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STRONG CONVERGENCE OF MODIFIED ITERATION PROCESSES
FOR RELATIVELY ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

Tae-Hwa Kim and Wataru Takahashi*

Abstract. Ishikawa and Halpern’s iterations are modified to prove the strong
convergence problems of such iteration processes for uniformly Lipschitzian
mappings which are relatively asymptotically nonexpansive in Banach spaces,
which extend the result due to Matsushita and Takahashi [J. Approx. Theory,
134 (2005), 257-266] for relatively nonexpansive mappings, and also some
recent results due to Martinez-Yanez and Xu [Nonlinear Anal., 64 (2006),
2400-2411], and Kim and Xu [Nonlinear Anal., 64 (2006), 1140-1152] for
nonexpansive mappings and asymptotically nonexpansive mappings, respec-
tively, which are considered in the Hilbert space frameworks.

1. INTRODUCTION

Let C' be a nonempty closed convex subset of a real Banach space X and let
T : C — C be a mapping. Then T is said to be a Lipschitzian mapping if, for
each n > 1, there exists a constant k,, > 0 such that | 7"z — T"y|| < ky||z — v
for all x,y € C. A Lipschitzian mapping 7" is called uniformly k-Lipschitzian if
k, = k for all n > 1, nonexpansive if k, = 1 for all n > 1, and asymptotically
nonexpansive [9] if lim,, .. k, = 1, respectively. A point z € C'is a fixed point
of T provided Tx = z. Denote by F(T) the set of fixed points of T'; that is,
F(T)={zx e C:Tx=uz}. Apointpin C is said to be an asymptotic fixed point
of T' [22] if C contains a sequence {x,} which converges weakly to p such that
lim,, o0 (x,, — Txy,) = 0. The set of asymptotic fixed points of 7" will be denoted
by F(T).
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Let X be a smooth Banach space and let X* be the dual of X. The function
¢ : X x X — R is defined by

Sy, x) = lyllI* = 2{y, Jo) + ||=||?

for all z,y € X, where J is the normalized duality mapping from X to X*. We
say that a mapping 7' : C' — C'is relatively asymptotically nonexpansive if F'(T) is
nonempty, F(T))= F(T) and, for each n>1 there exists a constant k,, >0 such that
é(p, Tmx) <k2¢(p,x) for z€C and pe F(T), where lim,, ., k,=1. In particular,
T is called relatively nonexpansive [18] if k,, = 1 for all n; see also [3-5].

Construction of approximating fixed points of nonexpansive mappings is an
important subject in the theory of nonexpansive mappings and its applications in
a number of applied areas, in particular, in image recovery and signal processing.
However, the sequence {T"x} of iterates of the mapping 7" at a point z € C' may
not converge even in the weak topology. Thus three averaged iteration methods
often prevail to approximate a fixed point of a nonexpansive mapping 7". The first
one is introduced by Halpern [10] and is defined as follows: Take an initial guess
xo € C arbitrarily and define {z,} recursively by

(1.1) Tyl = tpxo + (1 —ty)Txpn, n >0,

where {t¢,,} is a sequence in the interval [0, 1].
The second iteration process is now known as Mann’s iteration process [16]
which is defined as

(1.2) Tptl = A&y + (1 —ap)Txy, n >0,

where the initial guess x is taken in C' arbitrarily and the sequence {«,,} is in the
interval [0, 1].

The third iteration process is referred to as Ishikawa’s iteration process [11]
which is defined recursively by

{ Yn = ﬁnxn + (1 - ﬁn)TfL'nv

(1.3)
Tn+l = QnTn + (1 - Oén)Tynv

n>0

— )

where the initial guess z is taken in C' arbitrarily and {«,, } and {/3,,} are sequences
in the interval [0, 1]. By taking 3, = 1 for all n > 0 in (1.3), Ishikawa’s iteration
process reduces to the Mann’s iteration process (1.2). It is known in [6] that the
process (1.2) may fail to converge while the process (1.3) can still converge for a
Lipschitz pseudo-contractive mapping in a Hilbert space.

In general, the iteration process (1.1) has been proved to be strongly convergent
in both Hilbert spaces [10, 15, 25] and uniformly smooth Banach spaces [20, 23, 27],
while Mann’s iteration (1.2) has only weak convergence even in a Hilbert space [8].

Attempts to modify the Mann iteration method (1.2) or the Ishikawa iteration



Strong Convergence of Modified Iteration Processes 2165

method (1.3) so that strong convergence is guaranteed have recently been made.
Nakajo and Takahashi [19] proposed the following modification of Mann’s iteration
process(1.2) for a single nonexpansive mapping 7" with F/(T') # () in a Hilbert space
H:

xo € C chosen arbitrarily,

Yn = QpTp + (1 — ap)Txy,

(1.4) Crn=A{2€C:|lyn — 2|l < [lon — 2|},
Qn=12€C:{(xry,—2z20— 1) >0},

Tntl = PCannxm

where Py denotes the metric projection from H onto a closed convex subset K
of H. They proved that if the sequence {«,} is bounded above from one, then
the sequence {z,} generated by (1.4) converges strongly to F(ryxo. Recently,
Kim and Xu [14] generalized Nakajo and Takahashi’s iteration process (1.4) to

the following iteration process for an asymptotically nonexpansive mapping 7" in a
Hilbert space, under the hypothesis of boundedness of C:

xo € C chosen arbitrarily,

Yn = anTp + (1 — ap) T2y,

(1.5) Cn={2€C:|lyn—2|* < |lzn — 2[|> + 6n},
Qn=12€C:{(xy,—z2x0—xn) >0},

Tptl = PCannxm

where
0, = (1 —ay,) (k2 —1)(diam C)*> — 0 as n — oo.

They proved that the sequence {x,,} generated by (1.5) converges strongly to a fixed
point of T provided the sequence {«,,} is bounded above from one.

Very recently, Martinez-Yanez and Xu [17] generalized Nakajo and Takahashi’s
iteration process (1.4) to the following modification of Ishikawa’s iteration process
(1.3) for a nonexpansive mapping 7' : C'— C with F(T')=#0 in a Hilbert space H:

xo € C chosen arbitrarily,
Yn = QpTp + (1 — an) T2y,
Zp = Bnn + (1 — Bn) Ty,
(1.6) Cn={v€C:|lyn —v|]* < |lzn — |
+(1 = an) (2l = Nznll? + 2(zn — 20, 0))},
Qn={veC:{(ry,—v,x,— o) <0},

Tntl = PCannxm
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and proved that the sequence {x,,} generated by (1.6) converges strongly to (7)o
provided the sequence {«,} is bounded above from one and lim,, .o 3, = 1.

On the other hand, Matsushita and Takahashi [18] extended Nakajo and Taka-
hashi’s iteration process (1.4) to the following modification of Mann’s iteration
process (1.2) using the hybrid method in mathematical programming for a relatively
nonexpansive mapping 7' : C' — C' in a uniformly convex and uniformly smooth
Banach space X:

xo € C chosen arbitrarily,

Un = J HanJzn + (1 — ay)JTzy),

(17) Hy = {2 € C: 6z ) < 6z 20)},
W,={2€C:(xy— 2z Jrg— Jz,) > 0},

Tny1 = QH,nw,T0,

where J is the normalized duality mapping. Then they proved that if the sequence
{ay,} is a sequence in [0,1) and lim sup,,_,,, o, < 1, then the sequence {z,}
generated by (1.7) converges strongly to Qp(1yxo, where Qi denotes the generalized
projection from X onto a closed convex subset K of X.

The purpose of this paper is to employ the idea due to Martinez-Yanez and Xu
[17] and Matsushita and Takahashi [18] to prove some strong convergence theorems
for uniformly Lipschitzian mappings which are relatively asymptotically nonexpan-
sive. The paper is organized as follows. In the next section we introduce some
lemmas and propositions studied recently in [12] and [13] which play crucial roles
for our argument. In Section 3, motivated by [17, 18] and [14], we extend Mat-
sushita and Takahashi’s iteration process (1.7) to the Ishikawa iteration process for
such a uniformly Lipschitzian mapping which is relatively asymptotically nonex-
pansive. In the final section, we develop a similar modification for the process
(1.1) and discuss the problem of strong convergence concerning such a mapping in
a Banach space.

2. PRELIMINARIES

Let X be a real Banach space with norm ||-|| and let X * be the dual of X. Denote
by (-, -) the duality product. When {z,,} is a sequence in X, we denote the strong
convergence of {z,} to z € X by x,, — z and the weak convergence by z,, — z.
We also denote the weak w-limit set of {z,,} by wy(z,) = {z : 3z, — x}. The
normalized duality mapping J from X to X* is defined by

Jo={z" € X" : (z,2") = ||z||* = ||="[|*}

for z € X.
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A Banach space X is said to be strictly convex if |[(z + y)/2|| < 1 for all
x,y € X with ||z|| = |Jy|| = 1 and = # y. It is also said to be uniformly convex if
||zn, —yn || — O for any two sequences {x,}, {y,} in X such that ||z,| = |lyn| =1
and [|(zn + yn)/2|| — 1.

Let U = {x € X : ||z|| = 1} be the unit sphere of X. Then the Banach space
X is said to be smooth provided
e el

t—0 t

exists for each x, y € U. It is also said to be uniformly smooth if the limit in (2.1)
is attained uniformly for z,y € U. It is well known that if X is smooth, then the
duality mapping J is single-valued. It is also known that if X is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of X. Some
properties of the duality mapping have been given in [7, 21, 24]. A Banach space
X is said to have the Kadec-Klee property if a sequence {x,} of X satisfying that
xn — x € X and ||z,|| — ||z||, then x,, — x. It is known that if X is uniformly
convex, then X has the Kadec-Klee property; see [7, 24] for more details.

Let X be a smooth Banach space. Recall that the function ¢ : X x X — R is
defined by

Sy, x) = |yllI* = 2(y, Jz) + ||z]?
for all z,y € X. It is obvious from the definition of ¢ that

(22) (lyll = llzID? < ¢y, z) < (Ilyll + [l[])?

for all z,y € X. Further, we have that for any z,y, z € X,

o(2,y) = o2, 2) + ¢(2,9) + 2(z — 2, J(2) = J(y))-

In particular, it is easy to see that if X is strictly convex, for z,y € X, ¢(y,x) =0
if and only if y = z (see, for example, Remark 2.1 of [18]).

Let X be a reflexive, strictly convex and smooth Banach space and let C be a
nonempty closed convex subset of X. Then, for any = € X, there exists a unique
element Z € C such that

O(F,7) = inf 6(z ).

Then a mapping Q¢ : X — C defined by Qcx = 7 is called the generalized
projection (see [1, 2, 12]). In Hilbert spaces, notice that the generalized projection
is clearly coincident with the metric projection.

The following result is well known (see, for example, [1, 2, 12]).

Proposition 2.1. ([1, 2, 12]). Let K be a nonempty closed convex subset of a
real Banach space X and let z € X.
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(@) If X is smooth, then, z = Qg if and only if (z —y, Jx — Jz) > 0 for
ye K.

(b) If X is reflexive, strictly convex and smooth, then ¢(y, Q k) + ¢(Qxz, x) <
o(y,x) forall y € K.

The following subsequent two lemmas are motivated by Lemmas 1.3 and 1.5 of
Martinez-Yanes and Xu [17] in Hilbert spaces, respectively; for detailed proofs, see
[13].

Lemma 2.2. ([13]). Let C' be a nonempty closed convex subset of a smooth
Banach space X, z,y,z € X and A € [0, 1]. Given also a real number a € R, the
set

D:={veC:¢(v,2) < Ap(v,2) + (1 = A)p(v,y) + a}

is closed and convex.

Lemma 2.3. ([13]). Let X be a reflexive, strictly convex and smooth Banach
space with the Kadec-Klee property, and let K be a nonempty closed convex subset
of X. Let g € X and ¢ := Q gxo, Where Qx denotes the generalized projection
from X onto K. If {z,} is a sequence in X such that w,,(x,) C K and satisfies
the condition

¢(wn, 20) < ¢(g; o)

for all n. Then z,, — ¢ (= Qxxo).

Recently, Kamimura and Takahashi [12] proved the following result, which
plays a crucial role in our discussion.

Proposition 2.4. ([12]). Let X be a uniformly convex and smooth Banach
space and let {y, }, {z.} be two sequences of X. If ¢(yy, z,) — 0 and either {y,, }
or {z,} is bounded, then y,, — z,, — 0.

Finally, concerning the set of fixed points of a relatively asymptotically nonex-
pansive mapping, we can prove the following result.

Proposition 2.5. Let X be a uniformly convex and smooth Banach space, let
C be a nonempty closed convex subset of X, and let T': C — C be a continuous
mapping which is relatively asymptotically nonexpansive. Then F(T') is closed and
convex.

Proof.  First, we show that F'(T) is closed. Let {x,,} be a sequence of F(T)
such that x,, — x € C. Since T is relatively asymptotically nonexpansive, we have
that

$(an, Tx) < k{(an, 7)
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for each n > 1. Taking the limit on both sides as n — oo, we have
(o, Tz) = lim ¢(z,, To) < K lim ¢(zn,x) = Koz, x) =0,
n—oo n—oo
which implies x = Tz and so =z € F(T'). Next, we show that F(T) is convex.

For z,y € F(T) and A € (0,1), put z = Az + (1 — A)y. It suffices to show that
z € F(T). Indeed, as in [18], we have that for n > 1,

$(z,T"z) = |2l =20z + (1 = Ny, JT"z) + || T"z|*
= ||2]|? — 2\ (z, JT™2) — 2(1 — \){y, JT"2) + ||T"z|?
= [120* + A2, T"2) + (1 = Ny, T"2) = All[|* = (1 = N |lyl®
< [zl + kMg (@, 2) + (1= Ny, 2)] = Allz]|* = (L= A) [yl
Since k,, — 1, the right hand side of the above inequality converges to 0 because
12112 + A, 2) + (1 = Ny, 2) = All]|* — (L = N)|[y*
= [l2]1* = 20z + (1 = N)y, J2) + |||
= [|21* = 2(=, J2) + |1z]* = 0.
By Proposition 2.4, we have 7"z — z and hence z € F(T") by the continuity of 7. m

3. STRONG CONVERGENCE OF MODIFIED ISHIKAWA'S
ITERATION PROCESSES

In this section we propose a modification of Ishikawa’s iteration process (1.3),
motivated by the idea due to [17, 18], to have strong convergence for uniformly
Lipschitzian mappings which are relatively asymptotically nonexpansive.

Theorem 3.1. Let X be a uniformly convex and uniformly smooth Banach
space, let C' be a nonempty closed convex subset of X and let T : C — C be a
uniformly k-Lipschitzian mapping which is relatively asymptotically nonexpansive.
Assume that F'(T") is a nonempty bounded subset of C' and {« ,,} and {3,} are
sequences in [0, 1] such that limsup,,_,,, o, < 1 and 3, — 1. Define a sequence
{z,,} in C by the algorithm:
xo € C chosen arbitrarily,

Yn = J N anJzn + (1 — ap)JT"2y,),

Zn = ﬁnxn + (1 - ﬁn)Tnxnv

Hy, ={veC:¢v,yn) < anp(v,ms) + (1 — an)p(v, 2n) + 1},
W, ={velC:(xy,—v,Jo, — Jrg) <0},

ZTnt1 = QH,NW, T,
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where J is the normalized duality mapping and

M = (1= an)(kp — 1) - sup{e(p, z1) : p € F(T)}.

Then {z,,} converges in norm to @ (7)o, Where Q 7y is the generalized projec-
tion from X onto F(T).

Proof.  First, observe that H,, is closed and convex by Lemma 2.2, and that
W, is obviously closed and convex for each n > 0. Next we show that F'(T') C H,
for all n. Indeed, for p € F(T), using the convexity of | - |? for the first inequality
and relative asymptotic nonexpansivity of T for the second inequality, we get

o0, yn) = d(p, T HanJzn + (1 — o) JT"2,))
= [Ip|* = 2(p, anJzpn + (1 — ) JT"2) + ||an Tz + (1 — ) JT" 2, ||
< HpH2 — 2an(p, Jzn) — 2(1 — an)(p, JT"2) + O‘onnHQ +(1 - an)HTnanQ

(
== an¢ D, xn) + 1-— (679 ¢( 7Tnzn)

IN
Q
3
r\/ﬁ\/—\
=
8
3

P, 2n) + (1= an) (ki — 1)é(p, 2n)
P, Zn) + M-

(
(

AN
Q
3
BN
=
8
3

So p € H,, for all n. Moreover, we show that
(3.1) F(T)c H,NnW,

for all n > 0. It suffices to show that F(T') c W,, for all n > 0. We prove this
by induction. For n = 0, we have F(T) Cc C = Wy. Assume that F(T) C Wy
for some k& > 1. Since x4 is the generalized projection of xy onto Hy N Wy, by
Proposition 2.1 (a) we have

(Tr1 — 2, Jrg — Jopg1) >0

for all z € H, N Wy. As F(T) C Hy N Wy, the last inequality holds, in particular,
for all z € F(T). This together with the definition of Wy, implies that F/(T) C
Wi+1. Hence (3.1) holds for all n > 0. So, {x,} is well defined. Obviously,
since z,, = Qw, zo by the definition of W, and Proposition 2.1(a), and since
F(T) c W,, we have ¢(z,,x0) < ¢(p,xo) for all p € F(T). In particular, we
obtain, for all n > 0,

(3.2) ¢(xn, o) < (g, 70),  Where g := Qp(r)Zo

Therefore, {¢(xy, xo)} is bounded; so is {x,,} by (2.2). Consequently, {T"x,} is
bounded, and so is {z,}.
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Noticing that z,, = Qw, z¢ again and the fact that =, € H,"W,, C W, we
get
(b(xnv fIfQ) = min ¢(Zv fIfQ) < ¢($n+1, xO)v

zeWn

which shows that the sequence {¢(z, )} is nondecreasing and lim,, o ¢(xy, o)
exists. Simultaneously, from Proposition 2.1 (b), we have

A(ZTnt1, Tn) = ¢ (Tnt1, Qw, o) < G(Tnt1,T0) — A(Qw,To, To)

= ¢(Tnt1,20) — ¢(n, To) — 0.

By Proposition 2.4, we have

(3.3)

(3.4) |Znt1 — xnl] — 0.
Now since x,,+1 € H,, we have

A(Tnt1,Yn) < 0nd(Tpg1, o) + (1 — an)d(Tni1, 20) + 00
(3.5) = O(Tnt1, Tn) + (1 — @n)(9(Tnr1, 20) — A(Tnt1, Tn)) + N

= A(Tnt1, Tn) + (1 —an) (2(@nt1, an_Jzn>+Han2_ Han2)+nn-
On the other hand, since 3,, — 1, and {x,}, {T"x, } are bounded, we have
(3.6) |2n — @nll = (1 = Bp) |20 — T"2n|| — 0.
Recalling that {z,,} is also bounded, by (2.2), we see that
TNn = (1 - O‘n)(ki - 1) : sup{¢(p, zn) ‘pE F(T)}
< (I—ap)(kh—=1)-(6+7)* =0

as k, — 1, where § := sup{||p|| : p € F(T)} and 7 := sup{||z,|| : » > 0}. Since J
is uniformly norm-to-norm continuous on bounded sets, we have || Jxz;, —Jz,| — 0.
Hence, we have

(3.7) 12z 41, Jon — T2n) + |21 = llza?|

< 2l @ngall - |J2n = Jzall + (lzall + Izl (120 = 2all) — 0.
Using (3.3), (3.7) and i, — 0, we readily see that the right hand of (3.5) converges to
0; hence ¢(xy+1,yn) — 0. Using Proposition 2.4 again, we obtain ||z, +1 — y,|| —
0. This, together with (3.4), yields that ||z, — y,|| — 0. Since J is uniformly
norm-to-norm continuous on bounded sets, we have ||Jx,, — Jy, || — 0. Combining
with lim sup,,_, ., a,, < 1 and

Jry — Jyp = Jxn — JJ N onJz, + (1 — ) JJT"2,,)
= Ja, — (anJzn, + (1 — o) JT"2y)
= (1—apn)(Jo, — JT"z,)
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(from the definition of y,,) yields

|Jxp — JT" 2, || = Sz = Jynll — 0.

1—a,

Since J~! is also uniformly norm-to-norm continuous on bounded sets, we have
|xn, — T™2y,|| — 0. Since T is uniformly k-Lipschitzian, this combined with (3.6)
gives that

|20 — T"wp|| < ||n — T 20 || + (| T" 20 — T" 24|
< | = T" 20 || + k|| 2n — 0| — 0.
Then, it follows from (3.4) and (3.8) that

(3.8)

20 = Tap| < ll#n = zpall + l[2ns1 = T @ng |

(3.9) HI T g = T || + 1Ty — T |
. < (T+k)llen — 2pgr || + [|ons1 — Tn—Hxn—f—lH

+k|T" 2y, — xp|| — 0.

By (3.9), wy(x,) C F(T) = F(T). This, combined with (3.2) and Lemma 2.3
(with K = F(T)), guarantees that x,, — ¢ = Q(7)Zo- [ |

Remark 3.2. Overlooking the processes of the proof of Theorem 3.1, we readily
see that if {7/} is a sequence of real numbers such that n,, < n/, for all n and
n,, — 0, the conclusion of Theorem 3.1 still remains true with {n/} instead of
{nn}. Note also that the hypothesis of boundedness of F'(T") is abundant in case
1y, = 0 for all n; see [18, 13].

Immediately, taking 3, = 1 for all n > 0 in Theorem 3.1, we obtain strong
convergence of the modified Mann iteration process in a Banach space.

Theorem 3.3. Let X be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of X and let T : C — C be a
uniformly k-Lipschitzian mapping which is relatively asymptotically nonexpansive.
Assume that F'(T") is a nonempty bounded subset of C' and {« ,,} is a sequences
in [0, 1] such that limsup,,_,., o, < 1. Define a sequence {z,} in C by the
algorithm:
xo € C chosen arbitrarily,

Yn = J_l(aann + (1 — ap)JT"xy),
Hy, ={veC:¢v,yn) < (v, 2n) + 0},
Wy, ={veC:{(x,—v,Jx, — Jrg) <0},

ZTnt1 = QH,NW, T,
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where J is the normalized duality mapping and

M = (1= an)(kh — 1) - sup{¢(p, z) : p € F(T)}.

Then {z,,} converges in norm to @ g(ryzo, Where Q g7y is the generalized projec-
tion from X onto F(T)).

With the help of Theorem 3.3 and Remark 3.2, we immediately have the fol-
lowing result due to Matsushita and Takahashi [18].

Corollary 3.4. ([18]). Let X be a uniformly convex and uniformly smooth
Banach space, let C' be a nonempty closed convex subset of X and let T : C' — C
be a relatively nonexpansive mapping. Assume that {«,,} is a sequence in [0, 1)
such that lim sup,,_, ., o, < 1. Then the sequence {z,,} generated by the algorithm
(1.7) converges in norm to Q g(yo, Where Q g7y is the generalized projection from
X onto F(T).

Let C be a closed convex subset of a Hilbert space H and let T : C — C
be an asymptotically nonexpansive mapping with F(T") # (). Then, after noticing
that ¢(z,y) = ||z — y||? for all =,y € H, we see that |77z — T"y|| < ky|lz —
y|| is equivalent to ¢(T"z, T™y) < k2¢(z,y). It is therefore easy to show that
every asymptotically nonexpansive mapping is both uniformly k-Lipschitzian and
relatively asymptotically nonexpansive. In fact, it suffices to show that F(T) -
F(T'). The inclusion follows easily from the well-known demiclosedness at zero of
I —T (c.f., [26]), where I denotes the identity operator.

Now applying Theorem 3.3 again, we have the following Hilbert space’s version.

Theorem 3.5. Let C' be a closed convex subset of a Hilbert space H and
let T : C — C be an asymptotically nonexpansive mapping. Assume that F(T")
is a nonempty bounded subset of C' and {«,,} is a sequences in [0, 1] such that
lim sup,, .. @, < 1. Define a sequence {x,} in C by the algorithm:
xo € C chosen arbitrarily,
Yn = QpTpn + (1 - Oén)Tnxnv
Cn={2€C:lyn —z|* < llzn — 21> +0n},
Qn=1{2€C:{(xry,—2z20— 1) >0},

Tntl = PCannxm
where
= (1= an) (ki — 1) sup{|lp — zn||* : p € F(T)}.

Then the sequence {z,} converges in norm to Pz, Where Py denotes the
metric projection from H onto a closed convex subset K of H.
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As a direct consequence of Theorem 3.5, we have the following result due to
Kim and Xu [14].

Corollary 3.6. ([14]). Let C be a bounded closed convex subset of a Hilbert
space H and let 7 : C'— C be an asymptotically nonexpansive mapping. Assume
that {«v, } is a sequence in (0, 1) such that o, < a for all n and for some 0 < a < 1.
Then the sequence {z,} generated by the algorithm (1.5) converges in norm to
PF(T)xO-

Proof. Noticing that sup{||[p—x,||* : p€ F(T)} < (diam C)?, we see that 1,
<46, for all n. The conclusion follows easily from Remark 3.2 and Theorem 3.5. m

Now we propose another modification of Ishikawa’s iteration process (1.3) to
have strong convergence for a uniformly Lipschitzian mapping which is relatively
asymptotically nonexpansive defined on a Banach space.

Theorem 3.7. Let X be a uniformly convex and uniformly smooth Banach
space, and let T : X — X be a uniformly k-Lipschitzian mapping which is rela-
tively asymptotically nonexpansive. Assume that F'(7) is a nonempty bounded sub-
set of X and {«,,} and {3, } are sequences in [0, 1] such that limsup,,_, ., o, < 1
and 3, — 1. Define a sequence {x,} by the algorithm:
xo € X chosen arbitrarily,

Un = J N anJzn + (1 — ap)JT"2y,),

2y = J Y BuJzn + (1 — Bn)JT 2y,),

Hy ={v e X :9v,yn) < and(v,z,) + (1 — an)p(v, 2n) + 0},
Wp={veX:(x,—v,Ju, — Jrg) <0},

ZTnt1 = QH,NW, T,

where J is the normalized duality mapping and

M = (1= an)(ky — 1) - sup{e(p, z1) : p € F(T)}.

Then {x,,} converges in norm to Q p(1yxo, Where Q7 is the generalized projec-
tion from X onto F(T).

Proof.  Use the following (3.10)-(3.12) instead of (3.5)-(3.7) in the proof of
Theorem 3.1. Since z,,+1 € H,, we have

(3-10) ¢(xn+17 yn) < an¢(xn+lv wn) + (1 - Oén)(b(wn—l—h Zn) + M-
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On the other hand, recalling that {x,,} and {T™x,} are bounded in the proof of
Theorem 3.1, we see that the sequence {¢(zp+1,T"xy)} is also bounded by (2.2).
Now using the convexity of ||-||2 for the first inequality, 3, — 1, and ¢ (2,11, Tn) —
0, we get

$(Tni1,2n) = |2ni1l® = 201, Budxn + (1= Bn) JT" )
H|Bn Tz + (1= B) JT ||
(3.11) < @ni1|* = 28n(nst, Jzn) — 2(1 = Bu){Tni1, JT 2p)
+Ballanll® + (L = Bo) | T" 2|
= Bnd(Tnt1, n) + (1 = Bn)d(@ny1, T"2n) — 0.
Therefore, the right hand of (3.10) converges to 0; hence ¢(z,+1,yn) — 0. Also,

from Proposition 2.6, ¢(z,+1,2,) — 0 implies that ||z,+1 — z,|| — 0, and this,
together with (3.4), gives that

(3.12) |Zn — 2nll — 0.

Now repeating the remaining part of the proof of Theorem 3.1, we conclude that
Ty — Qp(T)Z0. u

Here, we shall give an example of a uniformly Lipschitzian mapping which is
relatively asymptotically nonexpansive as in the hypotheses of Theorem 3.1, but not
relatively nonexpansive.

Example 3.7. Let X =¢?, where 1 <p<oo, and C = {x=(x1, z9,...) € X;
x, > 0}. Then C is a closed convex subset of X. Note that C' is not bounded.
Obviously, X is uniformly convex and uniformly smooth. Let {),} and {\,} be
sequences of real numbers satisfying the following properties:
H0<A <1, A, >1, ), T1and ), |1,
(i) Ant1An =1and A\yqjAj1q1 < 1 forall nand j.

(for examples, consider either A, = 1 — L5, A, = 1+ =5 or A, = /",

An = /(1)) Then we define T: C — C by
Tx = (0, 5\1‘ sinxl\, )\21‘2, 5\21‘3, )\31‘4, 5\31‘5, . )
for all z = (1,29, 23,...) € C. Obviously, FI(T') = {0}, where 0 = (0,0,...) €
C. Since \,+1 A\, = 1, it is easy to check that, for x = (21, z9,...) € C,
2n—1
2n—1 . 3 3
"z = <07 o, 0, Ap| sin @y |, Moo, Apy123, A3T4, Apyas, .. )
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and on

2n T 3 3
T"x = <0, te ,0, ‘ smxl\, )\n+1)\21‘2, xrs3, )\n+2)\31‘4, I5, .. )
Letting k2,1 = A, and ko, = 1 for all n > 1, by (i) and (ii), an easy calculation
yields that |77z — T"y[| < kp|lz — y|| for all z,y € C. Then, since k, — 1,

T is asymptotically nonexpansive and so, uniformly Lipschitzian. Moreover, it is
relatively asymptotically nonexpansive. Indeed,

¢(0, T"z) = | Tz ||* < ki |lz|* = k3(0, z)
for all z € C. From the demiclosedness principle of the asymptotically nonexpansive
mapping 7' (see Theorem 2 of [26]) it immediately follows that F'(T') C F(T).
Since the converse inclusion always holds true, it mustbe F(T) = F(T'). Therefore,
T'is relatively asymptotically nonexpansive. However, for e; = (0,0,1,0,0,...) €
C, since || Tes|| = A2 > 1 = ||es|| (hence T is not nonexpansive), we have
¢(0, Te) = || Tes||* = A3 > 1 = |les||* = (0, es)

and thus 7' is not relatively nonexpansive.

4. STRONG CONVERGENCE OF MoDIFIED HALPERN’S
ITERATION PROCESSES

In this section, by modifying the proof of Theorem 3.1 slightly, we also study
the following strong convergence problem of the Halpern’s iteration process (1.1)
in a Banach space.

Theorem 4.1. Let X be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of X and let T : C — C be a
uniformly k-Lipschitzian mapping which is relatively asymptotically nonexpansive.
Assume that F'(T") is a nonempty bounded subset of X and {¢,} is a sequence in
(0, 1] such that ¢,, — 0. Define a sequence {x,,} in C' by the algorithm:

xo € C chosen arbitrarily,

Yn = J HtnJzo + (1 —t,)JT"xy,),

Ho = {0 € C: 0(0,5) < (1= ta)3(0, 20) + ba(v, 30) + 0},
Wy, ={veC:{(x,—v,Jx, — Jxg) <0},

Tnt1 = QH,nw,To,
where J is the normalized duality mapping and
TNin = (1 - tn)(ki - 1) ' sup{¢(p, xn) ‘pe F(T)}

Then {z,,} converges in normto Q )z, where Q 7y is the generalized projection
from X onto F(T).
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Proof. By Lemma 2.2, we see that H,, is closed and convex. For any p €
F(T), we have, using the convexity of |-|[* and relatively asymptotic nonexpansivity
of T,

¢, yn) = ¢(p, T H(tnJzo + (1 — t,) JT"xy,))
= [Ipll* = 2(p, tnJwo + (1 — t) JT"x,) + ||t wo + (1 — b)) JT" 2, ||?

IN

Ip11* = 2t (p, Jxo) = 2(1 = tn) (0, JT"xs) + tallzo]|? + (1 = t) | T 20 |
= tnd(p, z0) + (1 — tn)d(p, T"xn)

< (1= tn)d(p, 2n) + tnd(p, x0) + (1 — t) (ki — 1)P(p, )
< (L= tn)o(p, n) + tnd(p, x0) + -

So p € H, for all n. As in the proof of Theorem 3.1, we also have F(T) C W,
for all n > 0 and hence z,, is well-defined for all n > 0.

The definition of W,, and Proposition 2.1 (a) imply that x,, = Qw, ¢ which in
turn implies that ¢(z,,, o) < ¢(p, zg) for all p € F(T); in particular, we obtain

4.2) d(xn, z0) < &(q, o) (with q := Q p(1)T0)

for all n > 0. Therefore, {¢(z,, o)} is bounded; so is {x,} by (2.2). It is obvious
that {T*z,, : k,n > 0} is bounded. Also, since z,,,1 € H, N W,, C W,,, we have

¢($n, 1‘0) = Zg%% ¢(Zv 1‘0) < ¢($n+1, 1‘0).

That shows that the sequence {¢(z,,zo)} is nondecreasing and so the lim,,
¢(xy, xo) exists. From Proposition 2.1 (b), we have

¢($n+1, Tp) = ¢ (xn-f—lv QanO) < ¢(xn+17 Tg) — ¢(QWn$Q, x0)
= ¢(Tni1,20) — (2, x0) — 0.
By Proposition 2.4, we have
(4.2) | Znt1 — x| — 0.

Since {z,} is bounded and k,, — 1, as in the proof of Theorem 3.1 we see that
7, — 0. Since z,41 € H,, this, together with ¢(z4+1,2,) — 0 and ¢, — 0,
implies that

A(Tni1,yn) < (1 —t0)p(Tng1, Tn) + tnd(@Tny1, o) + 10 — 0.
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Using Proposition 2.4 again, it follows that

(4.3) [Znt1 =yl — 0.
On the other hand, by the definition of y,, we have

| Jyn — JT x| = | JT (tnJzo + (1 — ) JT xy) — JT x|

= tp||Jxog — JT" 2| — 0.
Since J~! is also uniformly norm-to-norm continuous on bounded sets, we have
(4.4) [y —T"zn | — 0.
Then it follows from (4.2)-(4.4) that
(4.5) |20 = T"@n|| < |20 = ynll + llyn — T"znll — 0.
Then, since T is uniformly k-Lipschitzian, combining (4.2) and (4.5) gets
120 = Tzl < 2 = @il + 2nsr = T 2|
HIT angy = T || + | T 2 — Tan|
o < (L4 E)llzn = zng ]| + lznss — T ap |
+k||T"z), — xy|| — 0.

By (4.6), wy(z,) C F(T) = F(T). This, combined with (4.1) and Lemma 2.3
(with K := F(T')), gives that x, — ¢ = Qp(1)Zo- ]

As a direct consequence of Theorem 4.1, we obtain the following result in
Hilbert spaces.

Corollary 4.2. Let H be a real Hilbert space, C' a closed convex subset of H
and T : C — C a asymptotically nonexpansive mapping. Assume that F'(T') is a
nonempty bounded subset of C' and {¢,,} C (0,1] is such that ¢,, — 0. Define a
sequence {z,} in C by the algorithm:
xo € C chosen arbitrarily,

Yn = thro + (1 - tn)Tnxnv
Cn={v € C: v —ynll® < (1 = tn)llv — @nl® + tullv — 20]|* + 1},
Qn={veC: (x,—v,x,—x9) <0},
Tptl = PCannxm

i = (1= ta)(ky — 1) - sup{|lp — = |* : p € F(T)}.
Then {z,} converges in norm to Pp(7)z, where Pk is the metric projection from
H onto a closed convex subset K of H.
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