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CONVERGENCE CRITERION OF THE FAMILY OF EULER-HALLEY
TYPE METHODS FOR SECTIONS ON RIEMANNIAN MANIFOLDS

Jin-Hua Wang

Abstract. The family of Euler-Halley type methods is extended for sections
on Riemannian manifolds. Its convergence criterion is established under the
assumption that the sections’ covariant derivatives satisfy a kind of Lipschitz
condition. Applications to special cases such as the classical Kantorovich’s
type condition, the γ-condition, Smale’s analysis condition are provided.

1. INTRODUCTION

Newton’s method and its variations are the most efficient methods known for
solving systems of nonlinear equations in Banach space setting. One of the main
results on Newton’s method is the well-known Kantorovich’s theorem ([17, 18]),
which has the advantage that Newton’s sequence converges to a solution under very
mild conditions. Another important result on Newton’s method is the Smale’s point
estimate theory in [42] (see also [40]). In this theory, the notion of an approximation
zero was introduced and the rule to judge an initial point to be an approximation
zero was provided, depending only on the information of the nonlinear operator at
the initial point. Other results on Newton’s method such as the estimates of the radii
of convergence balls were given by Traub and Wozniakowski [27] and Wang [32]
independently. A big step in this direction was made by Wang in [34, 45], where
Kantorovich’s theorem and Smale’s theory were unified and extended. To extend
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and improve the Smale’s γ-theory and α-theory of Newton’s method for operators
in Banach spaces, Wang introduced in [33, 36] the notion of the γ-condition, which
is weaker than the Smale′s assumption in [42] (see also [40]) for analytic operators.

Recall that there are several kinds of cubic generalizations for Newton’s method.
The most important two are the Euler method and the Halley method; see for ex-
ample, [2, 5, 6, 15, 16]. Another more general family of the cubic extensions is the
family of Euler-Halley type methods in Banach spaces, which includes the Euler
method and the Halley method as its special cases and has been studied extensively
in [13, 14, 38]. In particular, Han established in [14] the cubic convergence of this
family for operators satisfying the γ-condition. Furthermore, in [38], a unified con-
vergence criterion is presented under a kind of Lipschitz condition, which includes
the γ-condition as a special case and extends the corresponding results in [14].

Recently, the main interests are focused on numerical problems posed on man-
ifolds arising in many natural contexts such as eigenvalue problems, symmetric
eigenvalue problems, invariant subspace computations, optimization problems with
equality constraints and so on; see for example [10, 12, 23, 25, 26, 28, 31]. For such
problems, one often has to compute solutions of a system of equations or to find
zeros of a vector field on a Riemannian manifold. Newton’s method is one of the
most famous methods to approximately solve these problems. The Kantorovich’s
theorem [17, 18] has been extended for Newton’s method on Riemannian manifolds
in [11]. The extensions of the famous Smale’s α-theory and γ-theory in [42] to
analytic vector fields on Riemannian manifolds were done in [8]. In the recent pa-
per [21], we extended the notion of the γ-condition to vector fields on Riemannian
manifolds and then established the γ-theory and α-theory of Newton’s method for
the vector fields on Riemannian manifolds satisfying the γ-condition, which con-
sequently extends the results in [8]. Other extensions about Newton’s method on
Riemannian manifolds have been done in [20, 22, 29].

In particular, in [22], one kind of the L-average Lipschitz condition is intro-
duced for covariant derivatives of sections on Riemannian manifolds which includes
mappings and vector fields as special cases. Then, a convergence criterion of New-
ton’s method and the radii of the uniqueness balls of the singular points for sections
on Riemannian manifolds which is independent of the curvatures, are established
under the assumption that the covariant derivatives of the sections satisfy this kind
of the L-average Lipschitz condition. Some applications to special cases including
the Kantorovich’s condition and the γ-condition as well as the Smale’s α-theory
are provided. In particular, the result due to Ferreira and Svaiter in [11] is extended
while the results due to Dedieu, Priouret and Malajovich in [8] are improved sig-
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nificantly. Moreover, Alvarez, Bolte and Munier introduced in [1] a Lipschitz-type
radial function for the covariant derivative of vector fields and mappings on Rie-
mannian manifolds, and established a unified convergence criterion of Newton’s
method on Riemannian manifolds, applications of which to analytic vector fields
and mappings give first a curvature-free generalization of Smale’s α-theory in Eu-
clidean space setting, which improves significantly the corresponding results in [8]
and [21]. On the other hand, the Kantorovich’s theorem and Smale’s α-theory and
γ-theory for Newton’s method on Lie groups have also been given in [31] and [23],
respectively.

Very recently, in [30] the family of Euler-Halley type methods are extended
to vector fields on Riemannian manifolds, and the cubic convergence criterion of
this family for vector fields is established under the assumption that its covariant
derivatives satisfy the γ-condition.

Motivated by the works of [22] and [30], we study the family of Euler-Halley
type methods for sections on Riemannian manifolds. A convergence criterion of the
family of Euler-Halley type methods is established under the assumption that the
sections’ covariant derivatives satisfy a kind of Lipschitz condition. Applications
to special cases such as the classical Kantorovich’s type condition, the γ-condition,
Smale’s analysis condition are provided. In particular, in the case when the sections
are vector fields, the corresponding results due to [30] are extended.

The rest of the paper is organized as follows. In section 2 we present some
basic notions and preliminaries on Riemannian manifolds which will be used in the
sequel. The convergence criterion of the family of Euler-Halley type methods for
the sections on Riemannian manifolds whose covariant derivatives satisfy a kind of
Lipschitz condition is established in Section 3, and applications to special cases are
given in Section 4.

2. NOTIONS AND PRELIMINARIES

Throughout this paper, M denotes a real complete connected m-dimensional
Riemannian manifold. Let p ∈ M and let TpM denote the tangent space at p to
M . Let 〈·, ·〉p be the scalar product on TpM with the associated norm ‖ · ‖p. The
subscript p is usually deleted whenever there is no possibility of confusion. For any
two distinct elements q, p ∈ M , let c : [0, 1] → M be a piecewise smooth curve

connecting q and p. Then the arc length of c is defined by l(c) :=
∫ 1

0

‖ c′(t) ‖ dt,

and the Riemannian distance from q to p by d(q, p) := infc l(c), where the infimum
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is taken over all piecewise smooth curves c : [0, 1] → M connecting q and p. Thus
(M, d) is a complete metric space by the Hopf-Rinow Theorem (cf. [4, 9, 19]).

Noting that M is complete, the exponential map at p, expp : TpM → M is
well-defined on TpM . Recall that a geodesic in M connecting q and p is called a
minimizing geodesic if its arc length equals its Riemannian distance between q and p.
Note that there is at least one minimizing geodesic connecting q and p. In particular,
the curve c : [0, 1] → M connecting q and p is a minimizing geodesic if and only
if there exists a vector v ∈ TqM such that ‖v‖ = d(q, p) and c(t) = expq(tv) for
each t ∈ [0, 1].

Let κ ∈ N ∪ {∞, ω}. Let ∇ denote the Levi-Civita connection on M and let
c : R → M be a Cκ-curve, where Cκ means smooth or analytic in the case when
κ = ∞ or ω, respectively. Then we use Pc,·,· to denote the parallel transport on
tangent bundle TM along c with respect to ∇.

In the remainder of this section, we shall describe simply the notions of sections,
connections and parallel transports as well as some relative facts. For the details, the
readers are refereed to [22] and some text books, for example, [7, 39]. Throughout
the whole paper, we shall always assume that E and M are Cκ-manifolds. Let π :
E → M be a Cκ-vector bundle. The set of all Cκ-sections of the Cκ-vector bundle
π is denoted by Cκ(M, E). In the particular cases when κ = ∞, or ω, a Cκ-section
ξ is a smooth section or an analytic section, respectively. Let Cκ(TM) denote the set
of all the Cκ-vector fields on M and Cκ(M) the set of all Cκ-mappings from M to
R, respectively. Let D : Cκ(M, E)×Cκ(TM) → Cκ−1(M, E) be a connection on
the vector bundle π, i.e., for every X, Y ∈ Cκ(TM), ξ, η ∈ Cκ(M, E), f ∈ Cκ(M)
and λ ∈ R, the following conditions are satisfied:

(2.1)
DX+fY ξ = DXξ + fDY ξ, DX(ξ + λη) = DXξ + λDXη

and DX(fξ) = X(f)ξ + fDXξ.

Note that connections on the vector bundle π exist because M is a Cκ-Riemannian
manifold with countable bases (cf. [39] for the case when κ = ∞ and its proof
for the general case is similar). For any (ξ, X) ∈ Cκ(M, E)× Cκ(TM), DXξ is
called the covariant derivative of ξ with respect to X . Since D is tensorial in X ,
the value of DXξ at p ∈ M only depends on the tangent vector v = X(p) ∈ TpM .
Hence, the mapping Dξ(p) : TpM → π−1(p) given by

(2.2) Dξ(p)v := DXξ(p) for each v ∈ TpM

is well-defined and is a linear map from TpM to π−1(p).
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Let c : R → M be a Cκ-curve. For any a, b ∈ R, define the mapping
Pc,c(b),c(a) : π−1(c(a)) → π−1(c(b)) by

Pc,c(b),c(a)(v) = ηv(c(b)) for each v ∈ π−1(c(a)),

where ηv is the unique Cκ-section such that Dc′(t)ηv = 0 and ηv(c(a)) = v. Then
Pc,·,· is called the parallel transport on vector bundle E along c. In particular, we
write Pq,p for Pc,q,p in the case when c is a minimizing geodesic connecting p and
q. Moreover, for a positive integer i, Pi

p,q stands for the map from (π−1(q))i to
(π−1(p))i defined by

P i
p,q(v1 · · ·vi) = Pp,qv1 · · ·Pp,qvi, ∀(v1, · · · , vi) ∈ (TqM)i.

The next definition of higher order covariant derivative for sections follows from
[22]. Let k ≤ κ be a positive integer and let ξ be a Cκ-section. Recall that D is a
connection on the vector bundle π : E → M and ∇ is the Levi-Civita connection on
M . Then the covariant derivative of order k can be inductively defined as follows.

Define the map D1ξ = Dξ : (Cκ(TM))1 → Cκ−1(M, E) by

(2.3) Dξ(X) = DXξ for each X ∈ Cκ(TM),

and define the map Dkξ : (Cκ(TM))k → Cκ−k(M, E) by

(2.4)

Dkξ(X1, · · · , Xk−1, Xk) = DXk
(Dk−1ξ(X1, · · · , Xk−1))

−
k−1∑
i=1

Dk−1ξ(X1, · · · ,∇Xk
Xi, · · · , Xk−1)

for each X1, · · · , Xk−1, Xk ∈ Cκ(TM). Then, in view of the definition and thanks
to (2.1), one can use mathematical induction to prove easily that Dkξ(X1, · · · , Xk)
is tensorial with respect to each component Xi, that is, k multi-linear map from
(Cκ(TM))k to Cκ−k(M, E), where the linearity refers to the structure of Ck(M)-
module. This implies that the value of Dkξ(X1, · · · , Xk) at p ∈ M only depends
on the k-tuple of tangent vectors (v1, · · · , vk) = (X1(p), · · · , Xk(p)) ∈ (TpM)k.
Consequently, for a given p ∈ M , the map Dkξ(p) : (TpM)k → Ep, defined by

(2.5) Dkξ(p)v1 · · ·vk :=Dkξ(X1, · · · ,Xk)(p) for any (v1, · · · ,vk) ∈ (TpM)k,

is well-defined, where Xi ∈ Cκ(TM) satisfy Xi(p) = vi for each i = 1, · · · , k.
Let p0 ∈ M be such that Dξ(p0)−1 exists. Thus, for any piece-geodesic curve c
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connecting p0 and p, Dξ(p0)−1Pc,p0,pDkξ(p) is a k-multilinear map from (TpM)k

to Tp0M . We define the norm of Dξ(p0)−1Pc,p0,pDkξ(p) by

‖ Dξ(p0)−1Pc,p0,pDkξ(p) ‖= sup ‖ Dξ(p0)−1Pc,p0,pDkξ(p)v1v2 · · ·vk ‖p0,

where the supremum is taken over all k-tuple of vectors (v1, · · · , vk) ∈ (TpM)k

with each ‖vj‖p = 1. Furthermore, for any geodesic c : R → M on M , since
∇c′(s)c

′(s) = 0, it follows from (2.4) that

(2.6) Dkξ(c(s))(c′(s))k = Dc′(s)(Dk−1ξ(c(s))(c′(s))k−1) for each s ∈ R.

The following lemma plays a key role in this paper.

Lemma 2.1. Let c : R → M be a geodesic and Y a Ck vector field on M

such that ∇c′(s)Y (c(s)) = 0. Then, for each k = 0, 1, 2,

(2.7)
Pc,c(0),c(t)Dkξ(c(t))Y (c(t))k = Dkξ(c(0))Y (c(0))k

+
∫ t

0
Pc,c(0),c(s)(Dk+1ξ(c(s))(c(s))kc′(s))ds.

In particular,

(2.8)
Pc,c(0),c(t)Dkξ(c(t))c′(t)k = Dkξ(c(0))c′(0)k

+
∫ t

0
Pc,c(0),c(s)(Dk+1ξ(c(s))(c′(s))k+1)ds.

Proof. Equality (2.7) results from [22] for the case when k = 0. Below, we
will show that equality (2.7) is true for the case when k = 1, that is,

(2.9)
Pc,c(0),c(t)Dξ(c(t))Y (c(t)) = Dξ(c(0))Y (c(0))

+
∫ t

0
Pc,c(0),c(s)(D2ξ(c(s))Y (c(s))c′(s))ds,

while the proof for the case when k = 2 is similar and so is omitted here. To this
end, let η = Dξ(Y ). Since (2.7) is true for k = 0, it follows that

(2.10) Pc,c(0),c(t)η(c(t)) = η(c(0))+
∫ t

0
Pc,c(0),c(s)(Dη(c(s))c′(s))ds.

By (2.4) (with k = 2), one has

(D2ξ(c(s))Y (c(s))c′(s) = Dc′(s)((Dξ(c(s))Y (c(s)))−Dξ(c(s))(∇c′(s)Y (c(s)))

= Dc′(s)((Dξ(c(s))Y (c(s)))

= Dc′(s)ξ(c(s))

= Dξ(c(s))c′(s)
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thanks to the assumption that ∇c′(s)Y (c(s)) = 0. This combining with (2.10) yields
(2.9). The proof of the lemma is complete.

We conclude this section by extending the family of Euler-Halley type methods
from vector fields in [30] to sections on M . Let ξ ∈ C2(M, E) and p0 ∈ M . Then
the family of Euler-Halley iterations with parameter λ ∈ [0, 2] and initial point p0

for solving ξ(p) = 0 is defined as follows.

(2.11) pn+1 = Tξ,λ(pn) = exppn
(uξ(pn) + vξ,λ(pn)), n = 0, 1, 2, · · · ,

where
uξ(p) = −Dξ(p)−1ξ(p),

vξ,λ(p) = −1
2
Dξ(p)−1D2ξ(p)uξ(p)Qξ,λ(p)uξ(p),

Qξ,λ(p) = {ITpM + λ
2Dξ(p)−1D2ξ(p)uξ(p)}−1,

and ITpM is the identity on TpM .

3. CONVERGENCE CRITERION

For a Banach space or a Riemannian manifold Z, we use BZ(p, r) and BZ(p, r)
to denote respectively the open metric ball and the closed metric ball at p with radius
r, that is,

BZ(p, r) := {q ∈ Z| d(p, q) < r} and BZ(p, r) := {q ∈ Z| d(p, q) ≤ r}.

We often omit the subscript Z if no confusion caused.
Let L be a positive nondecreasing integrable function on [0, R], where R is a

positive number large enough such that
∫ R

0
(R − u)L(u)du ≥ R. The notion of

Lipschitz condition with the L average for operators from Banach spaces to Banch
spaces was introduced in [45] by Wang for the study of Smale’s point estimate
theory. The following definition extends this notion to sections on Riemannian
manifold M , which is taken from [22]. Let π : E → M be a C1-vector bundle
and ξ a C1-section of this vector bundle. Throughout the whole paper, we always
assume that p0 ∈ M is such that Dξ(p0)−1 exists. In the remainder, for each
p, q ∈ M we use Γp,q to denote the set of all geodesics in M connecting p and q.

Definition 3.1. Let R > r > 0. Then Dξ(p0)−1Dξ is said to satisfy the 2-piece
L-average Lipschitz condition in B(p0, r), if, for any two points p, q ∈ B(p0, r),
c1 ∈ Γp0,p a minimizing geodesic and c2 ∈ Γp,q, we have
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(3.1) ‖ Dξ(p0)−1Pc1,p0,p(Pc2,p,qDξ(q)Pc2,q,p − Dξ(p)) ‖≤
∫ l(c1)+l(c2)

l(c1)
L(u)du.

The majorizing function h defined in the following, which was first introduced
and studied by Wang (cf. [45]), is a powerful tool in our study. Let r0 > 0 and
b > 0 be such that

(3.2)
∫ r0

0
L(u)du = 1 and b =

∫ r0

0
L(u)udu.

For β > 0, define the majorizing function h by

(3.3) h(t) = β − t +
∫ t

0
L(u)(t − u)du for each 0 ≤ t ≤ R.

Some useful properties are described in the following proposition; see [45].

Proposition 3.1. The function h is monotonic decreasing on [0, r 0] and mono-
tonic increasing on [r0, R]. Moreover, if β ≤ b, h has a unique zero respectively in
[0, r0] and [r0, R], which are denoted by r1 and r2.

The following lemma is taken from [22] and about estimation of the norm of
the inverse Dξ(q)−1 around the point p0 which is useful in this paper.

Lemma 3.1. Let 0 < r ≤ r0 and suppose that Dξ(p0)−1Dξ satisfies the 2-piece
L-average Lipschitz condition in B(p 0, r). Let p, q ∈ B(p0, r), let c1 ∈ Γp0,p be
a minimizing geodesic and c 2 ∈ Γp,q such that l(c1) + l(c2) < r. Then, Dξ(q)−1

exists and

(3.4)
‖Dξ(q)−1Pc2,q,pPc1,p,p0Dξ(p0)‖

≤ 1

1 − ∫ l(c1)+l(c2)
0 L(u)du

=
−1

h′(l(c1) + l(c2))
.

We still need the following two lemmas. Below, we always assume that ξ is a
C2-section.

Lemma 3.2. Let p, q ∈ M , v ∈ TpM and c ∈ Γp,q be such that c(t) = expp tv

for each t ∈ [0, 1]. Then

(3.5)
Pc,p,qDξ(q)Pc,q,p = Dξ(p) + D2ξ(p)v

+
∫ 1

0
(Pc,p,c(s)D2ξ(c(s))P 2

c,c(s),p −D2ξ(p))vds.
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Proof. By (2.8) (with k = 1), we have

(3.6) Pc,p,qDξ(q)c′(1) = Dξ(p)c′(0) +
∫ 1

0
Pc,p,c(s)D2ξ(c(s))(c′(s))2ds.

Since c′(1) = Pc,q,pv, c′(s) = Pc,c(s),pv and c′(0) = v, it follows from (3.6) that

Pc,p,qDξ(q)Pc,q,p = Dξ(p) +
∫ 1

0
Pc,p,c(s)D2ξ(c(s))P 2

c,c(s),pvds,

which implies (3.5). This completes the proof of the lemma.

Lemma 3.3. Let 0 < r ≤ r0. Suppose that

(3.7) ‖Dξ(p0)−1D2ξ(p0)‖ = L(0)

and

(3.8)
‖ Dξ(p0)−1Pc1,p0,p(Pc2,p,qD2ξ(q)P 2

c2,q,p −D2ξ(p)) ‖
≤ L(l(c1) + l(c2)) − L(l(c1))

holds for all p, q ∈ B(p0, r), c1 ∈ Γp0,p a minimizing geodesic and c 2 ∈ Γp,q such
that l(c1) + l(c2) < r. Then the following assertions hold.

(i)

(3.9) ‖Dξ(p0)−1Pc1,p0,pPc2,p,qD2ξ(q)‖ ≤ h′′(l(c1) + l(c2)).

(ii) For each q ∈ B(p0, r), Dξ(q)−1 exists and

‖Dξ(q)−1Pc2,q,pPc1,p,p0Dξ(p0)‖ ≤ −1
h′(l(c1) + l(c2))

.

Proof. Note that

(3.10)

Dξ(p0)−1Pc1,p0,pPc2,p,qD2ξ(q)P 2
c2,q,pP

2
c1,p,p0

= Dξ(p0)−1D2ξ(p0) + Dξ(p0)−1(Pc,p0,pD2ξ(p)P 2
c,p,p0

− D2ξ(p0))

+Dξ(p0)−1Pc1,p0,p(Pc2,p,qD2ξ(q)P 2
c2,q,p −D2ξ(p))P 2

c1,p,p0

Since P 2
c2,q,p and P 2

c1,p,p0
are isometries, by (3.7) and (3.8), we have from (3.10)

that
‖Dξ(p0)−1Pc1,p0,pPc2,p,qD2ξ(q)‖

≤ L(0) + L(l(c1))− L(0) + L(l(c1) + l(c2))− L(l(c1))

= L(l(c1) + l(c2))

= h′′(l(c1) + l(c2)),
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which implies (i). To prove (ii), by Lemma 3.1, it is sufficient to show that
Dξ(p0)−1Dξ satisfies the 2-piece L-average Lipschitz condition in B(p0, r). To
do this, let p, q ∈ B(p0, r), let c1 ∈ Γp0,p be a minimizing geodesic and c2 ∈ Γp,q

such that l(c1) + l(c2) < r. Let v2 ∈ TpM be such that c2(t) = expp tv2 for each
t ∈ [0, 1], q = expp v2, and ‖v2‖ = l(c2). Hence, it follows from Lemma 3.2 that

(3.11)
Pc2,p,qDξ(q)Pc2,q,p = Dξ(p) + D2ξ(p)v2

+
∫ 1

0
(Pc2,p,c2(s)D2ξ(c2(s))P 2

c2,c2(s),p −D2ξ(p))v2ds.

Noting that by (3.9) one has

‖Dξ(p0)−1Pc1,p0,pD2ξ(p)‖ ≤ h′′(l(c1)) = L(l(c1)).

This, together with (3.8) and (3.11) implies that

(3.12)

‖Dξ(p0)−1Pc1,p0,p(Pc2,p,qDξ(q)Pc2,q,p −Dξ(p))‖

≤ L(l(c1))‖v2‖ +
∫ 1

0
‖Dξ(p0)−1Pc1,p0,p(Pc2,p,c2(s)

D2ξ(c2(s))P 2
c2,c2(s),p

−D2ξ(p))‖‖v2‖ds

≤ L(l(c1))‖v2‖ +
∫ 1

0
(L(l(c1) + s‖v2‖)− L(l(c1)))‖v2‖ds

=
∫ l(c1)+l(c2)

l(c1)
L(u)du,

which implies that Dξ(p0)−1Dξ satisfies the 2-piece L-average Lipschitz condition
in B(p0, r). This completes the proof of the lemma.

Let {tn} denote the sequence generated by the Euler-Halley iteration (with pa-
rameter λ ∈ [0, 2]) for h(t) with initial point t0 = 0, that is,

tn+1 = Th,λ(tn) = tn + uh(tn) + vh,λ(tn), n = 0, 1, 2, · · · ,

where
uh(t) = −h′(t)−1h(t)

vh,λ(t) = −1
2
h′(t)−1h′′(t)uh(t)Qh,λ(t)uh(t)

Qh,λ(t) = (1 +
λ

2
h′(t)−1h′′(t)uh(t))−1.

Then the following lemma holds from [38].
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Lemma 3.4. Suppose that β ≤ b. Then, for each t ∈ [0, r1],

(i) 0 < Hh(t) = h′(t)−2h′′(t)h(t) < 1;

(ii) Th,λ(t) ∈ [0, r1] and Th,λ(t) is monotonically increasing on [0, r 1] for each
λ ∈ [0, 2];

(iii) t ≤ Th,λ(t).

(iv) {tn} is increasing monotonically and convergent to r 1.

The following lemma is taken from [13]; see also [38].

Lemma 3.5. For any n = 0, 1, 2, · · · ,

h(tn+1) =
1
2
h′′(tn){(2− λ)uh(tn) + vh,λ(tn)}vh,λ(tn)

+
∫ 1

0

∫ τ

0
{h′′(tn + s(tn+1 − tn))− h′′(tn)}dsdτ(tn+1 − tn)2.

The similar expression for sections is described in the following lemma, whose
proof is similar to that of [30, Lemma 3.2] where the expression for vector fields
is presented, and so is omitted hear. Recall that

pn+1 = exppn
(uξ(pn) + vξ,λ(pn)), n = 0, 1, 2, · · · .

Lemma 3.6. Let n be a nonnegative integer and write

(3.13) wn = uξ(pn) + vξ,λ(pn).

Let cn be the curve defined by cn(t) := exppn
(twn) for each t ∈ [0, 1]. Then

Pcn,pn,pn+1ξ(pn+1)

=
1
2
D2ξ(pn){(2− λ)uξ(pn) + vξ,λ(pn)}vξ,λ(pn)

+
∫ 1

0

∫ τ

0
(Pcn,pn,cn(s)D2ξ(cn(s))P 2

cn,cn(τ ),pn
− D2ξ(pn))w2

ndsdτ.

In the remainder of this paper, we always assume that ξ is a C2 section and that
p0 ∈ M such that Dξ(p0)−1 exists. Recall that β =‖ Dξ(p0)−1ξ(p0) ‖, b and r1

are given by (3.2) and Proposition 3.1, respectively. Then the main theorem of this
paper is stated as follows.
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Theorem 3.1. Let β ≤ b. Suppose that conditions (3.7) and (3.8) hold in
B(p0, r1), i.e.,

‖Dξ(p0)−1D2ξ(p0)‖ = L(0)

and

‖ Dξ(p0)−1Pc1,p0,p(Pc2,p,qD2ξ(q)P 2
c2,q,p−D2ξ(p)) ‖≤ L(l(c1)+ l(c2))−L(l(c1))

holds for all p, q ∈ B(p0, r1), c1 ∈ Γp0,p a minimizing geodesic and c 2 ∈ Γp,q such
that l(c1) + l(c2) < r1. Then the sequence {pn} generated by (2.11) with initial
point p0 is well-defined for all λ ∈ [0, 2] and converges to a singular point p ∗ of ξ

in B(p0, r1). Moreover,
d(p∗, pn) ≤ r1 − tn.

Proof. It is sufficient to show that the sequence {pn} generated by (2.11) with
initial point p0 is well-defined for all λ ∈ [0, 2] and satisfies

d(pn, pn+1) ≤ ‖uξ(pn)‖+ ‖vξ,λ(pn)‖ ≤ tn+1 − tn

for each n = 0, 1, · · · . To do this, we will use mathematical induction to prove that
the generated sequence {pn} is well-defined and the following statements hold for
each n = 0, 1, · · · :

(a) ‖uξ(pn)‖ ≤ uh(tn);
(b) Qξ,λ(pn) exits and ‖Qξ,λ(pn)‖ ≤ Qh,λ(tn);
(c) ‖vξ,λ(pn)‖ ≤ vh,λ(tn);
(d) d(pn, pn+1) ≤ ‖wn‖ ≤ ‖uξ(pn)‖ + ‖vξ,λ(pn)‖ ≤ tn+1 − tn, where wn is

defined by (3.13).

Indeed, in the case when n = 0, (a) results from

(3.14) ‖uξ(p0)‖ = ‖Dξ(p0)−1ξ(p0)‖ = β = uh(t0).

Since t0 = 0, one has h′(t0) = −1 and h′′(t0) = L(0). This, together with (3.7),
(3.14) and Lemma 3.4(i) implies that

‖ − λ

2
Dξ(p0)−1D2ξ(p0)uξ(p0)‖ ≤ −λ

2
h′(t0)−1h′′(t0)uh(t0) < 1.

Then, using the Banach Lemma, Qξ,λ(p0) exits and

‖Qξ,λ(p0)‖ ≤ 1
1 + λ

2h′(t0)−1h′′(t0)uh(t0)
= Qh,λ(t0).
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Thus, (b) and (c) follow. As ‖w0‖ ≤ ‖uξ(p0)‖ + ‖vξ,λ(p0)‖ ≤ t1 − t0 ≤ β due to
the fact that (a) and (c) hold for n = 0, and p1 = expp0

(w0), we have

d(p0, p1) ≤ ‖w0‖ ≤ ‖uξ(p0)‖+ ‖vξ,λ(p0)‖ ≤ t1 − t0.

Therefore, (d) holds for n = 0. Now assume that p1, · · · , pk+1 are well-defined
and that (a)-(d) are true for n = 0, 1, · · · , k. Then,

(3.15) d(pk, pk+1) ≤ ‖wk‖ ≤ ‖uξ(pk)‖+ ‖vξ,λ(pk)‖ ≤ tk+1 − tk

and

(3.16) d(p0, pk+1) ≤ tk+1 < r1.

Below, we will show that (a)-(d) are true for n = k + 1. Let c ∈ Γp0,pk
be a

minimizing geodesic. Define the curve ck by ck(t) := exppk
(twk), t ∈ [0, 1]. By

(3.16) and Lemma 3.3(ii), Dξ(pk+1)−1 exists and

(3.17) ‖Dξ(pk+1)−1Pck,pk+1,pk
◦ Pc,pk,p0Dξ(p0)‖ ≤ −h′(tk+1)−1.

By Lemma 3.6, one has

‖Dξ(p0)−1Pc,p0,pk
◦ Pck,pk,pk+1

ξ(pk+1)‖

≤ 1
2
‖Dξ(p0)−1Pc,p0,pk

D2ξ(pk)‖{(2− λ)‖uξ(pk)‖

+‖vξ,λ(pk)‖}‖vξ,λ(pk)‖

+
∫ 1

0

∫ τ

0

Dξ(p0)−1Pc,p0,pk

(Pck,pk,ck(s)D
2ξ(ck(s))P 2

ck,ck(τ ),pk
− D2ξ(pk))w2

kdsdτ.

(3.18)

Noting that by Lemma 3.3(i), we have

(3.19) ‖Dξ(p0)−1Pc,p0,pk
D2ξ(pk)‖ ≤ h′′(tc) ≤ h′′(tk)

By induction assumptions, one has

‖uξ(pk)‖ ≤ uh(tk), ‖vξ,λ(pk)‖ ≤ vh,λ(tk) and ‖wk‖ ≤ tk+1 − tk.

Combining this with (3.19), (3.18) and (3.8) gives that

‖Dξ(p0)−1Pc,p0,pk
◦ Pck,pk,pk+1

ξ(pk+1)‖

≤ 1
2
h′′(tn){(2− λ)uh(tn) + vh,λ(tn)}vh,λ(tn)

+
∫ 1

0

∫ τ

0
{h′′(tn + s(tn+1 − tn))− h′′(tn)}dsdτ(tn+1 − tn)2,
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which implies

(3.20) ‖Dξ(p0)−1Pc,p0,pk
◦ Pck ,pk,pk+1

ξ(pk+1)‖ ≤ h(tk+1),

thanks to Lemma 3.5. Since

‖uξ(pk+1)‖ = ‖ − Dξ(pk+1)−1ξ(pk+1)‖
≤ ‖Dξ(pk+1)−1Pck ,pk+1,pk

◦ Pc,pk,p0Dξ(p0)‖

· ‖Dξ(p0)−1Pc,p0,pk
◦ Pck ,pk,pk+1

ξ(pk+1)‖
≤ uh(tk+1)

due to (3.17) and (3.20), (a) is true for k + 1, that is,

(3.21) ‖uξ(pk+1)‖ ≤ uh(tk+1).

Note that

‖ − λ

2
Dξ(pk+1)−1D2ξ(pk+1)uξ(pk+1)‖

≤ λ

2
‖Dξ(pk+1)−1Pck,pk+1,pk

◦ Pc,pk,p0Dξ(p0)‖

· ‖Dξ(p0)−1Pc,p0,pk
◦ Pck,pk,pk+1

D2ξ(pk+1)‖ · ‖uξ(pk+1)‖

and
‖Dξ(p0)−1Pc,p0,pk

◦ Pck,pk,pk+1
D2ξ(pk+1)‖ ≤ h′′(tk+1)

due to Lemma 3.3(i). Thus, it follows from (3.17) and (3.21) that

(3.22)
‖ − λ

2
Dξ(pk+1)−1D2ξ(pk+1)uξ(pk+1)‖

≤ −λ

2
h′(tk+1)−1h′′(tk+1)uh(tk+1) < 1,

where the last inequality is because of Lemma 3.4(i). Thus, by the Banach lemma,
(3.22) implies that Qξ,λ(pk+1) exists and

Qξ,λ(pk+1) = ‖(ITpkM +
λ

2
Dξ(pk+1)−1D2ξ(pk+1)uξ(pk+1))−1‖

≤ 1

1 +
λ

2
h′(tk+1)−1h′′(tk+1)uh(tk+1)

= Qh,λ(tk+1).

(3.23)
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Hence, pk+2 is well-defined and (b) is true for n = k + 1. Since

‖vξ,λ(pk+1)‖ = ‖ − 1
2
Dξ(pk+1)−1D2ξ(pk+1)uξ(pk+1)Qξ,λ(pk+1)uξ(pk+1)‖

≤ 1
2
‖Dξ(pk+1)−1D2ξ(pk+1)uξ(pk+1)‖‖Qξ,λ(pk+1)‖‖uξ(pk+1)‖,

it follows from (3.22), (3.23) and (3.21) that

‖vξ,λ(pk+1)‖ ≤ −1
2
h′(tk+1)−1h′′(tk+1)uh(tk+1)Qh,λ(tk+1)uh(tk+1) = vh,λ(tk+1),

which implies that (c) holds for k + 1. Consequently,

‖wk+1‖ ≤ ‖uξ(pk+1)‖+‖vξ,λ(pk+1)‖ ≤ ‖uh(tk+1)‖+‖vh,λ(tk+1)‖ = tk+2−tk+1.

Thus (d) is true for n = k + 1. This completes the proof of the theorem.

4. APPLICATIONS

This section is devoted to applications of the result obtained in the previous
section. More precisely, applications to special cases such as the classical Kan-
torovich’s type condition, the γ-condition, Smale’s analysis condition are provided.
In particular, in the case when the sections are vector fields, the corresponding
results due to [30] are extended.

4.1. Theorem under Kantorovich’s condition

Let C and K be positive constants. Take

L(u) = C + Ku for each u ∈ [0, R].

Then, r0 is the solution of the equation∫ r0

0
L(u)du =

∫ r0

0
(C + Ku)du = Cr0 +

1
2
Kr2

0 = 1,

i.e.,
r0 =

2
C +

√
C2 + 2K

.

Thus,

b =
∫ r0

0

uL(u)du =
∫ r0

0

u(C + Ku)du =
2(C + 2

√
C2 + 2K)

3(C +
√

C2 + 2K)2
.
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In this case the majorizing function is

h(t) = β − t +
1
2
Ct2 +

1
6
Kt3,

and r1 ≤ r2 are its two positive solutions when β ≤ b. Hence, the following
Kantorovich’s type theorem is obtained directly from Theorem 3.1.

Theorem 4.1. Suppose that

‖Dξ(p0)−1D2ξ(p0)‖ = C

and
‖ Dξ(p0)−1Pc1,p0,p(Pc2,p,qD2ξ(q)P 2

c2,q,p −D2ξ(p)) ‖≤ Kl(c2)

holds for all p, q ∈ B(p0, r), c1 ∈ Γp0,p a minimizing geodesic and c 2 ∈ Γp,q such
that l(c1) + l(c2) < r1. If

β = ‖Dξ(p0)−1ξ(p0)‖ ≤ 2(C + 2
√

C2 + 2K)
3(C +

√
C2 + 2K)2

,

then the sequence {pn} generated by (2.11) with initial point p 0 is well-defined for
all λ ∈ [0, 2] and converges to a singular point p ∗ of ξ in B(p0, r1).

4.2. Theorem under the γ-condition

The γ-condition for operators in Banach spaces was first introduced by Wang
[36] for the study of Smale’s point estimate theory and extended to vector fields
on Riemannian manifolds in [21, 30]. In the remainder of this section, we shall
always assume that ξ is a C3-section. Let r > 0 and γ > 0 be such that rγ < 1.
Definition 4.1 below extends this notion to sections on Riemannian manifolds with
a similar version in [30]. Recall that the norm of a k multi-linear operator T on a
Banach space E is defined by

‖T‖ = sup{‖T v1v2 · · ·vk‖ : vi ∈ E and ‖vi‖ ≤ 1 for each i = 1, 2, · · · , k}.
Definition 4.1. Let p0 ∈ M be such that Dξ(p0)−1 exists. Then ξ is said to

satisfy the 2-piece γ-condition of order 2 at p0 in B(p0, r), if for any two points
p, q ∈ B(p0, r), any c1 ∈ Γp0,p a minimizing geodesic and c2 ∈ Γp,q satisfying
l(c1) + l(c2) < r, we have

‖Dξ(p0)−1D2ξ(p0)‖ ≤ 2γ.

and
‖Dξ(p0)−1Pc1,p0,p ◦ Pc2,p,qD3ξ(q)‖ ≤ 6γ2

(1 − γ(l(c1) + l(c2)))4
.
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Let L be the function defined by

(4.1) L(u) =
2γ

(1 − γu)3
for each 0 < u <

1
γ

.

The following lemma shows that the 2-piece γ-condition of order 2 at p0 implies
that conditions (3.7) and (3.8) hold for L given by (4.1). In the case when ξ is a
vector field, Lemma 4.1 below has been proved in [30]. The proof for the sections
is similar and so is omitted here.

Lemma 4.1. Let γ > 0 and 0 < r ≤ 2−√
2

2γ . Let p0 ∈ M be such that Dξ(p0)−1

exists. Suppose that ξ satisfies the 2-piece γ-condition of order 2 at p 0 in B(p0, r).
Then, for any two points p, q ∈ B(p0, r), c1 ∈ Γp0,p a minimizing geodesic and
c2 ∈ Γp,q with l(c1) + l(c2) < r, we have

‖Dξ(p0)−1Pc1,p0,p(Pc2,p,qD2ξ(q)P 2
c2,q,p − D2ξ(p))‖

≤ 2γ

(1− γ(l(c1) + l(c2)))3
− 2γ

(1 − γl(c1))3
.

Corresponding to the function L defined by (4.1), r0 and b in (3.2) are

r0 =

(
1 −

√
2

2

)
1
γ

and b = (3 − 2
√

2)
1
γ
,

and the majorizing function given in (3.3) reduces to

h(t) = β − t +
γt2

1− γt
for each 0 ≤ t ≤ R.

Hence the condition β ≤ b is equivalent that α = γβ ≤ 3 − 2
√

2. Then the
following proposition was proved in [37]; see also [45].

Proposition 4.1. Assume that α = γβ ≤ 3 − 2
√

2. Then the zeros of h are

(4.2) r1 =
1 + α −√(1 + α)2 − 8α

4γ
, r2 =

1 + α +
√

(1 + α)2 − 8α

4γ

and
β ≤ r1 ≤

(
1 +

1√
2

)
β ≤

(
1 − 1√

2

)
1
γ
≤ r2 ≤ 1

2γ
.

Recall that β = ‖Dξ(p0)−1ξ(p0)‖. Thus the following Theorem follows directly
from Theorem 3.1 and Lemma 4.1.



2198 Jin-Hua Wang

Theorem 4.2. Suppose that

α = βγ ≤ 3 − 2
√

2

and X satisfies the 2-piece γ-condition of order 2 at p 0 in B(p0, r1). Then the
sequence {pn} generated by (2.11) with initial point p 0 is well-defined for all
λ ∈ [0, 2] and converges to a singular point p ∗ of ξ in B(p0, r1).

4.3. Application to analytic sections

Throughout this subsection, we always assume that M is an analytic complete
m-dimensional Riemannian Manifold and ξ is analytic on M . Let p0 ∈ M be such
that Dξ(p0)−1 exists. Following [8], we define

(4.1) γ(ξ, p0) = sup
k≥2

∥∥∥∥Dξ(p0)−1 Dkξ(p0)
k!

∥∥∥∥
1

k−1

p0

.

Also we adopt the convention that γ(ξ, p0) = ∞ if Dξ(p0) is not invertible. Note
that this definition is justified and in the case when Dξ(p 0) is invertible, by analyt-
icity, γ(ξ, p0) is finite.

The following lemma shows that an analytic section satisfies the 2-piece γ-
condition of order 2 at p0 in B

(
p0,

2−√
2

2γ(ξ,p0)

)
, whose proof is similar to that of [30]

and so is omitted here.

Lemma 4.2. Let γ = γ(ξ, p0) and 0 < r ≤ 2−√
2

2γ . Then ξ satisfies the 2-piece
γ-condition of order 2 at p0 in B(p0, r).

Recall that β = ‖Dξ(p0)−1ξ(p0)‖. Thus the following theorem follows directly
from Theorem 4.2 and Lemma 4.2.

Theorem 4.3. Let γ = γ(ξ, p0). Suppose that

α = βγ ≤ 3 − 2
√

2.

Then the sequence {pn} generated by (2.11) with initial point p 0 is well-defined
for all λ ∈ [0, 2] and converges to a singular point p ∗ of ξ in B(p0, r1), where r1

is given by (4.2).
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