated submodule of 1/
containing that sum. The set of all such subfamilies is non-empty. Union of any
chain of subfamilies of F' satisfying (.S) satisfies (S). So, there exists a maximal
subfamily { A, }aea Of F satisfying (S). Thus {A,}aea satisfies the hypothesis in

(33). Now N = > A, = ® > A,. Suppose M # N. Then as for M, M/N
a€cA acA

has a local submodule B that is a summand of any finitely generated submodule of
M/N containing B. As seen in the proof of (3.3)(b), we can choose B such that
it is local, N N B = 0 and the family {A,}.ca U {B} satisfies (.S), which is a
contradiction to the maximality of { A, }.eca. Hence M = N, a direct sum of local
submodules. As any module over a ring satisfying (*), satisfies (¢), the second part
follows. ]

Theorem 3.5. Let R be a ring satisfying (*), and M be any right R-module.
Then any local submodule of M J is uniserial and M J is a direct sum of uniserial
submodules. R/r.ann(J) is a generalized uniserial ring.

Proof. Let T be a finitely generated submodule of A J. Suppose T is not a
direct sum of uniserial submodules. So there exists a local submodule uR of T
that is not uniserial. There exists a finitely generated submodule K of M such that

T C KJ. Now K = @ZA for some local submodules A4;. Let m; : K — A; be

the corresponding prOJectlons and L; = ker(m; | uR). As uR/L; embeds in A4;J,
by (2.2), each uR/L; is uniserial. Therefore L; # 0 for any i. However, NL; = 0,

so we get, say Ly, Ly such that Ly ¢ Lo and Ly € Ly. Let v = m1(u) + ma(u).
Then vR = uR/(Ly N Lo), it is local but not uniserial. As 7;(u)R C A;J, by
[8, Lemma 2.7], m;(u)R is uniserial. For any local module Ag, as AJ is a direct
sum of uniserial modules, any uniserial submodule w R of AJ embeds in a uniserial
summand of AJ. From this it follows that there exist two uniserial R-modules
B; such that vR embeds in B1J ® BsJ, which contradicts (2.4)(i). Hence any
submodule of M J is a direct sum of uniserial modules.
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Now R’ = R/r.ann(J) embeds in a finite direct sum K of copies of Jz. As
any local submodule of K is uniserial, R’ is right serial. As R’ is also left serial,
is a generalized uniserial ring. ]

4, SoME EXAMPLES
The following is easy to prove.

Lemma 4.1. Let A be a uniserial module over a generalized uniserial ring R,
such that no two composition factors of A are isomorphic. Then the module M =
A @ A has the following properties.

(i) If L is any submodule of M, then L = L1 @ Ly and M = M; @ M, for some
uniserial modules L;, M; such that L; C M;.

(i) If K < L € M such that K is maximal in L, then L = L, @ Lo, K =
K1 @ L, for some uniserial modules L;, K1 < L.

max
(iii) Let L = Ly @ Lo be a submodule of M such that L ; are uniserial and d(L1)
= d(Ly). Then K = Ly @ L is fully invariant in M.

Example A. Let F be a field admitting an endomorphism o such that [F : o (F')]
= 2. Consider matrix units {e;;, 1 <14 < j < n} such that for i > 1, ae;; = e;5a,
aei1 = eq1a, erxa = o(a)ey, forany k> 1 and any a € F. Let R be the set of all
upper triangular matrices over F. We write its members as > a;;e;;. Two member

i<
of R are added componentwise, and multiplication is defin_ejd by using the above
specified laws for the matrix units. We also look at R as 7;,(F') the ring of n x n
upper triangular matrices over F'. Using the fact that 7,(F’) is generalized uniserial,
we get that R is left serial. We see thatforany 1 < k < n, a € F, aey, = e11(aeiy).
Hence the right ideal e11 R is the set of all matrices in R, whose last n — 1 rows are
zero rows. Now F' = o(F) + uo(F), where u € F\o(F). e;1J = A @ B, where

A, B are right ideals such that any member of A is of the form of Y o(aix)ei,
k>1
and any member of B is of the form > wo(a1x)e1x. By comparing with the right
k>1
ideal ) eq;F in T,,(F), we see that A and B are isomorphic uniserial right ideals
j>1

of R,jsuch that they are quasi-injective and quasi-projective. They can be regarded
as modules over T,,(F). No two composition factors of A are isomorphic. For
some submodules K, K’ of ey1.J, consider M = ennR/K and N = enR/K/. Let
L/K, L' /K' be simple submodules of M, N respectively and i : L/K — L' /K’
be an R-isomorphism. By (4.1), L = L1 & Lo, K = K1 & Ly, L' = L} & Ly,
K' = K| @ L, for some unisrial modules L;, L;, K; < Ljand K; < L). Let

max max
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n: L/K; — L} /K] be the R-isomorphism induced by y. Write e;, R = M; &M, =
M, ® M,where each M; , M; is uniserial, L; C M;. and L; C M. Then there exists
unique R- isomorphism A : My — M{ which induces n. Now soc(L;) = z1e1, F,
soc(L/l) = x/lelnF, for some x1, 2§ € F such that A\(z1e1,) = x/leln. Further
d(Ly) = d(Ly). Let soc(Ly) = zae1, F, soc(Ly) = xher, F, xo, zy € F We can find
w € F such that wxy = x; Let A\, be the R-automorphism of e;; R given by left
multiplication by w. If A\, extend A, then \,, lifts . Otherwise, let A, (z1e1,,) =
x/lelna—i—x;elnb for some a, b € F. If a = 0, then A\, (soc(e11R)) = x;elnF which
is a contradiction. Hence a # 0. Then ¢ the R-automorphism of e;; R given by
left multiplication by wo(a)~! is such that ¢(z1e1n) = @) €1 + Tnernc for some
c € F. Then ¢ lifts o.

We verify the condition in (2.1) to prove that R satisfies (*). Let M, N be
any two local R-modules, and S be a simple submodule of M. Let¢ : S — N
be an R-monomorphism. We can take M = ¢,.R/K, and N = e, R/L for some
1<r,s<n, K<e.,R, and L < es,R. Now the case for »r = s = 1, has been
discussed above. Notice that the last n — 1 rows of R constitute the ring R of
n — 1 x n — 1 upper triangular matrices over F, e;;J being a direct sum of two
copies of the first row of R, is injective as a right R’ -module. Using this it can be
verified that R satisfies the condition given in (2.1). Hence R satisfies (*) on the
right. ]

F F+ Fx
0 F+ Fx
a left ideal, Jeog = Fxegyg + Feqg + Fren = Cl D CQ, where Cl = Felg, CQ =
0 F+Fzx 0 F+Fx | _ | 0 Fxzx
0 Fz Ho Fx ]'[00 ]
=~ Reqp = C1. Observe that socle(Regs) = Feio@® Frepo. As Cs is invariant under
all endomorphisms of Ress, Reas/Co is quasi-projective. Also Rego/Faxesy is
quasi-projective. Let M = Regs/Cy = Fxejs + Fegs + Fregy. It is uniserial
and its proper submodules are Cy > B = Fxeps. Let o be an endomorphism of
B. Suppose o(Te1s) = zZzeis, 2 € F. Then the R-endomorphism of M given by
multiplication by z extends o. Similarly for Cs, as any endomorphism of C; is
given by multiplication by an elemeent of F.This gives M is quasi-injective. As
M contains a copy of Rejp, M is Reqp-injective. Let L be a left ideal properly
contained in Reogs. If L = Faegs + Fxeyo, then o(zess) = axes; for some o € F
and o is given by right multiplication by @ess in M. If L = C1®Cs, then o(xegs) =
QTeéas, o(e1s) = Brero for some o, B € F, and o is given by right multiplication by
(a + Bx)egs. If Lis any of Fxejo, Feqo, then L = Reyy, as M is Reji-injective,
o 1s given by right multiplication by a member of M. if L = Fxejs ® Feyo ,
then o(e12) = azerz for some « € F, and o is given by right multiplication by
azTess . Hence M is Rego-injective. This proves that M is injective. Similarly, one

Example B. Let F be a field, R = , Where 22 = 0. As

Frego+Fxein = Rress, J2xess = [
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can prove that any non-simple, uniserial, homomorphic image of Re;, is injective.
After this one can easily verify that R satisfies (*) on the left. Then the ring R’
anti-isomorphic to R satisfies (*) on the right. Observe that in Jegs = C7 @ Cs,
Cl = JCQ, but 01 % CQ/JCQ.

We are yet not aware of an example of a local module over a ring R satisfying
(*), for which ¢ > 3 as in (2.6).

10.
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