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ON APPROXIMATION OF INTEGRATED SEMIGROUPS

Miao Li and Sergey Piskarev

Abstract. This paper is devoted to approximation of integrated semigroups
in space and in time variables. The presentation is given in the abstract
framework of discrete approximation scheme, which includes finite element
methods, finite difference schemes and projection methods.

1. INTRODUCTION

Let B(E) denote the Banach algebra of all linear bounded operators on a com-
plex Banach space E . The set of all linear closed densely defined operators in E
will be denoted by C(E).

Let A be the generator of a C0-semigroup exp(tA), t ≥ 0, and consider in the
Banach space E the Cauchy problem

(1.1)
u′(t) = Au(t) + f(t), t ∈≥ 0,

u(0) = u0,

with some function f(·) ∈ C([0, T ]; E). Usually, one assumes u0 ∈ D(A) in order
to obtain well-posedness.

Definition 1.1. A function u(·) is called a solution of (1.1) in the classical
sense if u(·) ∈ C1([0, T ]; E)∩ C([0, T ]; D(A)) and satisfies (1.1).
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It is known that the mild solution of (1.1) is defined by the formula

(1.2) u(t) = exp(tA)u0 +
∫ t

0
exp((t − s)A)f(s) ds.

If u(·) in (1.2) is continuously differentiable, then such u(·) is a classical solu-
tion of (1.1). If one puts f(s) = exp(sA)x, s ≥ 0, in general boundedness of
Au(t) = exp(tA)Au0 + tA exp(tA)x as t → 0 implies that A generates an an-
alytic C0-semigroup. But even if A generates an analytic C0-semigroup and if
f(·) ∈ C([0, T ]; E), then u(·) from (1.2) is generally not a classical solution (see
[30]). Therefore, in the numerical analysis of these equations one can only expect a
maximal regularity inequality with a logarithm. Actually, if (1.1) is coercive well-
posed in C([0, T ]; E), then ([13]) either A is bounded or E contains the subspace
which is isomorphic to c0.

Therefore, in order to have well-posedness of (1.1) one needs to impose some
smoothness assumption on f(·) in case of a C0-semigroup. For instance, one may
assume that f(·) ∈ C1([0, T ]; E). The situation is dramatically changed if the
operator A satisfies weaker conditions than those for a generator of a C0-semigroup.

In the literature [1, 16, 19, 22] there has been quite interest in solving problem
(1.1) under conditions weaker than those for a generator of a C0-semigroup, namely
under the condition that A generates an integrated semigroup etA

1 , t ≥ 0, or C-
semigroup S(t), t ≥ 0. For example, the Schrödinger operator i∆ generates a C0-
semigroup on Lp(IRn) iff p = 2. Moreover, if α > n|12 − 1

p |, then i∆ generates an
α-times integrated semigroup. The starting point for this paper is the observation that
there seems to be no systematically developed approximation theory for integrated
semigroups, not even for the homogeneous case. In the mean time we have to
mention the papers on the subject [2]-[7].

In recent years a rather general approach has been developed for studying the ap-
proximation of solutions of C0-semigroups. We give here a short historical overview
of some simplest general results from this approach. Let us consider a well-posed
Cauchy problem in a Banach space E with some operator A ∈ C(E)

(1.3)
u′(t) = Au(t), t ∈ [0,∞),
u(0) = u0 ∈ E.

If A generates a C0-semigroup exp(·A), as is well known, the generalized solution
of (1.3) is given by u(t) = exp(tA)u0 for t ≥ 0. The theory of well-posed problems
and the numerical analysis of these problems have been developed extensively, see
for instance the papers [15, 17, 24, 26]. Let us consider a general discretization
scheme obtained from the semidiscrete approximation of (1.3) in some Banach
spaces En :

(1.4)
u′

n(t) = Anun(t), t ∈ [0,∞),
un(0) = u0

n ∈ En,
.
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Here we assume that u0
n

P−→u0 and operators An ∈ C(En) that generate C0-
semigroups, consistent with the operator A ∈ C(E) and u0

n
P−→u0. For a precise

definition of discrete convergence of elements and operators see Section 3.
First, we state the following version of Trotter-Kato’s Theorem for general ap-

proximation schemes:

Theorem 1.1. [28]. (Theorem ABC). Assume that A ∈ C(E), An ∈ C(En)
and they generate C0-semigroups. The following conditions (A) and (B) are equiv-
alent to condition (C).

(A) Consistency. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(An) such that the resolvents

converge
(λIn − An)−1 PP−→(λI − A)−1;

(B) Stability. There are some constants M ≥ 1 and ω, which are not depending
on n and such that ‖ exp(tAn)‖ ≤ M exp(ωt) for t ≥ 0 and any n ∈ IN ;

(C) Convergence. For any finite T > 0 one has maxt∈[0,T ] ‖ exp(tAn)u0
n −

pn exp(tA)u0‖ → 0 as n → ∞, whenever u0
n

P−→u0 for any u0
n ∈ En, u0 ∈ E.

Theorem 1.2. [24]. Let operators A and An generate analytic C0-semigroups.
The following conditions (A) and (B1) are equivalent to condition (C1).

(A) Consistency. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(An) such that the resolvents

converge
(λIn − An)−1 PP−→(λI − A)−1;

(B1) Stability. There exist constants M2 ≥ 1 and ω2 independent of n such
that for any Reλ > ω2

‖(λIn − An)−1‖ ≤ M2

|λ − ω2| for all n ∈ IN ;

(C1) Convergence. For any finite µ > 0 and some 0 < θ < π
2 we have

max
η∈Σ(θ,µ)

‖ exp(ηAn)u0
n − pn exp(ηA)u0‖ → 0 as n → ∞ whenever u0

n
P−→u0.

Here we denote Σ(θ, µ) = {z ∈ Σ(θ) : |z| ≤ µ} and Σ(θ) = {z ∈ C : |arg z| ≤
θ}.

Normally they assume that conditions (A) and (B) for the corresponding C0-
semigroup are satisfied without any restriction of generality if any discretization
processes in time are considered. We denote by Tn(·) a family of discrete semigroups
as in [17], i.e. Tn(t) = Tn(τn)kn , where kn = [ t

τn
], as τn → 0, n → ∞. The

generator of discrete semigroup is defined by Ăn = 1
τn

(Tn(τn)− In) ∈ B(En) and
so Tn(t) = (In + τnĂn)kn , where t = knτn.
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Theorem 1.3. [28] (Theorem ABC-discr). The following conditions (A) and
(B′) are equivalent to condition (C ′).

(A) Consistency. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(Ăn) such that the resolvents

converge
(λIn − Ăn)−1 PP−→(λI − A)−1;

(B′) Stability. There exist constants M1 ≥ 1 and ω1 ∈ IR such that

‖Tn(t)‖ ≤ M1 exp(ω1t) for t ∈ IR+ = [0,∞), n ∈ IN ;

(C′) Convergence. For any finite T > 0 one has maxt∈[0,T ] ‖Tn(t)u0
n−pn exp(tA)u0‖

→ 0 as n → ∞, whenever u0
n

P−→u0 for any u0 ∈ E, u0
n ∈ En.

Theorem 1.4. [28]. Assume that operators A ∈ C(E), An ∈ C(En) and they
generate C0-semigroup. Assume also that conditions (A) and (B) of Theorem 1.1
hold. Then the implicit difference scheme

(1.5)
Un(t + τn) − Un(t)

τn
= AnUn(t + τ), Un(0) = u0

n,

is stable, i.e. ‖(In − τnAn)−kn‖ ≤ M1e
ω1t, t = knτn ∈ IR+, and gives an approx-

imation to the solution of the problem (1.3), i.e. U n(t) ≡ (In − τnAn)−knu0
n

P−→
exp(tA)u0

n uniformly with respect to t = knτn ∈ [0, T ] as u0
n

P−→u0, n → ∞, kn →
∞, τn → 0.

Note that in this case Tn(τn) = (In − τnAn)−1 and Ăn = ((In − τnAn)−1 −
In)/τn = An(In − τnAn)−1.

Theorem 1.5. [28]. Assume that conditions (A) and (B) of Theorem 1.1 hold
and condition

(1.6) τn‖A2
n‖ ≤ C, n ∈ IN,

is fulfilled. Then the difference scheme

(1.7)
Un(t + τn) − Un(t)

τn
= AnUn(t), Un(0) = u0

n,

is stable and gives an approximation to the solution of the problem (1.3), i.e.
Un(t) ≡ (In + τnAn)knu0

n
P−→u(t) uniformly with respect to t = knτn ∈ [0, T ] as

u0
n

P−→u0, n → ∞, kn → ∞, τn → 0.
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Theorem 1.6. [14, 24]. Assume that conditions (A) and (B1) of Theorem 1.2
hold and condition

(1.8) τn‖An‖ ≤ 1/(M + 2), n ∈ IN,

is fulfilled. Then the difference scheme (1.7) is stable and gives an approximation to
the solution of the problem (1.3), i.e. Un(t) ≡ (In + τnAn)knu0

n
P−→u(t) uniformly

with respect to t = knτn ∈ [0, T ] as u0
n

P−→u0, n → ∞, kn → ∞, τn → 0.

In this case as we see Tn(τn) = In + τnAn and Ăn = An.
Let us recall that the constant M2 in condition (B1), which defines α ∈ (0, π

2 )
by M2 sinα < 1 [18] is such that

(1.9) ‖(λIn − An)−1‖ ≤ M

|λ − ω| for any λ ∈ Σ(π/2 + α).

Recall that there exists a unique Padé approximation for e−z of degree (p, q)
given by the formula Rp,q(z) = Pp,q(z)/Qp,q(z) ∈ πp,q, where

Pp,q(z) =
p∑

j=0

(p + q − j)!p!(−z)j

(p + q)!j!(p− j)!
, Qp,q(z) =

q∑
j=0

(p + q − j)!q!zj

(p + q)!j!(q − j)!
.

Definition 1.2. A rational approximation r p,q(·) ∈ πp,q for e−z is said to be
(a) A-acceptable if |rp,q(z)| < 1 for Re(z) > 0;
(b) A(θ)-acceptable if |rp,q(z)| < 1 for z ∈ Σ(θ) \ {0}.
Since r(·)∈πp,q is an approximation of e−z , it is natural to construct the operator-

function r(τnAn)k which can be considered as an approximation of exp(tAn) for
t = kτn. For simplicity, we assume in the following Theorems of this section that
‖ exp(tAn)‖ ≤ M, t ∈ IR+.

Theorem 1.7. [8]. Let condition (B) be satisfied. There is a constant C
depending on r(·) such that if r(·) is A-acceptable, then

‖r(τnAn)k‖ ≤ CM
√

k for τn > 0, k ∈ IN.

Remark 1.1. The term
√

k in Theorem 1.7 cannot be removed in general; more-
over, there are examples (see [11]), which show that the inequality ‖r(τnAn)k‖ ≥
c
√

k, k ∈ IN, holds.

We say that r(·) ∈ πp,q is accurate of order 1 ≤ d ≤ p + q if |e−z − r(z)| =
O(|z|d+1) as |z| → 0.
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Theorem 1.8. [11]. Let condition (B1) be satisfied. Then there is a constant
C depending on r, such that if r is A(θ)-acceptable, accurate of order d, and
θ ∈ (π/2− α, π/2] for α from condition (1.9), then

‖r(τnAn)k‖ ≤ CM for τn > 0, k ∈ IN.

The difference scheme which corresponds to rational function r(·), which is
Pade R1,1(z) (also called the Crank-Nicolson scheme) is given by the formula

(1.10)
Un(t + τn) − Un(t)

τn
= An

Un(t + τ) + Un(t)
2

, Un(0) = u0
n,

It is easy to see that in such case Tn(τn) = In+ τn
2

An

In− τn
2

An
and Ăn =( In+ τn

2
An

In− τn
2

An
− In)/τn

=An(In − τn
2 An)−1.

2. PRELIMINARIES

Let us consider the Cauchy problem in the Banach space E

(2.1)
u′(t) = Au(t) + f(t), t ∈ [0, T ],

u(0) = u0 ∈ E,

where the operator A generates a k-times integrated semigroup and f(·) ∈ L1([0, T ];
E). A function u(·) is called a classical solution of (2.1) if it belongs to C1([0, T ]; E)
∩C([0, T ]; D(A)) and satisfies both equations in (2.1).

A k-times integrated semigroup is a family of bounded linear operators etA
k , that

is strongly continuous in t ∈ [0,∞) and satisfies equation

(2.2) etA
k = A

∫ t

0

esA
k ds +

tk

k!
, t ≥ 0.

Let us define the function

v(t) = etA
k u0 +

∫ t

0
e
(t−s)A
k f(s)ds, t ∈ [0, T ].

If there is a classical solution of (2.1), then v(·) ∈ Ck+1([0, T ]; E) and v(k)(·) =
u(·). If the k-times integrated semigroup is exponentially bounded, i.e. ‖etA

k ‖ ≤
Meωt, t ∈ IR+, then resolvent satisfies

(λI − A)−1 = λk

∫ ∞

0
e−λtetA

k dt for λ > ω.
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Let us consider the problem (2.1) when k = 1. If we have a once integrated
semigroup and f(·) ≡ 0, u0 ∈ D(A2), then the solution of (2.1) is given by
u(t) = (etA

1 u0)′t. As an example, let us approximate (2.2) in this case as follows:
eτA
1 ≈ τAeτA

1 + τI. We can write the approximation to eτA
1 can be written in the

form

(2.3) W (τ) = τ(I − τA)−1.

It is also well-known that a once integrated semigroup satisfies the equation

(2.4) esA
1 etA

1 =
∫ s

0
(e(r+t)A

1 − erA
1 )dr for any s, t ≥ 0.

Setting s = τ, t = kτ, one obtains a discrete 1-times integrated semigroup using
approximations

ekτA
1 eτA

1 ≈ τe
(k+1)τA
1 − τeτA

1 .

This leads to the difference scheme

(2.5) W ((k + 1)τ) = W (kτ)W (τ)/τ + W (τ), W (τ) = τ(I − τA)−1,

from which discrete approximation function of etA
1 can be calculated. Expression

(2.5) is an analogy to the scheme (1.5) for C0-semigroups case (see Proposition 4.1
for details). In this paper we are going to construct a general approximation theory
of exponentially bounded once integrated semigroups.

3. DISCRETISATION OF INTEGRATED SEMIGROUPS IN SPACE

The general approximation scheme can be described in the following way. Let
En and E be Banach spaces and {pn} be a sequence of linear bounded operators
pn : E → En, pn ∈ B(E, En), n ∈ IN = {1, 2, · · · }, with the property:

(3.1) ‖pnx‖En → ‖x‖E as n → ∞ for any x ∈ E.

From (3.1) it follows (see [29]) that ‖pn‖ ≤ C, n ∈ IN.

Definition 3.1. The sequence of elements {xn}, xn ∈ En, n ∈ IN, is said to be
P-convergent to x ∈ E iff ‖xn − pnx‖En → 0 as n → ∞. We write this xn

P−→x.

Definition 3.2. The sequence of bounded linear operators Bn ∈ B(En), n ∈ IN,
is said to be PP-convergent to the bounded linear operator B ∈ B(E) if for every
x ∈ E and for every sequence {xn}, xn ∈ En, n ∈ IN, such that xn

P−→x one has
Bnxn

P−→Bx. We then write Bn
PP−→B.
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Remark 3.1. If we set En = E and pn = I for each n ∈ IN , where I is
the identity operator on E , then Definition 3.1 leads to the traditional pointwise
convergent bounded linear operators which we denote by Bn → B.

By a similar argument as in the proof of Proposition 1 in [5], one can prove the
following discrete version of approximation for Laplace transforms (Theorem 1.7.5
from [1]).

Theorem 3.1. Let fn(·) ∈ C(IR+; En) with ‖fn(t)‖En ≤ Meωt for some
M > 0, ω ∈ IR and all n ∈ IN . Let λ0 ≥ ω. The following are equivalent:

(i) The Laplace transforms f̂n(·) P-converge pointwise on (λ0,∞) to f̂(·) and
the sequence {fn(·)}, n ∈ IN, is equicontinuous on compact subsets of IR +;

(ii) The functions fn(·) P-converge uniformly on compact subsets of IR + to
f(·).

Moreover, if (ii) holds, then f̂(λ) = P-limn→∞ f̂n(λ) for all λ > λ0, where
f(t) := P-limn→∞ fn(t).

Let us first consider a general discrete version of the ABC Theorem for integrated
semigroups.

Theorem 3.2. (Theorem ABC - int). Assume that closed operators A, An on E
and En respectively generate exponentially bounded k-times integrated semigroups.
The following conditions (A) and (B int) are equivalent to condition (C int).

(A) Consistency. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(An) such that the resolvents

converge
(λIn − An)−1 PP−→(λI − A)−1;

(Bint) Stability. There are some constants M ≥ 1 and ω 1, which are indepen-
dent of n and such that ‖e tAn

k ‖B(En) ≤ M exp(ω1t) for t ≥ 0 and any n ∈ IN,

and the sequence {etAn
k pnu}, n ∈ IN, is equicontinuous on compact subsets of IR +

for every u ∈ E .
(Cint) Convergence. For some finite ω > 0 one has supt∈[0,∞) e−ωt‖etAn

k u0
n−

pnetA
k u0‖En → 0 as n → ∞, whenever u0

n
P−→u0 for any u0

n ∈ En, u0 ∈ E.

Proof. Assume that conditions (A) and (Bint) hold. Put fn(t) = etAn
k u0

n −
pnetA

k u0, where u0
n

P−→u0. From the convergence of resolvents (condition (A)), one
has that the Laplace transforms of fn(t) converge to zero. Then for any x ∈ E there
is a sequence {u0

n} such that u0
n

P−→u0 and by Theorem 3.1 maxt∈[0,T ] ‖etAn
k u0

n −
pnetA

k u0‖En → 0 as n → ∞ for every T > 0. On the other hand, for any ε > 0

and u0
n

P−→u0, there are t0 and n0 ∈ IN such that supt0≤t<∞ e−ωt‖etAn
k u0

n −
pnetA

k u0‖En < ε for n ≥ n0. Combining these we have (Cint).



On Approximation of Integrated Semigroups 2145

Conversely, assume that (Cint) holds. To prove (A) and (Bint), by Theorem 3.1
we only need to show (Bint). From (Cint) it follows that there is a constant C > 0
such that maxt∈[0,∞) e−ωt‖etAn

k ‖B(En) ≤ C. If it is not true, then one can find se-
quences ‖un‖En = 1 and tn ∈ [0,∞) such that e−ωtn‖etnAn

k un‖En → ∞. Then the
sequence vn = un

e−ωtn‖etnAn
k un‖En

P−→0, and satisfies e−ωtnetnAn
k vn

P−→e−ωtnetnA
k 0 =

0 uniformly in tn, but this contradicts to e−ωtn‖etnAn
k vn‖En = 1. The equicontinuity

of {etAn
k pnu} follows as in Theorem 3.1.

When D(A) is dense, we have the following version of Theorem 3.2 but without
equicontinuity condition:

Theorem 3.3. (Theorem ABC-int-dense). Assume that a closed densely defined
operator A on E generates an exponentially bounded k-times integrated semigroup,
and closed operatorsAn generatek-timesintegrated semigroups on E n respectively.
The following conditions (A) and (B ′

int) are equivalent to condition (C ′
int).

(A) Consistency. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(An) such that the resolvents

converge
(λIn − An)−1 PP−→(λI − A)−1;

(B′
int) Stability. There are some constants M ≥ 1 and ω 1, which are not

depending on n and such that ‖e tAn
k ‖B(En) ≤ M exp(ω1t) for t ≥ 0 and any

n ∈ IN ;
(C′

int) Convergence. For some finite ω > 0 one has supt∈[0,∞) e−ωt‖etAn
k u0

n−
pnetA

k u0‖En → 0 as n → ∞, whenever u0
n

P−→u0 for any u0
n ∈ En, u0 ∈ E.

Proof. For any u0 ∈ D(A) there are u0
n ∈ D(An) such that u0

n
P−→u0 and

Anu0
n

P−→Au0, so we have

‖etAn
k u0

n − esAn
k u0

n‖En = ‖
∫ t

s

eτAn
k Anu0

ndτ +
tk − sk

k!
u0

n‖En

≤ |t − s|Ck(T )(‖Anu0
n‖En + ‖u0

n‖En),

where Ck(T ) is a constant depending only on M, ω, T and k. This implies the
equicontinuity of {etAn

k u0
n} on [0, T ] since ‖Anu0

n‖En and ‖u0
n‖En are uniformly

bounded. By Theorem 3.1 we have maxt∈[0,T ] ‖etAn
k u0

n − pnetA
k u0‖En → 0 as

n → ∞. This yields (C′
int), since D(A) is dense in E .

If the integrated semigroups are uniformly locally Lipschitz continuous, we have

Corollary 3.1. Assume that A, An generate locally Lipschitz continuous k-times
integrated semigroups on E , En respectively. Then conditions (A) and (B ′′

int) imply
(C′′

int).
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(A) Compatibility. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(An) such that the resolvents

converge:
(λIn − An)−1 PP−→(λI − A)−1;

(B′′
int) Stability-Uniformity. There are some constants M ≥ 0 and ω such that

‖e(t+h)An

k − etAn
k ‖B(En) ≤ Meω(t+h)h, for t, h ≥ 0, n ∈ IN ;

(C′′
int) Convergence. For any finite T > 0 one has max t∈[0,T ] ‖etAn

k u0
n −

pnetA
k u0‖En → 0 as n → ∞, whenever u0

n
P−→u0 for any u0

n ∈ En, u0 ∈ E.

Proof. From condition (B′′
int) the condition (Bint) of Theorem 3.2 follows.

From the proof of Theorem 3.3, we also obtain

Corollary 3.2. Assume that closed operators A, A n on E and En respectively
generate exponentially bounded k-times integrated semigroups. Suppose that the
following conditions hold:

(A) Consistency. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(An) such that the resolvents

converge
(λIn − An)−1 PP−→(λI − A)−1;

(B′
int) Stability. There are some constants M ≥ 1 and ω 1, which are indepen-

dent of n and such that ‖e tAn
k ‖B(En) ≤ M exp(ω1t) for t ≥ 0 and any n ∈ IN.

Then for some finite ω > 0, one has supt∈[0,∞) e−ωt‖etAn
k u0

n − pnetA
k u0‖En → 0

as n → ∞, whenever u0
n

P−→u0, Anu0
n

P−→Au0 for any u0
n ∈ D(An), u0 ∈ D(A).

Suppose that the equicontinuity in (Bint) does not hold. Then the equicontinuity
of the (k + 1)-times integrated semigroup holds automatically, thus we have

Theorem 3.4. Assume that closed operators A, An on E and En respectively
generate exponentially bounded k-times integrated semigroups. Suppose that the
following conditions hold:

(A) Consistency. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(An) such that the resolvents

converge
(λIn − An)−1 PP−→(λI − A)−1;

(B′
int) Stability. There are some constants M ≥ 1 and ω 1, which are indepen-

dent of n and such that ‖e tAn
k ‖B(En) ≤ M exp(ω1t) for t ≥ 0 and any n ∈ IN.

Then for some finite ω > 0, one has sup t∈[0,∞) e−ωt‖etAn
k+1u

0
n − pnetA

k+1u
0‖En → 0

as n → ∞, whenever u0
n

P−→u0 for any u0
n ∈ En, u0 ∈ E.
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At last we give an ABC Theorem for analytic integrated semigroup.

Theorem 3.5. Assume that closed operators A, An on E and En respectively
generate exponentially bounded analytic k-times integrated semigroups. Suppose
that the following conditions hold:

(A) Consistency. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(An) such that the resolvents

converge
(λIn − An)−1 PP−→(λI − A)−1;

(B′′′
int) Stability. There are some constants M ≥ 1, 0 < θ ≤ π/2 and ω 1,

which are independent of n and such that the sector ω 1 + Σ(θ + π/2) is included
in ρ(An) and

sup
λ∈ω1+Σ(β+π/2)

‖(λ − ω1)R(λ, An)/λk‖B(En) ≤ M

for any n ∈ IN and 0 < β < θ.

Then for every 0 < β < θ and a compact set K of Σ(β), which does not contain
0, one has maxz∈K ‖ezAn

k u0
n − pnezA

k u0‖En → 0 as n → ∞, whenever u0
n

P−→u0

for any u0
n ∈ En, u0 ∈ E .

Proof. By Theorem 4.3 in [10], the condition (B ′′′
int) is equivalent to the stability

of the integrated semigroups. Moreover, in analytic cases, we are able to write

ezAn
k =

1
2πi

∫
Γ

eλz R(λ, An)
λk

dλ,

where Γ is a positively oriented path which is the boundary of ω1+Σ(β + π
2 ). Now

we divide the contour Γ = Γa ∪ Γb, where

Γa = Γ ∩ {z : |z| ≤ a}, Γb = Γ \ Γa.

One can make the integrals over Γb very small (less than ε > 0) uniformly in n if
a is large enough; for z in a compact subset K of Σ(β), which does not contain 0,
it is possible to find δ small enough such that
∥∥∥∥
∫

Γa

eλz1
R(λ, An)

λk
dλ−

∫
Γa

eλz2
R(λ, An)

λk
dλ

∥∥∥∥=
∫

Γa

|eλz1−eλz2 | ‖R(λ, An)‖
λk

dλ≤ε,

when z1, z2 ∈ K such that |z1 − z2| < δ. Thus we can show that condition of
equicontinuity of ezAn

k pnu0 from [5], Proposition 1 is satisfied and we obtain the
claim.
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Remark 3.2. Let us introduce the condition. (C ′′′
int) Convergence. For some

finite ω > 0 one has maxz∈Σ(β) e−ωRez‖ezAn
k u0

n −pnezA
k u0‖En → 0 as n → ∞,

whenever u0
n

P−→u0 for any u0
n ∈ En, u0 ∈ E and 0 < β < θ.

It is obvious that the condition (C ′′′
int) implies the conditions (A) and (B ′′′

int).

Remark 3.3. Trotter-Kato’s Theorem involving integrated semigroups was con-
sidered in [2-4]. This subject was discussed also in [9, 20, 21, 24, 32-34].

4. DISCRETISATION OF INTEGRATED SEMIGROUPS IN TIME

In case when the operator A generates an integrated semigroup, but does not
generate C0-semigroup, Theorems 1.1-1.5 from Introduction can not be applied. In
the mean time there is a way to construct approximation of integrated semigroups of
operators by analogy to the approach from Introduction. The solution of the original
problem

(4.1)
u′(t) = Au(t), t ∈ [0,∞),

u(0) = u0 ∈ E,

where the operator A generates once integrated semigroup etA
1 , could be obtained

by taking discrete derivative of discrete once integrated semigroup. Existence of
derivatives is well-defined on smooth initial data. Therefore the main statement
of convergence of difference schemes appears to be considered on smooth elements
only. This approach will be the subject of the next paper. In this section we consider
discrete once integrated semigroups.

As in Introduction, we will approximate A by a sequence of bounded operators
Ăn ∈ B(En), and then approximate etA

1 by the discrete once integrated semigroups
generated by Ăn. Let Tn ∈ B(En), {τn} and τn > 0, be a sequence converging
to 0 as n → ∞ and Ăn = (Tn − In)/τn ∈ B(En). A discrete once integrated
semigroup can be defined as

∫ t
0 T

[s/τn]
n ds, where [s/τn] is the integer part of the

number s/τn, i.e.
∫ t
0 T

[s/τn]
n ds = τnΣ[t/τn]−1

j=0 (In+τnĂn)j. By definition we assume
that τnΣ[t/τn]−1

j=0 (In + τnĂn)j = 0 for 0 ≤ t < τn. We give an analogy of Theorem
1.3 for integrated semigroups.

Theorem 4.1. (Theorem ABC-discr-int). Suppose that A generates an expo-
nentially bounded integrated semigroup and Ăn ∈ B(En). The following conditions
(A) and (B̃int) are equivalent to condition ( C̃int).

(A) Consistency. There exists λ ∈ ρ(A) ∩ ⋂
n ρ(Ăn) such that the resolvents

converge
(λIn − Ăn)−1 PP−→(λI − A)−1;
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(B̃int) Stability. There are some constants M1 ≥ 1 and ω1 ∈ IR such that the
discrete once integrated semigroup

∫ t
0 T

[s/τn]
n is stable, i.e.

∥∥∥∥
∫ t

0
T [s/τn]

n ds

∥∥∥∥ ≤ M1 exp(ω1t) for t ∈ IR+ = [0,∞), n ∈ IN,

and {∫ t
0 T

[s/τn]
n pnxds} is equicontinuous on bounded intervals of IR + for

every x ∈ E;

(C̃int) Convergence. For some finite ω>0 one has supt∈[0,∞) e−ωt‖ ∫ t
0 T

[s/τn]
n u0

nds

−pnetA
1 u0‖ → 0 as n → ∞, whenever u0

n
P−→u0 for any u0 ∈ E, u0

n ∈ En.

Proof. Since
∫ ∞

0

e−λtT [t/τn]
n dt =

∞∑
k=0

T k
n

∫ (k+1)τn

kτn

e−λtdt

=
eλτn − 1

λ

(
eλτnIn − Tn

)−1

=
eλτn − 1

λτn

(
eλτn − 1

τn
In − Tn − In

τn

)−1

=
eλτn − 1

λτn

(
eλτn − 1

τn
In − Ăn

)−1

,

we get by integration by parts and by the stability condition (B̃int) that
∫ ∞

0
e−λt

∫ t

0
T [s/τn]

n dsdt =
eλτn − 1

λ2τn
(
eλτn − 1

τn
In − Ăn)−1,

which PP-converge to 1
λ(λI − A)−1 by (A). Since {∫ t

0 T
[s/τn]
n ds} are uniformly

exponentially bounded and equicontinuous on bounded intervals, the rest of the
proof is similar to the proof of Theorem 3.2.

Remark 4.1. (a) Let us compare condition (B̃int) with condition
(B̃′

int) there are some constants M ≥ 1 and ω ∈ IR such that

‖T k
n‖ ≤ Meωkτn for all n, k ∈ IN.

Condition (B̃′
int) is the main hypothesis in [27]. Condition (B̃′

int) implies condition
(B̃int), but not conversely. Indeed we have for t = kτn + r and 0 ≤ r < τn,

∥∥∥∥
∫ t

0

T [s/τn]
n ds

∥∥∥∥ =

∥∥∥∥∥∥
k−1∑
j=1

∫ (j+1)τn

jτn

T j
nds +

∫ r

0

T k
nds

∥∥∥∥∥∥ ≤
k−1∑
j=1

τnMeωjτn + rMeωkτn
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≤ tMeωkτn ≤ Me(ω+1)t.

Similarly one can show that in this case

(4.2)
∥∥∥∥
∫ t

0
T [ξ/τn]

n dξ −
∫ s

0
T [ξ/τn]

n dξ

∥∥∥∥ ≤ Meω max(t,s)|t − s|.

Moreover, it is easy to prove that (B̃′
int) is equivalent to (4.2).

(b) If we assume that A is densely defined, then we can use Theorem 3.3
instead of Theorem 3.2, so we do not need the equicontinuity condition in (B̃int)
in such case. Also, with simplification of conditions in (B̃int), we can show the
convergence just on D(A). Indeed, for any u0 ∈ D(A), we can find u0

n ∈ D(An)
such that u0

n
P−→u0 and Anu0

n
P−→Au0. A direct calculation gives

∫ t

0
T [r/τn]

n u0
ndr −

∫ s

0
T [r/τn]

n u0
ndr =

∫ t

s

∫ r

0
T [v/τn]

n Anu0
ndvdr + (t − s)u0

n,

from this we get the equicontinuity of {∫ t
0 T

[r/τn]
n u0

ndr}t≥0 for u0
n ∈ D(An) such

that u0
n

P−→u0 and Anu0
n

P−→Au0.
(c) Without the equicontinuity condition in (B̃int), we also have the convergence

of the discrete twice integrated semigroups
∫ t
0

∫ s
0 T

[r/τn]
n drds since the equiconti-

nuity follows immediately from the stability in (B̃int).

Remark 4.2. The equicontinuity of {∫ t
0 T

[r/τn]
n u0

ndr}t≥0 by dicrete analogy of
formula (4.13) (see Remark 4.8)

T [t/τ ]
n R(µ, An) = eλτ [t/τ ]R(µ, An)

−µ

∫ τ [t/τ ]−τ

0
eλτ ([t/τ ]−2−[u/τ ])

∫ τ [u/τ ]+τ

0
T [s/τ ]

n dsdu −
∫ τ [t/τ ]

0
T [u/τ ]

n du,

where µ = eλτ−1

τ , implies that {T [t/τ ]
n R(µ, An)un}t≥0 is equicontinuous and con-

versely. This means that on smooth data one can investigate the same difference
schemes as in case of C0-semigroups, but on the smooth elements only.

4.1. Implicit scheme

Let us put now Tn(τn) = (In − τnAn)−1. In this subsection a discrete once
integrated semigroup is defined as

∫ t
0 T

[s/τn]
n ds = τnΣ[t/τn]

j=1 (In − τnAn)−j and we
put by definition τnΣ[t/τn]

j=1 (In − τnAn)−j = 0 for 0 ≤ t < τn. So in this subsection
we have a special choice of Ăn = An(In−τnAn)−1, where the operator An is taken
from Theorem 3.2. We can give the following definition for the implicit difference
scheme (2.5).
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Definition 4.1. The discrete family of operators {W i
n(kτn)}, k = 0, 1, 2, . . . ,

is called discrete 1-times implicit integrated semigroup if W i
n(0) = 0, W i

n(τn) =
τn(In − τnAn)−1 and

W i
n(kτn)W i

n(τn) = τnW i
n((k + 1)τn)− τnW i

n(τn).

Proposition 4.1. If A−1
n exist the discrete 1-times implicit integrated semigroup

is given by the formulas

(4.3) W i
n(0) = 0,

(4.4) W i
n((k + 1)τn) = W i

n(kτn)(In − τnAn)−1 + W i
n(τn), k = 1, 2, . . . ,

(4.5) W i
n(kτn) =

k∑
j=1

τn(In−τnAn)−j = ((In−τnAn)−k−In)A−1
n , k = 1, 2, . . . .

Proof. From Definition 4.1 it follows that

W i
n((k + 1)τn) = W i

n(kτn)W i
n(τn)/τn + W i

n(τn).

One gets W i
n((k + 1)τn) = W i

n(kτn)(In − τnAn)−1 + W i
n(τn). Therefore

W i
n((k + 1)τn) =

(In − τnAn)−(k+1) − In

(In − τnAn)−1 − In
τn(In − τnAn)−1

= ((In − τnAn)−(k+1) − In)A−1
n .

Theorem 4.2. Suppose that conditions (A) and (B ′
int) of Theorem 3.3 hold.

Then discrete 1-times integrated semigroup is exponentially stable, i.e. ‖ ∑k
j=0 τn(In

−τnAn)−j‖ ≤ M1e
ω1τnk and gives an approximation to once integrated semigroup,

i.e.
∑kn

j=0 τn(In−τnAn)−ju0
n

P−→etA
1 u0 uniformly with respect to t = knτn ∈ [0, T ]

as u0
n

P−→u0, Anu0
n

P−→Au0, n → ∞, for any u0 ∈ D(A).

Proof. We only need to show that conditions (A) and (Bint) of Theorem 3.2
imply (B̌int). By the stability condition (Bint) of Theorem 3.2, we know that

∥∥∥(R(λ, An)
λ

)(m)

λ

∥∥∥ ≤ Mm!
|λ − ω|m+1

, λ > ω,

where (·)(m)
λ denotes m-th derivative in λ. By the formulas for derivatives of resol-

vents (R(λ, An))(m)
λ = (−1)mm!R(λ, An)m+1 and (1/λ)(m)

λ = (−1)mm!(1/λ)m+1,
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one obtains

(R(λ, An)/λ)(m)
λ =

m∑
j=0

Cj
m(R(λ, An))

(j)
λ (1/λ)(m−j)

λ

=
m∑

j=0

Cj
m(−1)jj!R(λ, An)j+1(−1)m−j(m− j)!(1/λ)m−j+1

= (−1)mm!
m+1∑
j=1

R(λ, An)j/λm+2−j ,

and therefore

‖ 1
λ

m+1∑
j=1

λjR(λ, An)j‖ ≤ M

|1− ω
λ |m+1

.

Now choosing λ = 1/τn, we have
∥∥∥∥∥∥τn

m∑
j=0

(In − τnAn)−j

∥∥∥∥∥∥ ≤ M

|1 − τnω|m ≤ M ′eω′τnm.

To prove convergence one can apply Theorem 4.1 with Ăn = An(In − τnAn)−1

and Remark 4.1 (b).

Remark 4.3. To get the convergence for any u0 ∈ E in Theorem 4.2 one could
assume the condition of equicontinuity of

∑kn
j=0 τn(In − τnAn)−ju0

n or density of
D(A).

4.2. Explicit scheme

In this subsection we put Tn(τn) = In + τnAn, then An = Ăn ∈ B(En).
Consider the explicit difference scheme we give the following definition.

Definition 4.2. The discrete family of operators {We
n(kτn)}, k = 0, 1, 2, . . . ,

is called discrete 1-times explicit integrated semigroup if W e
n(0) = 0, W e

n(τn) =
τnIn, W e

n(2τn) = AnW e
n(τn)τn + 2τnIn and

W e
n(kτn)W e

n(2τn) = (W e
n((k + 1)τn) + W e

n(kτn))τn − τ2
nIn.

Proposition 4.2. If A−1
n exist the discrete 1-times explicit integrated semigroup

is given by the formulas
W e

n(0) = 0,

W e
n((k + 1)τn) = W e

n(kτn)(In + τnAn) + τnIn, k = 1, 2, . . . ,
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W e
n(kτn) = τn

k−1∑
j=0

(In + τnAn)j = ((In + τnAn)k − In)A−1
n , k = 1, 2, . . . .

Proof. From Definition 4.2 it follows that

W e
n((k + 1)τn) = W e

n(kτn)(W e
n(2τn)/τn − In) + τnIn

= W e
n((k − 1)τn)(In + τnAn)2 + τn(In + τnAn) + τnIn.

One gets W e
n((k + 1)τn) = W e

n(kτ)(In + τnAn) + τIn. Therefore

(4.6) W e
n((k + 1)τn) =

(In + τnAn)k+1 − In

(In + τnAn) − In
τn = ((In + τnAn)k+1 − In)A−1

n .

Theorem 4.3. Suppose that conditions (A) and (B ′
int) of Theorem 3.3 hold

and
τn‖A2

n‖, ‖A−1
n ‖ ≤ C, n ∈ IN.

Then discrete explicit once integrated semigroup
∫ t
0 (In +τnAn)[s/τn]ds is exponen-

tially stable, i.e.

(4.7) ‖
kn∑
j=0

τn(In + τnAn)j‖ ≤ M1 eω2τnkn ,

for some ω2 > 0 and it gives an approximation of once integrated semigroup, i.e.
τn

∑kn−1
j=0 (In + τnAn)ju0

n
P−→pnetA

1 u0 uniformly with respect to t = knτn ∈ [0, T ]

as u0
n

P−→u0, Anu0
n

P−→Au0, n → ∞, for any u0 ∈ D(A).

Proof. Since

m−1∑
k=0

τn(In + τnAn)k

= ((In + τnAn)m − In)A−1
n

=
(
(In − τ2

nA2
n)m(In − τnAn)−m − In

)
A−1

n

= (In − τ2
nA2

n)m
(
(In − τnAn)−mA−1

n − A−1
n

)
+ (In − τ2

nA2
n)mA−1

n − A−1
n

= (In − τ2
nA2

n)m
m∑

k=1

τn(In − τnAn)−k + (In − τ2
nA2

n)mA−1
n − A−1

n ,

then stability follows from estimates (1 + τn‖τnA2
n‖)m ≤ Meωmτn and Theorem

4.2. To prove convergence one can apply Theorem 4.1 with Ăn = An and Remark
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4.1 (b). Indeed, to prove the equicontinuity condition for family {∑m−1
k=0 τn(In +

τnAn)ku0
n}t=knτn>0 one has to remark that difference can be estimated as ‖τn(In +

τnAn)knA−1
n Anu0

n‖ ≤ Cτn‖Anu0
n‖.

Remark 4.4. We can give a different proof of Theorem 4.3. Let us define the
operator Qn = An(In + τnAn)−1. It is clear that operators An − Qn = An(In +
τnAn)−1τnAn are uniformly in n bounded if ‖τnA2

n‖ ≤ Constant. Since Qn com-
mutes with An, it follows by Proposition 3.1 in [16] that the operators Qn generate
integrated semigroups and by Theorem 4.2 one gets ‖τnΣk−1

j=0 (In − τnQn)−j‖ =
‖τnΣk−1

j=0 (In + τnAn)j‖ ≤ constant.

Theorem 4.4. Suppose that conditions (A) and (B ′′′
int) of Theorem 3.5 hold

with ω1 = 0 and
sup

n
τn‖An‖ < µ < 2 sinθ, 0 ∈ ρ(An), n ∈ IN.

Then discrete explicit once integrated semigroup
∫ t
0 (In +τnAn)[s/τn]ds is exponen-

tially stable, i.e.

(4.8) ‖
kn∑
j=0

τn(In + τnAn)j‖ ≤ M1 eω3τnkn ,

for some ω3 > 0, and it gives an approximation of once integrated semigroup, i.e.
τn

∑kn−1
j=0 (In + τnAn)ju0

n
P−→etA

1 u0 uniformly with respect to t = knτn ∈ [0, T ] as

u0
n

P−→u0, Anu0
n

P−→Au0, n → ∞, for any u0 ∈ D(A).

Proof. Since An are bounded operators, they generate C0-semigroups and
the once integrated semigroups are given by etAn

1 = A−1
n (etAn − I). We know

that etAn
1 are uniformly bounded, i.e. ‖ezAn

1 ‖ ≤ M, z ∈ Σβ. If we show that
‖(etAn − In)A−1

n − ∑m−1
k=0 τn(In + τnAn)k‖ ≤ Ct, then stability, i.e. condition

(B̃int) will be proved. One can write

(etAn − In)A−1
n − ((In + τnAn)m − In)A−1

n

= −
∫ τn

0

d

ds

(
em(τn−s)An(In + sAn)m

)
dsA−1

n

= −
∫ τn

0

(
− mAnem(τn−s)An (In+sAn)m+em(τn−s)An(In+sAn)m−1mAn

)
dsA−1

n

=
∫ τn

0
smem(τn−s)An(In + sAn)m−1ds An

=
1

2πi

∫ τn

0
sm

( ∫
Γ

em(τn−s)λ(1 + sλ)m−1(λIn − An)−1dλ
)
ds An,
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where the positively oriented contour Γ is composed of Γ1 = {re±i(θ+π/2) : 0 ≤
r ≤ Rn} and Γ2 = {Rneiϕ : θ + π/2 ≤ ϕ ≤ −θ + 3π/2)} with Rn satisfying
τnRn = µ. First we can choose a positive γ, which depends only on θ and µ such
that

|1 + sλ|2 = 1 + s2r2 − 2sr sin θ = 1 − sr(2 sinθ − sr) ≤ 1 − γsr,

for any 0 ≤ s ≤ τn, 0 ≤ r ≤ Rn. Thus for 2 sin θ − µ = γ > 0

|1 + sz| ≤ 1 − γsr, 0 ≤ sr < µ, z ∈ Γ1.

For z = re±i(θ+π/2) ∈ Γ1, the integral over Γ1 can be estimated by∫ Rn

0

e−m(τn−s)r sin θ(1−γsr)m−1dr‖An‖≤
∫ Rn

0

e−m(τn−s)r sin θe−γsr(m−1)dr‖An‖

≤ eγτnRn

∫ Rn

0
e−[m(τn−s) sin θ+γsm]rdr‖An‖ ≤ eγµ

m(τn − s) sin θ + γsm
‖An‖

since (τn − s) sin θ > 0 and γ is positive. Moreover, since the function [0, τn] �
s 
→ m(τn − s) sin θ + γsm is linear, it reaches its minimum at 0 or τn. Thus one
has

eγµ

∫ τn

0

sm

m(τn − s) sin θ + γsm
ds‖An‖

≤ eγµτ2
nm

min{mτn sin θ, γτnm}‖An‖ ≤ eγµµ

min{sin θ, γ} ,

for any m ≥ 1. For λ = Rneiϕ ∈ Γ2, choose β < 1 such that τn‖An‖ ≤ βµ, then

‖(λIn − An)−1‖ ≤ 1
|λ| · (1− ‖An‖/|λ|) =

1
Rn · (1 − ‖An‖/Rn)

≤ 1
Rn(1 − β)

.

Therefore, we can bound the integral over Γ2 by

C

∫ 3π/2−θ

θ+π/2
e−mτnRn sin θ Rndϕ

Rn(1− β)
‖An‖ ≤ C′e−mτnRn sin θ‖An‖.

Also for λ = µeiϕ/τn ∈ Γ2, we have

|1+τnλ| ≤ |1+µei(θ+π/2)| = (1+µ2−2µ sin θ)1/2 = [1−µ(2 sin θ−µ)]1/2 < 1;

combining this with the inequality |1 + sλ| ≤ 1 for λ ∈ Γ1 and 0 ≤ s ≤ τn, the
Maximal Modulus Principle yields that |1 + sλ| ≤ 1 for all λ ∈ Γ, 0 ≤ s ≤ τn.
Thus we have∥∥∥∥

∫ τn

0

sm
( ∫

Γ2

em(τn−s)λ(1 + sλ)m−1(λIn − An)−1dλ
)
dsAn

∥∥∥∥
≤ C′

∫ τn

0
sme−mτnRn sin θds‖An‖ ≤ C

τ2
nm

2
‖An‖ ≤ Ctµ.
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Since τn‖An‖ < µ < ∞ we get the stability (4.8), then the Theorem is proved by
applying Theorem 4.1 with Ăn = An and Remark 4.1 (b).

Remark 4.5. To get in Theorem 4.4 the convergence for any u0 ∈ E one could
assume density of domain D(A) or equicontinuity of family Σkn

j=0τn(In+τnAn)ju0
n.

Remark 4.6. In Theorems 4.3−4.4 we assumed that there exist A−1
n . However,

if A generates exponentially bounded once integrated semigroup etA
1 , i.e. ‖etA

1 ‖ ≤
Meωt, t ≥ 0, then by [16] the once integrated semigroup generated by A − ωI is
related to etA

1 by formula

etA
1 = eωte

t(A−ωI)
1 − ω

∫ t

0
eωse

s(A−ωI)
1 ds.

One can show that e
t(A−ωI)
1 is still exponentially bounded, but because of the choice

of ω > 0 one can achieve 0 ∈ ρ(A − ωI). Because of Theorem 3.2 we can find
ω3 > 0 such that 0 ∈ ρ(An − ω3In) for any n ≥ n0. Now one can construct
approximation of etA

1 in the following way

(4.9) eω3tW e
n(knτn)− ω3τnΣkn

j=0e
ω3jτnW e

n(jτn) PP−→etA
1 , t = knτn,

where W e
n(knτn) is constructed by operators An−ω3In. Of course, in (4.9) we can

use different quadrature formulas for approximation of integral
∫ t
0 eωse

s(A−ωI)
1 ds.

4.3. Crank-Nicolson scheme

In this subsection let us put Tn(τn) = (In + τn
2 An)(In − τn

2 An)−1, then Ăn =
An(In − τn

2 An)−1. The following definition is concerned with central difference
scheme.

Definition 4.3. The discrete family of operators {W cd
n (kτn)}, k = 0, 1, 2, . . . ,

is called central difference discrete 1-times integrated semigroup if W cd
n (0) =

0, W cd
n (τn) = τn(In − τn

2 An)−1, and

W cd
n (kτn)W cd

n (τn) = τn
W cd

n ((k + 1)τn) + W cd
n (kτn)

2
− τn

2
W cd

n (τn).

Proposition 4.3. If A−1
n exist the discrete central difference 1-times integrated

semigroup is given by the formulas

(4.10)

W cd
n (0) = 0,

W cd
n ((k + 1)τn) = W cd

n (kτn)
In + τn

2 An

In − τn
2 An

+ W cd
n (τn), k = 1, 2, . . . ,

W cd
n (kτn) =

(
(
In + τn

2 An

In − τn
2 An

)k − In

)
A−1

n , k = 0, 1, 2, . . . .
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Proof. From Definition 4.3 it follows that

W cd
n ((k + 1)τn) = W cd

n (kτn)
(

2W cd
n (τn)/τn − In

)
+ W cd

n (τn).

One gets W cd
n ((k+1)τn) = W cd(kτn)

(
2(In−τn

2 An)−1−In

)
+W cd(τn). Therefore

W cd
n ((k + 1)τn) = W cd

n (kτn)
In + τ

2An

In − τ
2An

+ W cd
n (τn).

Using the identity In+ τn
2

An

In− τn
2

An
− In =

(
In + τn

2 An − (In − τn
2 An)

)
(In − τn

2 An)−1

we get the following.

Theorem 4.5. Suppose that conditions (A) and (B ′
int) of Theorem 3.3 hold and

τn‖A2
n‖, ‖A−1

n ‖ ≤ C, n ∈ IN.

Then the discrete central difference once integrated semigroup
∫ t
0 ( In+τnAn/2

In−τnAn/2)[s/τn]ds
is exponentially stable, i.e.

(4.11) ‖τnΣkn
j=1(

In + τnAn/2
In − τnAn/2

)j‖ ≤ M1 eω2τnkn , 0 ≤ τnkn ≤ T,

and it provides an approximation of the once integrated semigroup, i.e.

τnΣkn
j=0(

In + τnAn/2
In − τnAn/2

)ju0
n

P−→etA
1 u0,

uniformly with respect to t = knτn ∈ [0, T ] as u0
n

P−→u0, Anu0
n

P−→Au0, n → ∞,
for any u0 ∈ D(A).

Proof. To prove stability of (4.10) in the form τnΣk
j=1(

In+ τn
2

An

In− τn
2

An
)j = τnΣk

j=1(In

−τnQn)−j, where Qn = An(In + τnAn/2)−1, we apply Theorem 4.2. Let us con-
sider the difference (Qn −An)xn = An(In + τnAn/2)−1τnAnxn/2. The operators
(Qn − An) are uniformly bounded if ‖τnA2

n‖ ≤ constant and they commute with
An. By Proposition 3.1 in [16] we find that the operators Qn generate exponentially
bounded once integrated semigroups and under condition ‖τnA2

n‖ ≤ constant we
obtain stability by Theorem 4.2. So one has

τn

kn−1∑
j=0

(
In + τnAn/2
In − τnAn/2

)j(In − τnAn/2)−1

= τn

kn∑
j=1

(
In + τnAn/2
In − τnAn/2

)j(In + τnAn/2)−1,
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and the estimate ‖ 1
In+τnAn/2‖ = ‖ In−τnAn/2

In−τ2
nA2

n/4
‖ ≤ ‖In − τnA2

nA−1
n /2‖ 1

1−τnc < ∞,

since τn‖A2
n‖ ≤ constant. To prove it we apply Theorem 4.1 with Ăn = An(In −

τnAn/2)−1 and Remark 4.1 (b).

Theorem 4.6. Suppose that conditions (A) and (B ′′′
int) of Theorem 3.5 hold

with ω1 = 0 and

(4.12) sup
n

τn‖An‖ < µ < 2 sin θ, 0 ∈ ρ(An), n ∈ IN.

Then the discrete central difference once integrated semigroup
∫ t
0 Tn(τn)[s/τn]ds is

exponentially stable, i.e. (4.7) holds and it gives an approximation of the once
integrated semigroup in the sense that

τn

kn∑
k=0

(
In + τnAn/2
In − τnAn/2

)ju0
n

P−→etA
1 u0 as n → ∞,

uniformly with respect to t = knτn ∈ [0, T ] as u0
n

P−→u0, Anu0
n

P−→Au0, n → ∞,
for any u0 ∈ D(A).

Proof. One can write

(etAn − In)A−1
n − ((

In + τnAn/2
In − τnAn/2

)m − In)A−1
n

= −
∫ τn

0

d

ds

(
em(τn−s)An(

In + sAn/2
In − sAn/2

)m
)
ds A−1

n

=
∫ τn

0

ms2

4
em(τn−s)An

(In + sAn/2
In − sAn/2

)m−1 A3
n

(In − sAn/2)2
dsA−1

n

=
1

2πi

∫ τn

0

ms2

4

( ∫
Γ

em(τn−s)λ (1 + sλ/2)m−1

(1− sλ/2)m+1
(λIn − An)−1dλ

)
ds A2

n,

where the positively oriented contour Γ is composed of Γ1 = {re±i(θ+π/2) : 0 ≤ r ≤
Rn} and Γ2 = {Rneiϕ : θ+π/2 ≤ ϕ ≤ −θ+3π/2)}. Since for λ ∈ Γ, 0 ≤ s ≤ τn,
|1 − sλ/2| ≥ 1, we have |1+sλ/2|m−1

|1−sλ/2|m+1 ≤ |1 + sλ/2|m−1. The rest of the proof is
similar to that of Theorem 4.4.

Remark 4.7. To get in Theorem 4.6 the convergence for any u0 ∈ E one could
assume density of domain or equicontinuity of family τn

∑kn
k=0(

In+τnAn/2
In−τnAn/2

)ju0
n.
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Remark 4.8. (a) Note that the analogy of Theorem 4.6 for the case of ana-
lytic C0-semigroups, namely Theorem 1.8, does not involve stability condition like
(4.12). Here we follow the idea of [25]. The proof of Theorem 1.8 is based on the
fact that if A generates a bounded analytic C0-semigroup and A−1 exists, then this
inverse A−1 also generates a bounded analytic C0-semigroup. Unfortunately, for
analytic integrated semigroups such a statement does not make sense. As was shown
in [12] if one assumes that A and A−1 both generate bounded analytic integrated
semigroups, then A generates in fact a bounded analytic C0-semigroup.

(b) If A generates an exponentially bounded integrated semigroup etA
1 , then by

(4.13) etAR(λ, A)x = eλtR(λ, A)x− λ

∫ t

0
eλ(t−s)esA

1 xds − etA
1 x

we give a semigroup etA on D(A). Some sufficient conditions are given in [6] to
guarantee that {etA}t≥0 is a semigroup on E of class (1.A).
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