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METRIC REGULARITY OF PARAMETRIC GENERALIZED
INEQUALITY SYSTEMS

N. Q. Huy and J.-C. Yao*

Abstract. This paper is mainly devoted to applications of modern tools of
variational analysis and generalized differentiation to the metric regularity of
parametric generalized inequality systems in infinite-dimensional spaces. The
basic tools of our analysis involve the Mordukhovich normal coderivatives of
set-valued mappings, the limiting subgradient estimate for the marginal func-
tions, and the Ekeland variational principle. Using these tools, we establish
new sufficient conditions for the metric regularity of parametric generalized
inequality systems. Our results extend the corresponding results in [23] which
established some pointbased sufficient conditions for the metric regularity in
the Robinson’s sense of implicit multifunctions in finite-dimensional setting.

1. INTRODUCTION

In this paper we will focus on the study of stability of solutions to the parametric
generalized inequality system:

0 ∈ F (x, y),(1.1)

where F : X × Y ⇒ Z is a set-valued mapping between Banach spaces.
In particular, if F (x, y) = f(x, y)+Q(x, y) where f : X ×Y → Z is a single-

valued mapping and Q : X × Y ⇒ Z is a set-valued mapping between Banach
spaces, then (1.1) becomes

0 ∈ f(x, y) +Q(x, y),(1.2)
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It is well known that model (1.2) provides a convenient framework for the unified
study of optimal solutions in many optimization-related areas including mathematical
programming, complementarity, variational inequalities, optimal control, mathemat-
ical economics, equilibrium, etc.; see, e.g., [3, 14, 15, 21] and the references in
therein for more information and discussions. When Q(x, y) = N (y; Ω) is the nor-
mal cone operator for a convex set Ω, (1.2) is reduced to the parametric variational
inequality:

Find y ∈ Ω such that 〈f(x, y), z− y〉 ≥ 0 ∀z ∈ Ω,(1.3)

which is of particular interest for applications.
The solution map G : Y ⇒ X associated with (1.1) is defined by

G(y) = {x ∈ X : 0 ∈ F (x, y)}.(1.4)

Some interesting properties of G was examined such as lower (upper) semiconti-
nuity, pseudo-Lipschitzian property, upper Lipschitzian continuity, metric regularity,
and generalized differentiability... The characterizations of necessary and sufficient
conditions for the pseudo-Lipschitzian property of the solution map of (1.2) was
given in [10, 12, 13]. Together with the Lipschitzian stability, the metric regu-
larity of (1.4) was intensively investigated in implicit and inverse multifunctions
(see, e.g., [2–9, 11, 14–18, 20–23] and the references therein). Recently, Ledyaev
and Zhu [8], Ngai and Théra [18] established sufficient conditions for the metric
regularity property of (1.4) in terms of the Fŕechet coderivatives. Another set of
sufficient conditions for the same property was given by Lee, Tam and Yen [9] in
terms of the Mordukhovich normal coderivatives. More recently, some pointbased
sufficient conditions for the metric regularity property of implicit multifunctions
was first established by Yen and Yao [23] in finite-dimensional setting. Also in this
paper [23], Yen and Yao suggest a need for generalization of their corresponding
results in infinite-dimensional setting.

The main objective of this paper is to establish pointbased sufficient conditions
for the (local) metric regularity of the solution map (1.4) in the sense introduced by
Robinson [20] in infinite-dimensional setting. Our results extend the corresponding
results in [23].

The rest of this paper is as follows. In Section 2, we recall some basic definitions
and preliminaries from the variational analysis and generalized differentiation. In
Section 3, we derive pointbased sufficient conditions for the (local) metric regularity
of (1.4) in finite-dimensional setting.

2. PRELIMINARIES

Throughout the paper we use standard notations of the variational analysis and
generalized differentiation. We refer the reader to the monographs by Mordukhovich
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[14, 15] for more details and discussions. Unless otherwise stated, all the spaces
under consideration are Banach spaces whose norms are always denoted by ‖ · ‖.
For any X we consider its dual space X∗ equipped with the weak∗ topology w∗

where 〈· , ·〉 means the canonical pairing. As usual, BX and B∗
X∗ stand for the

closed unit balls of the Banach space X and its dual, respectively. The symbol A∗

is the adjoint operator to a linear continuous operator A. The closed ball with center
x and radius ρ is denoted by Bρ(x).

For a subset Ω ⊂ X , cl Ω, intΩ, co Ω and cone Ω denote, respectively, the
closure, the interior, the convex hull and the conical hull of Ω. The weak ∗ topology
in the dual space X ∗ is denoted by w∗. Given a subset Ω ⊂ X and a point u ∈ X ,
we denote the set of the metric projections of u on the closure of Ω by M(u,Ω),
that is

M(u,Ω) = {x ∈ cl Ω | ‖x− u‖ = dist (u,Ω)},
where dist (u,Ω) := inf

z∈Ω
‖z − u‖ is the distance from u to Ω.

Given a set-valued mapping F : X ⇒ X∗ between a Banach space X and its
topological dual X∗, we denote by

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequences xk → x̄ and x∗k
w∗−−→ x∗

with x∗k ∈ F (xk) for all k ∈ IN
}

the sequential Painlevé-Kuratowski upper/outer limit with respect to the norm topol-
ogy of X and the weak∗ topology of X∗, where IN := {1, 2, . . .}.

Given Ω ⊂ X and ε ≥ 0, define the collection of ε-normals to Ω at x̄ ∈ Ω by

(2.1) N̂ε(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup
x

Ω−→x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ ε

}
,

where x Ω−→ x̄ means that x → x̄ with x ∈ Ω. When ε = 0, the set N̂ (x̄; Ω) :=
N̂0(x̄; Ω) in (2.1) is a cone called the prenormal cone or the Fréchet normal cone
to Ω at x̄.

The Mordukhovich normal cone N (x̄; Ω) is obtained from N̂ε(x; Ω) by taking
the sequential Painlevé-Kuratowski upper limit in the weak∗ topology of X∗ as

(2.2) N (x̄; Ω) := Lim sup
x

Ω−→x̄
ε↓0

N̂ε(x; Ω),

where one can put ε = 0 when Ω is closed around x̄ and the space X is Asplund,
i.e., a Banach space whose separable subspaces have separable duals. The subset
Ω ⊂ X is said to be (locally) closed around x̄ if there is a neighborhood U of x̄
such that Ω ∩ clU is closed.
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Let F : X ⇒ Y be a set-valued mapping between Banach spaces with the graph

gphF :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}
.

The inverse multifunction F−1 : Y ⇒ X is defined by

F−1(y) = {x ∈ X | y ∈ F (x)}.
The Mordukhovich normal coderivative D ∗F (x̄, ȳ) : Y ∗ ⇒ X∗ of F at (x̄, ȳ) ∈
gphF is defined by

(2.3) D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N ((x̄, ȳ); gphF )

}
, y∗ ∈ Y ∗.

The Fréchet coderivative at (x̄, ȳ) ∈ gphF is defined by

(2.4) D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF ))}, y∗ ∈ Y ∗.

F is said to be graphically regular at (x̄, ȳ) ∈ gphF if

D∗F (x̄, ȳ)(y∗) = D̂∗F (x̄, ȳ)(y∗) for all y∗ ∈ Y ∗.

A single-valued mapping f : X → Y is said to be strictly differentiable at x̄ if there
is a linear continuous operator ∇f(x̄) : X → Y such that for any γ > 0 there exists
ν > 0 satisfying

‖f(x)− f(u) −∇f(x̄)(x− u)‖ ≤ γ‖x− u‖ ∀x, u ∈ x̄ + νBX .

We known that for such mappings one has

D∗f(x̄)(y∗) = D̂∗f(x̄)(y∗) = {(∇f(x̄))∗y∗} ∀y∗ ∈ Y ∗,

i.e., the Mordukhovich normal coderivative (resp., Fŕechet coderivative) is a gen-
eralization of the adjoint operator to the classical Jacobian/strict derivative. For
details, we refer the reader to [14].

A set Ω is sequentially normally compact (SNC) at x̄ if for any sequences
εk ↓ 0, xk

Ω→ x̄, and x∗k ∈ N̂εk
(xk; Ω) one has[

x∗k
w∗→ 0

]
=⇒ [‖x∗k‖ → 0

]
as k → ∞,

where εk can be omitted if X is Asplund and if Ω is locally closed around x̄. A
set-valued mapping F : X ⇒ Y is SNC at (x̄, ȳ) ∈ gphF if its graph enjoys this
property.

For an extended real-valued function ϕ : X → R̄ := [−∞,∞], we define

domϕ = {x ∈ X | |ϕ(x)| <∞}, epiϕ(x) = {(x, µ) ∈ X × R | µ ≥ ϕ(x)},
and say that ϕ is lower semicontinuous at x̄ ∈ X if lim inf

x→x̄
ϕ(x) ≥ ϕ(x̄). Here

lim inf
x→x̄

denotes the lower limit of scalar functions in the classical sense.
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The subdifferential ∂ϕ(x̄) and the singular subdifferential ∂ ∞ϕ(x̄) of ϕ at
x̄ ∈ domϕ are defined by

∂ϕ(x̄) := {x∗ ∈ X | (x∗,−1) ∈ N ((x̄, ϕ(x̄)); epiϕ)},
∂∞ϕ(x̄) := {x∗ ∈ X | (x∗, 0) ∈ N ((x̄, ϕ(x̄)); epiϕ)}.

The presubdifferential or Fréchet subdifferential of ϕ at x̄ ∈ domϕ is denoted by

∂̂ϕ(x̄) := {x∗ ∈ X | (x∗,−1) ∈ N̂((x̄, ϕ(x̄)); epiϕ)}.

If x̄ /∈ domϕ then one puts ∂̂ϕ(x̄) = ∂ϕ(x̄) = ∂∞ϕ(x̄) = ∅.
A multifunction F : X ⇒ Y is said to be lower semicontinuous at x ∈ domF

if for any open set V ⊂ Y satisfying V ∩F (x) �= ∅, there exists a neighborhood U
of x such that V ∩F (u) �= ∅ for all u ∈ U . One says that F is inner semicompact
at x̄ ∈ X if for any sequence xk → x̄, there is a sequence yk ∈ F (xk), k = 1, 2, . . .
such that {yk} contains a convergent subsequence in the norm topology of Y . F
is said to be inner semicompact around x̄ ∈ X if it is inner semicompact at every
point in a neighborhood of x̄. It is clear that if F is lower semicontinuous around
x̄, i.e., F is lower semicontinuous at every point in a neighborhood of x̄, then F is
inner semicompact around x̄.

We now consider the parametric minimization problem

(2.5) min{ϕ(x, y) | y ∈ Φ(x)}

depending on the parameter x and the corresponding marginal function

m(x) := inf{ϕ(x, y) : y ∈ Φ(x)},(2.6)

where ϕ : X × Y → R̄ is an extended real-valued function and Φ : X ⇒ Y is a
multifunction between Banach spaces. Let

(2.7) M(x) := {y ∈ Φ(x) | ϕ(x, y) = m(x)}

be the parametric solution set of (2.5).

Theorem 2.1. ([14, Theorem 3.38]). Let Φ : X ⇒ Y be a closed-graph
multifunction between Asplund spaces X and Y , let ϕ : X × Y → R̄ be lower
semicontinuous on gphΦ. Suppose that for any ȳ ∈M(x̄), ϕ is locally Lipschitzian
at (x̄, ȳ), and the multifunction M in (2.7) is inner semicompact at (x̄, ȳ). Then
one has the inclusion

(2.8) ∂m(x̄) ⊂
⋃

{x∗ +D∗Φ(x̄, ȳ)(y∗) : (x∗, y∗) ∈ ∂ϕ(x̄, ȳ), ȳ ∈M(x̄)} .
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Given a single-valued mapping f : X → Y between Banach spaces. Let x̄ ∈ X .
f is said to be locally Lipschitzian around x̄ if there exist a neighborhood U of x̄
and a number � ≥ 0 such that

‖f(x1) − f(x2)‖ ≤ �‖x1 − x2‖ for all x1, x2 ∈ U.
Theorem 2.2. ([14, Theorem 3.36]). Let X be an Asplund space, let ϕi : X →

R̄, i = 1, 2, be lower semicontinuous at x̄, and one of these functions be locally
Lipschitzian at x̄. Then one has the inclusion

∂(ϕ1 + ϕ2)(x̄) ⊂ ∂ϕ1(x̄) + ∂ϕ2(x̄).

3. MAIN RESULTS

In this section we establish some sufficient conditions for the metric regularity
of (1.4). Let us recall the definitions of the (local) metric regularity and the pseudo-
Lipschitzian property of multifunctions, which was introduced by Robinson [20]
and Aubin [1], respectively.

Definition 3.1. ([14]). Let Φ: X ⇒ Y be a multifunction between Asplund
spaces. Let (x̄, ȳ) ∈ gph Φ.

(a) Φ is said to be local-metrically regular around (x̄, ȳ) with modulus c > 0
if there exist a neighborhood U of x̄, a neighborhood V of ȳ, and a number µ > 0
such that

dist (x,Φ−1(y)) ≤ c dist (y,Φ(x))

for any x ∈ U and y ∈ V satisfying dist(y,Φ(x)) ≤ µ.
(b) Φ is said to be pseudo-Lipschitzian around (x̄, ȳ) with modulus � > 0 if

there exist a neighborhood U of x̄ and a neighborhood V of ȳ such that

Φ(x1) ∩ V ⊂ Φ(x2) + �‖x1 − x2‖BX ∀x1, x2 ∈ U.

For the variational system defined as in (1.1) and (1.4), let ω0 := (x0, y0, 0) ∈
gphF . G is said to be local-metrically regular around ω0 with modulus c > 0 in
the Robinson’s sense if there exist a neighborhood U of x0, a neighborhood V of
y0 and a number µ > 0 such that

dist (x, G(y)) ≤ c dist (0, F (x, y))(3.1)

for any x ∈ U and y ∈ V satisfying dist(0, F (x, y)) ≤ µ.
We recall that a Banach space Z is weakly compactly generated (WCG), pro-

vided that there is a weakly compact set P such that Z = cl(spanP ). This class
of spaces is sufficiently large including, in particular, all reflexive space as well all
separable Banach spaces; see the book by Phelps [19] for more information and
references.



Metric Regularity of Parametric Generalized Inequality Systems 2113

Proposition 3.2. ([14, Theorem 3.60]). Let Z be a WCG Asplund space, and
let Ω ⊂ Z be its closed subset that is SNC at z̄. Then the multifunction N (·; Ω)
has closed graph around z̄, i.e., there exists δ > 0 such that the set

(gphN (·; Ω))∩ ((z̄ + δB) × Z∗)

is closed in the norm×weak∗ topology of Z ×Z ∗. In particular, for any sequences
zk → z̄ and z∗k

w∗−−→ z∗ with z∗k ∈ N (zk; Ω), k = 1, 2, . . ., one has z∗ ∈ N (z̄; Ω).

Remark 3.3. Let Z be a WCG Asplund space and let Ω be a subset of Z. If
Ω is closed around z̄ and SNC at this point, then for any sequences

z∗k ∈ N (zk; Ω) with zk → z̄ and z∗k
w∗−−→ 0 as k → ∞

one has z∗k → 0 in the norm topology of Z∗.

We now state and prove our main result.

Theorem 3.4. Let X, Y, Z be WCG Asplund spaces, a multifunction F : X ×
Y ⇒ Z and a multifunction G : Y ⇒ X defined as in (1.1) and (1.4). Let
ω0 := (x0, y0, 0) ∈ gphF and let Fy(·) := F (·, y). Suppose that gphF is locally
closed at ω0 and SNC at this point, and there are a neighborhood U 0 of x0,
a neighborhood V0 of y0 such that for any y ∈ V0 and for any x ∈ U0, the
multifunction M(0, Fy(·)) is inner semicompact at x and the following pointbased
criteria holds:

∀(y∗, z∗) ∈ Y ∗ × Z∗, (0, y∗) ∈ D∗F (ω0)(z∗) =⇒ y∗ = z∗ = 0.

Then G is local-metrically regular around ω 0 with modulus c > 0, i.e., there exist
a neighborhoods U of x0, a neighborhood V of y0, a number c > 0 and a number
µ > 0 such that

dist (x, G(y)) ≤ c dist (0, F (x, y))(3.2)

for any x ∈ U and y ∈ V satisfying dist (0, F (x, y)) ≤ µ. Moreover, for any
x∗ ∈ X∗,

(3.3) D∗G(y0, x0)(x∗) =
⋃

z∗∈Z∗
{y∗ : (−x∗, y∗) ∈ D∗F (ω0)(z∗)}

provided that F is graphically regular at ω 0.

For proving Theorem 3.4, we need the following auxiliary results.

Proposition 3.5. Let X, Y, Z be WCG Asplund spaces and a multifunction
F : X × Y ⇒ Z. Let ω̄ := (x̄, ȳ, 0) ∈ gphF and let Fy(·) := F (·, y). Suppose
that gphF is locally closed around ω̄ and SNC at this point. Consider the following
statements:
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(i) For any (y∗, z∗) ∈ Y ∗ × Z∗, (0, y∗) ∈ D∗F (ω̄)(z∗) =⇒ y∗ = z∗ = 0;
(ii) There exist a constant c > 0, a neighborhood U of x̄, a neighborhood V

of ȳ and a neighborhood W of 0 such that for any point ω = (x, y, z) ∈
gphF ∩ (U × V ×W ), it holds

(3.4) ‖z∗‖ ≤ c‖x∗‖ ∀z∗ ∈ Z∗, ∀x∗ ∈ D∗Fy(x, z)(z∗);

(iii) There exist a number σ > 0, a neighborhood U of x̄ and a neighborhood V
of ȳ such that for any (x, y) ∈ U × V with 0 �∈ F (x, y)

(3.5) σ ≤ inf{‖x∗‖ : x∗ ∈ D∗Fy(x, z)(z∗), z ∈ M(0, Fy(x)), ‖z∗‖ = 1}.
Then (i)=⇒ (ii) =⇒ (iii).

Proof. Obviously, (ii) =⇒ (iii). It remains to prove that (i)=⇒ (ii). Suppose that
(i) holds. First we claim that there exist a neighborhood U of x̄, a neighborhood
V of ȳ and a neighborhood W of 0 such that for any point ω = (x, y, z) ∈
gphF ∩ (U × V ×W ) and for any (y∗, z∗) ∈ Y ∗ × Z∗ satisfying

(3.6) (0, y∗) ∈ D∗F (ω)(z∗) =⇒ y∗ = z∗ = 0.

Indeed, if our claim is false, then there exist sequences ωk = (xk, yk, zk) ∈ gphF
and (y∗k, z

∗
k) ∈ Y ∗ × Z∗ \ {(0, 0)} such that for every k = 1, 2, . . .

(3.7) (0, y∗k) ∈ D∗F (ωk)(z∗k) and ωk → ω̄ as k → ∞.

Without loss of generality we can assume that ‖z∗k‖ = 1 for every k ∈ IN . Consider
the following two cases:

Case 1. {y∗k} is bounded. Since Y is an Asplund space, the unit ball of the
dual space Y ∗ is sequentially weak∗ compact. Taking into account the boundedness
of {(y∗k, z∗k)}, one may assume that (y∗k, z

∗
k)

w∗−−→ (y∗, z∗) ∈ Y ∗ × Z∗. Clearly,

(0, y∗k,−z∗k) ∈ N (ωk; gphF ).

It follows from Proposition 3.2 and Remark 3.3 that (y∗k, z
∗
k) → (y∗, z∗) as k → ∞

in the norm topology of Y∗ ×Z∗ and (0, y∗,−z∗) ∈ N (ω̄; gphF ). Then ‖z∗‖ �= 0
and (0, y∗) ∈ D∗F (ω̄)(z∗), contrary to (i).

Case 2. {y∗k} is not bounded. Then there is a subsequence {y∗kj
} of {y∗k} such

that ‖y∗kj
‖ → ∞ as j → ∞. Without loss of generality, we may assume that(

y∗kj

‖y∗kj
‖ ,

z∗kj

‖y∗kj
‖
)

w∗−−→ (y∗, z∗) ∈ Y ∗ × Z∗.

Analysis similar to that as in Case 1 shows that ‖y∗‖ �= 0 and (0, y∗) ∈ D∗F (ω̄)(z∗)
which contradicts (i). Therefore, our claim is proved.
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Next we show that for any ω = (x, y, z) ∈ gphF ∩ (U ×V ×W ), the inclusion

(3.8) D∗Fy(x, z)(z∗)⊂
{
x∗∈X∗ : ∃y∗∈Y ∗such that (x∗, y∗)∈D∗F (ω)(z∗)

}
holds for every z∗ ∈ Z∗. Indeed, let Φ : X → X × Y be a strictly differentiable
map by setting Φ(x) = (x, y). Clearly, Fy(x) = (F ◦ Φ)(x) for all x ∈ X . Let us
examine the following constraint qualification:

D∗F (Φ(x), z)(0)∩ ker (∇Φ(x))∗ = {0}.(3.9)

Let (x∗, y∗) ∈ D∗F (Φ(x), z)(0)∩ ker (∇Φ(x))∗. It is easy to check that

(3.10) (∇Φ(x))∗(x∗, y∗) = x∗ for every (x∗, y∗) ∈ X∗ × Y ∗.

Hence x∗ = 0 and (0, y∗) ∈ D∗F (ω)(0), where ω = (x, y, z) = (Φ(x), z). From
(3.6) it follows that y∗ = 0. Therefore, (3.9) holds. Applying Corollary 3.16 in
[14], we have

D∗(F ◦ Φ)(x, z)(z∗) ⊂ (∇Φ(x))∗D∗F (Φ(x), z)(z∗) ∀z∗ ∈ Z∗.

Hence

D∗Fy(x, z)(z∗) ⊂ (∇Φ(x))∗D∗F (ω)(z∗) ∀z∗ ∈ Z∗.(3.11)

By (3.10), x∗ ∈ (∇Φ(x))∗D∗F (ω)(z∗) if and only if there is some y∗ ∈ Y ∗

satisfying (x∗, y∗) ∈ D∗F (ω)(z∗). Combining this with (3.11), we get (3.8).
It remains to show that (ii) holds. On the contrary, suppose that the conclusion

of (ii) is not true. Then we can find sequences ωk = (xk, yk, zk) ∈ gphF and
(x∗k, z

∗
k) ∈ X∗×Z∗ such that ωk → ω̄, x∗k ∈ D∗Fyk

(xk, zk)(z∗k), and ‖z∗k‖ > k‖x∗k‖
for all k ∈ IN . There is no loss of generality in assuming that ‖z∗k‖ = 1 for all
k ∈ IN . Then

(3.12) x∗k ∈ D∗Fyk
(xk, zk)(z∗k), ‖z∗k‖ = 1, and ‖x∗k‖ ≤ 1

k
∀k ∈ IN.

It follows from (3.8) that there exists a sequence {y∗k} ⊂ Y ∗ such that (x∗k, y
∗
k) ∈

D∗F (ωk)(z∗k), where ωk := (xk, yk, zk). Hence

(x∗k, y
∗
k,−z∗k) ∈ N (ωk; gphF ).

If the sequence {y∗k} is bounded then, by the same analysis as in Case 1, it fol-
lows that there exists a subsequence {(x∗

kj
, y∗kj

, z∗kj
)} of {(x∗k, y∗k, z∗k)} converges

to (0, y∗, z∗) in the norm topology of X∗ × Y ∗ × Z∗ such that ‖z∗‖ �= 0 and
(0, y∗,−z∗) ∈ N (ω̄; gphF ). Hence ‖z∗‖ �= 0 and (0, y∗) ∈ D∗F (ω̄)(z∗) which
contradicts (i). If the sequence {y∗k} is not bounded then, by the same method as
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in Case 2, it follows that there exists a subsequence
{(

x∗kj

‖y∗kj
‖ ,

y∗kj

‖y∗kj
‖ ,

z∗kj

‖y∗kj
‖
)}

of
{(

x∗k
‖y∗k‖

,
y∗k

‖y∗k‖
,
z∗k

‖y∗k‖
)}

converges to (0, y∗, z∗) in the norm topology of X∗×
Y ∗ × Z∗ such that ‖y∗‖ �= 0 and (0, y∗) ∈ D∗F (ω̄)(z∗) which is a contradiction
to (i).

From what has already been proved, it follows that there must exist a constant
c > 0, a neighborhood U of x̄, a neighborhood V of ȳ and a neighborhood W of
0 such that for any point ω = (x, y, z) ∈ gphF ∩ (U × V ×W ), (3.4) is fulfilled.
The proof is complete.

Proposition 3.6. Let X,Z be Asplund spaces, Y a topological space, F :
X × Y ⇒ Z and G : Y ⇒ X defined as in (1.1) and (1.4), respectively. Let
ω0 := (x0, y0, 0) ∈ gphF and let Fy(·) := F (·, y). Suppose that gphF is locally
closed at ω0, and there exist a neighborhood U0 of x0, a neighborhood V0 of y0

such that the following conditions hold:
(i) for any y ∈ V0, for any x ∈ U0, the multifunction M(0, Fy(·)) is inner

semicompact at x;
(ii) there exists σ > 0 such that for any (x, y) ∈ U0 × V0 with 0 �∈ F (x, y)

σ ≤ inf{‖x∗‖ : x∗ ∈ D∗Fy(x, z)(z∗), z ∈ M(0, Fy(x)), ‖z∗‖ = 1}.
Then G is local-metrically regular around ω 0 with modulus

1
σ

.

Proof. Let ω0 ∈ gphF . By the assumption, there are a neighborhood U0 of
x0 and a neighborhood V0 of y0 such that (i)–(ii) are satisfied. Choose a number
µ > 0 and a number ρ > 0 such that

(3.13) µ < σρ and Bρ(x0) ⊂ U0.

Now we just examine the case (x, y) ∈ domF ∩ (U0 × V0) satisfying

(3.14) dist (0, F (x, y)) ≤ µ.

For convenience we will ignore (x, y) ∈ domF . Put U := U0 and V := V0. We
want to show that U , V together with constants µ and σ satisfy the conclusion of
the theorem. Fix any x ∈ U and y ∈ V and assume that (3.14) is fulfilled. Set
α := dist (0, F (x, y)). By (3.13) and (3.14), α < σρ. It remains to show that

(3.15) dist (x, G(y)) ≤ α

σ
.

Obviously, (3.15) holds if α = 0. Suppose that α > 0. Consider the function

υy(u) := dist(0, Fy(u)), u ∈ U.
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We claim that υy(·) is lower semicontinuous on U . Indeed, if there is a sequence
xk → u and ε > 0 such that vy(xk) ≤ vy(u) − ε for every k ∈ IN , then, by (i),
there exist a subsequence {kj} ⊂ {k} and a sequence zkj ∈ M(0, Fy(xkj)) such
that zkj converges to some z ∈ Z in the norm topology of Z. As zkj ∈ Fy(xkj) for
every j ∈ IN , the closedness of gphF implies z ∈ Fy(u). Hence, from the relation

‖zkj‖ = vy(xkj) ≤ vy(u) − ε ∀j ∈ IN,

it follows that vy(u) ≤ ‖z‖ ≤ vy(u) − ε, which is impossible and our claim is
proved. Thus, υ(·) is lower semicontinuous on Bρ(x0). Fixing any δ ∈ (

α

ρ
, σ), we

have υy(x) = α < α
σ

δ
. Putting t :=

δ

α
υy(x), we see that

υy(x) = t
α

δ
, and t ∈ (0, σ).

Clearly, υy(x) ≤ inf
u∈Bρ(x0)

υy(u) + t
α

δ
. From the Ekeland variational principle [14,

Theorem 2.26], it follows that there is x̄ ∈ Bρ(x0) such that

(3.16) vy(x̄) ≤ vy(x), ‖x̄− x‖ ≤ α

δ

and

(3.17) vy(x̄) ≤ vy(u) + t‖u − x̄‖ ∀u ∈ Bρ(x0).

We now claim that
0 ∈ Fy(x̄).

Conversely, suppose that 0 �∈ Fy(x̄). It follows from (3.17) that x̄ is a local minimum
of the function

ψ(u) := vy(u) + χ(u), u ∈ Bρ(x0),

where χ(u) := t‖u − x̄‖ is a local Lipschitzian function. From the nonsmooth
version of Fermat’s rule [14, Proposition 1.114], it follows that

0 ∈ ∂ψ(x̄).

By Theorem 2.2, we have

(3.18) 0 ∈ ∂vy(x̄) + tBX∗ .

Let us now compute ∂vy(x̄). Define

Φ(u) := Fy(u), ϕ(u, z) := ‖z‖,
m(u) := υy(u) = inf{ϕ(u, z) : z ∈ Φ(u)}.
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Take arbitrary z̄ ∈ M(x̄) := M(0, Fy(x̄)). Obviously, ϕ is locally Lipschitzian at
(x̄, z̄). Define θ(z) := ‖z‖. It is easy to check that

∂ϕ(x̄, z̄) = {0} × ∂θ(z̄).

Applying Theorem 2.1, we obtain

(3.19) ∂vy(x̄) ⊂
⋃

[D∗Fy(x̄, z̄)(z∗) | z∗ ∈ ∂θ(z̄), z̄ ∈ M(0, Fy(x̄))] .

The condition 0 �∈ Fy(x̄) implies z̄ �= 0 for every z̄ ∈ M(0, Fy(x̄)). It follows that

(3.20) ∂θ(z̄) = {z∗ ∈ Z∗ | ‖z∗‖ = 1, 〈z∗, z̄〉 = ‖z̄‖}.
By (3.18)–(3.20), there exist vectors z̄ ∈ M(0, Fy(x̄)), z∗ ∈ Z∗ with ‖z∗‖ = 1,
and x∗ ∈ D∗Fy(x̄, z̄)(z∗) such that ‖x∗‖ ≤ t. Besides, by (ii), we can assert that
σ ≤ ‖x∗‖. Since t ∈ (0, σ), this contradicts the inequality ‖x∗‖ ≤ t. We have thus
shown that 0 ∈ Fy(x̄), i.e., x̄ ∈ G(y). Hence, by (3.16),

dist(x, G(y)) ≤ ‖x− x̄‖ ≤ α

δ
.

Letting δ → σ we obtain dist(x, G(y)) ≤ α

σ
. The proof is complete.

Remark 3.7. The condition (i) in Proposition 3.6 may be dropped if X, Y, Z
are finite-dimensional spaces. The corresponding results for the metric regularity
of (1.4) in [9, Theorem 3.2] always require the lower continuity of F (x0, ·) at y0

and F (·) is lower semicontinuous at (x0, y0). Obviously, (A1) in [9, Theorem 3.1]
implies (ii). Hence, Proposition 3.6 extends Theorem 3.1 in [9]. The condition
(ii) is similar to the condition (iv’) in [8, Theorem 3.6], but Ledyaev and Zhu [8]
assumed that X and Z are Banach spaces with Fréchet-smooth Lipschitzian bump
functions, F (x0, ·) is lower semicontinuous at y0 and for any fixed y ∈ V0, F (·, y)
is upper semicontinuous.

Proof of Theorem 3.4. Obviously, (3.2) immediately follows from Proposi-
tions 3.5 and 3.6. Now let us examine the formula (3.3). We first observe that the
graph of the mapping G under consideration can be represented as follows

gphG = {(y, x) ∈ X × Y | g(x, y) ∈ Θ with Θ := gphF},
where g(x, y) := (x, y, 0). Obviously, g is a strictly differentiable function and

(3.21) (∇g(x0, y0))∗(x∗, y∗, z∗) = (x∗, y∗) ∀(x∗, y∗, z∗) ∈ X∗ × Y ∗ × Z∗.

We have
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(3.22) N (ω0; Θ) ∩ ker (∇g(x0, y0))∗ = {0}.

Indeed, let (x∗, y∗, z∗) ∈ N (ω0; Θ) ∩ ker (∇g(x0, y0))∗. Then, by (3.21), x∗ =
y∗ = 0 and (0, 0) ∈ D∗F (ω0)(z∗). It follows from (i) that z∗ = 0 and (3.22) is
fulfilled. Applying Corollary 3.42 in [14], we have

N (ω0; g−1(Θ)) ⊂ (∇g(ω0))∗N (ω0; Θ).

From the graphical regularity of F at ω0 and Corollary 1.15 in [14], it follows that

(3.23) N (ω0; g−1(Θ)) = (∇g(ω0))∗N (ω0; Θ).

For each x∗ ∈ X∗, let y∗ ∈ D∗G(y0, x0)(x∗). Then (y∗,−x∗) ∈ N ((y0, x0); gphG).
It is easy to check that

(3.24) (y∗,−x∗) ∈ N ((y0, x0); gphG) ⇐⇒ (−x∗, y∗) ∈ N ((x0, y0); g−1(Θ)).

From (3.21) and (3.23) it follows that
(3.25)

(−x∗, y∗) ∈ N ((x0, y0); g−1(Θ)) ⇐⇒ ∃z∗ ∈ Z∗, (−x∗, y∗) ∈ D∗F (ω0)(z∗).

Thus, (3.3) immediately follows from (3.24) and (3.25). The proof is complete.

As the SNS property of F (·) and the inner semicompactness of M(0, Fy(·))
automatically holds in finite-dimensional setting, the following result is immediate
from Theorem 3.4.

Corollary 3.8. ([23]). Let X, Y, Z be finite-dimensional spaces, a multifunction
F : X × Y ⇒ Z and a multifunction G : Y ⇒ X defined as in (1.1) and (1.4).
Let ω0 := (x0, y0, 0) ∈ gphF . Suppose that gphF is closed around ω 0, and the
following pointbased criteria holds:

∀(y∗, z∗) ∈ Y ∗ × Z∗, (0, y∗) ∈ D∗F (ω0)(z∗) =⇒ y∗ = z∗ = 0.

Then G is locally metric regular around ω 0 in the Robinson’s sense.

The following corollary extends Theorem 3.3 in [9].

Corollary 3.9. Under the assumption of Proposition 3.6 and suppose that F :
X × Y ⇒ Z is partially pseudo-Lipschitzian in y with rank � around ω 0 :=
(x0, y0, 0), i.e., there exist a neighborhood U1 of x0, a neighborhood V1 of y0 and
a neighborhoodW1 of 0 such that, for any (x, y) ∈ U1×V1 and (x, y′) ∈ U1×V1,

F (x, y′) ∩W1 ⊂ F (x, y) + �‖y′ − y‖BY .
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Then G is pseudo-Lipschitzian with rank
�

σ
around (y0, x0), i.e., there exist a

neighborhood V of y0 and a neighborhood U of x0 such that

G(y′) ∩ U ⊂ G(y) +
�

σ
‖y′ − y‖BX ∀y, y′ ∈ V.

Proof. Since F is partially pseudo-Lipschitzian in y with rank � around ω 0 :=
(x0, y0, 0), it follows that there exist a neighborhood U1 of x0, a neighborhood V1

of y0 and a neighborhood W1 of 0 such that, for any (x, y), (x, y′) ∈ U1 × V1,

F (x, y′) ∩W1 ⊂ F (x, y) + �‖y′ − y‖BY .(3.26)

Choose µ > 0 such that
Bµ(0) ⊂W1.

It follows from Proposition 3.6 that there exist a neighborhood U2 of x0, a neigh-
borhood V2 of y0 and a number σ > 0 such that

dist (x, G(y)) ≤ 1
σ

dist (0, F (x, y))(3.27)

for any x ∈ U2 and y ∈ V2 satisfying dist(0, F (x, y)) ≤ µ for some µ > 0. Let
U := U1 ∩ U2 and V := V1 ∩ V2. Then

G(y′) ∩ U ⊂ G(y) +
�

σ
‖y′ − y‖BX ∀y, y′ ∈ V.(3.28)

Indeed, take arbitrary x ∈ G(y′) ∩ U . From (3.26) and (3.27), it follows that

dist (x, G(y)) ≤ 1
σ

dist (0, F (x, y)) ≤ �

σ
‖y − y′‖ ∀y, y′ ∈ V.

Hence, x ∈ G(y) +
�

σ
‖y′ − y‖BX ∀y, y′ ∈ V . So, (3.28) follows. The proof is

complete.

Corollary 3.10. Let X, Y be Asplund spaces and Φ: X ⇒ Y a closed-
graphical multifunction. Let (x 0, y0) ∈ gph Φ. Suppose that there exist a neigh-
borhood U0 of x0, a neighborhood V0 of y0 and a number σ > 0 such that for any
x ∈ U0, Φ is inner semicompact at x, and for any (x, y) ∈ U 0 ×V0 with y �∈ Φ(x),

σ ≤ inf{‖x∗‖ : x∗ ∈ D∗Φ(x, y′)(y∗), ‖y∗‖ = 1, y′ ∈ M(y,Φ(x))}.
Then

(a) (Open Covering) there exists a neighborhood U of x0 such that, for any
Bρ(x0) ⊂ U,

intBσρ(y0) ⊂ Φ(Bρ(x0));
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(b) (Metric Regularity) there exist a neighborhood U of x 0, a neighborhood V
of y0 and µ > 0 such that

dist (x,Φ−1(y)) ≤ 1
σ

dist (y,Φ(x)),

for any x ∈ U and for any y ∈ V satisfying dist (y,Φ(x)) ≤ µ;
(c) (Aubin property) Φ−1 is pseudo-Lipschitzian at (y0, x0).

Proof. (This proof is based on ideas of [8]) Let Z := Y , F (x, y) := Φ(x)− y

and G(y) := {x ∈ X : 0 ∈ F (x, y)}, (x, y) ∈ X × Y. Let (x0, y0) ∈ gph Φ. It is
easy to check that the assumptions of Proposition 3.6 hold for F at ω0 := (x0, y0, 0).
Obviously, G(y) = Φ−1(x) and dist (0, F (x, y)) = dist (y,Φ(x)). From Proposi-
tion 3.6 it follows that there exist a neighborhood U of x0, a neighborhood V of
y0, a number σ > 0 and a number µ > 0 such that

dist (x,Φ−1(y)) ≤ 1
σ

dist (y,Φ(x))(3.29)

for any x ∈ U and y ∈ V satisfying dist(y,Φ(x)) ≤ µ. We now verify the
conclusions of the corollary.

(a) Let Bρ(x0) ⊂ U . There is no loss of generality in assuming that Bσρ(y0) ⊂
V . Taking arbitrary y ∈ intBσρ(y0), we have y ∈ V . From (3.29) and
y0 ∈ Φ(x0) it follows that

dist (x0,Φ−1(y))≤ 1
σ

dist (y,Φ(x0))≤ dist (y,Φ(x0))−dist(y0,Φ(x0))
σ

≤ρ.
Hence, intBσρ(y0) ⊂ Φ(Bρ(x0)).

(b) The proof is immediate from (3.29).
(c) Obviously, F is partially pseudo-Lipschitzian in y with rank 1 around ω0 :=

(x0, y0, 0). The conclusion is immediate from Corollary 3.9. The proof is
complete.
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