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TWO POINT BOUNDARY VALUE PROBLEMS FOR
THE STURM-LIOUVILLE EQUATION WITH

HIGHLY DISCONTINUOUS NONLINEARITIES

Gabriele Bonanno* and Stefania Maria Buccellato

Abstract. The aim of this paper is to establish the existence of three solutions
for a two-point boundary value problem with the Sturm-Liouville equation
having discontinuous nonlinearities. The approach is based on the critical
point theory for non-differentiable functions.

1. INTRODUCTION

Ordinary differential problems with discontinuous nonlinearities arise in several
fields of theoretical and applied mathematics, and have been studied most frequently
by using set-valued analysis, upper and lower solutions, or fixed point theorems
(see, for instance, [5], [7], [14] and references therein). The aim of this paper
is to investigate, via variational methods, the following two point boundary value
problem with the Sturm-Liouville equation having discontinuous nonlinearities

(1.1)

{ −(pu′)′ + ru′ + qu = λg(u) in ]a, b[

u(a) = u(b) = 0,

where p, r, q ∈ L∞([a, b]), with ess inf [a,b] p > 0 and ess inf[a,b] q ≥ 0, λ a positive
real parameter, and g : R → R is an almost everywhere continuous function. To be
precise, in the present paper, applying the critical point theory for non-differentiable
functions, existence results of three solutions to Problem (1.1) are established. It
is worth noticing that the set of the points of discontinuity of the nonlinear term
g may also be uncountable but, notwithstanding this, the solutions of (1.1) are
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actually generalized solutions. This is different from the above cited papers, where
either the nonlinearity is an increasing function (for which it has a set, at most
countable, of discontinuity points), or the solutions are given in the sense of the
set-valued analysis. On the other hand, because of the presence of term u′ in (1.1),
our results are also novel in the continuous case. In fact, for instance, it is easy
to verify that Example 1.2 below and [10, Theorem 2] are mutually independent,
as well as Theorems 3.3, 3.4 (where r ≡ 0), and [9, Theorem 2], [1, Theorem 1].
As an example, here, we present the following particular cases of our main results
(Theorems 3.5 and 3.6).

Example 1.1. Let g : R → R be a strictly positive, bounded, almost everywhere
continuous function for which there are two positive constants c and d, with c < d,
such that ∫ c

0 g(ξ)dξ

c2
<

2
25

∫ d
0 g(ξ)dξ

d2
.

Then, for each λ ∈
]

55
4

d2∫ d
0 g(ξ)dξ

, 11
10

c2∫ c
0 g(ξ)dξ

[
the problem

(1.2)

{ −u′′ + u′ = λg(u) in ]0, 1[

u(0) = u(1) = 0

admits at least three positive generalized solutions.

Clearly, in Example 1.1 if g is a continuous function, then the three solutions
are actually classical solutions.

Example 1.2. Let g : [0, +∞) → (0, +∞) be a continuous function for which
there are three positive constants α, β and γ , with α < β < γ , such that

(a1) g(ξ) ≤ α for all ξ ∈ [0, α];

(a2)
∫ β
0 g(ξ)dξ ≥ 22β2;

(a3) g(ξ) ≤ 2γ for all ξ ∈ [0, 4γ].

Then, the problem

(1.3)

{ −u′′ + u′ + u = g(u) in ]0, 1[

u(0) = u(1) = 0

admits at least three positive classical solutions u i, i = 1, 2, 3, such that

max
t∈[0,1]

|ui(x)| < 4γ, i = 1, 2, 3.
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The note is arranged as follows. In Section 2 we recall some basic definitions
and the three critical points theorems (Theorem 2.1 and Theorem 2.2) on which
our approach is based, while Section 3 is devoted to Theorem 3.3 and Theorem
3.4, which deal with Problem (1.1) when r ≡ 0, and our main results Theorem 3.5
and Theorem 3.6. Finally, again in Section 3, as a consequence of previous results,
proofs of Example 1.1 and Example 1.2 in Introduction are presented.

2. PRELIMINARIES

We refer to [12] and [13] for basic definitions and properties of Nonsmooth
Analysis. We only recall that, given a real Banach space X , two locally Lipschitz
functions Φ, Ψ : X → R and M > 0, the function Φ−Ψ verifies the Palais-Smale
condition at level c, c ∈ R, cut off at M (in short (PS)M

c ) if the function Φ−ΨM

satisfies (PS)c condition, where

ΨM (u) =

{
Ψ(u) if Ψ(u) ≤ M ;

M if Ψ(u) > M .

The main tools of our paper are the following three critical points theorems for
non-differentiable functions obtained from [3, Theorem 2.6] (see also [2, Theorem
3.2]) and [2, Corollary 3.1]. For an exhaustive bibliography on three critical points
theorems and their applications we refer to [15] and [2]. Here, X is a reflexive
Banach space, Φ : X → R is a coercive and a sequentially weakly lower semi-
continuous function, Ψ : X → R is a sequentially weakly upper semicontinuous
function. Assume also that Φ and Ψ are locally Lipschitz functions and

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Theorem 2.1. ([3], Theorem 2.6). Under the above assumptions on X , Φ and
Ψ, assume that there are r > 0 and v ∈ X , with r < Φ(v), such that:

(i)
sup

x∈Φ−1(]−∞,r])
Ψ(x)

r
<

Ψ(v)
Φ(v)

.

Assume also that for each λ ∈ Λ r,v :=
]Φ(v)
Ψ(v)

,
r

sup
x∈Φ−1(]−∞,r])

Ψ(x)

[
one has

(ii) the function Φ − λΨ is bounded below and fulfils (PS) c, c ∈ R.

Then, for each λ ∈ Λr,v the function Φ − λΨ admits at least three distinct critical
points.



2062 Gabriele Bonanno and Stefania Maria Buccellato

Theorem 2.2. ([2], Corollary 3.1). Under the above assumptions on X , Φ and
Ψ, assume that Φ is convex and

(a) for each λ > 0 and for every x1, x2, which are local minima for the function
Φ − λΨ and such that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has

inf
t∈[0,1]

Ψ(tx1 + (1− t)x2) ≥ 0.

Assume also that there are two positive constants r 1 and r2 and v ∈ X , with
2r1 < Φ(v) < r2

2 , such that

(i’)
sup

u∈Φ−1(]−∞,r1[)

Ψ(u)

r1
<

2
3

Ψ(v)
Φ(v)

and
sup

u∈Φ−1(]−∞,r2[)

Ψ(u)

r2
<

1
3

Ψ(v)
Φ(v)

,

and, for each

λ ∈ Λr1,r2,v :=
]3
2

Φ(v)
Ψ(v)

, min
{ r1

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)
;

r2
2

sup
u∈Φ−1(]−∞,r2[)

Ψ(u)

}[
,

(ii’) the function Φ− λΨ fulfils (PS)
2λ
r2
c , c ∈ R.

Then, for each λ ∈ Λr1,r2,v the function Φ − λΨ admits at least three distinct
critical points which lie in Φ−1(]−∞, r2[).

Now, we say that a function f : [a, b]× R → R belongs to H if t → f(t, x) is
measurable for every x ∈ R, there exists a set I ⊂ [a, b] with m(I) = 0 such that
the set Df :=

⋃
t∈[a,b]\I

{
z ∈ R : f(t, ·) is discontinuous atz

}
has measure zero,

f is locally essentially bounded, and the functions

f−(t, x) := lim
δ→0+

ess inf
|x−z|<δ

f(t, z), f+(t, x) := lim
δ→0+

ess sup
|x−z|<δ

f(t, z),

are superpositionally measurable, that is, f −(t, u(t)) and f+(t, u(t)) are measurable
for all u : [a, b] → R measurable.

Clearly, L1-Carathéodory functions belong to H.
Finally, consider the following Sturm-Liouville boundary value problem

(2.1)

{ −(pu′)′ + qu = λf(x, u) in ]a, b[

u(a) = u(b) = 0

where λ is a positive parameter, p, q ∈ L∞([a, b]), with ess inf [a,b] p > 0 and
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ess inf [a,b] q ≥ 0, and f : [a, b]× R → R is a function.
We recall that, if f and q are continuous functions, a function u : [a, b] → R is called
a classical solution to (2.1) if u ∈ C1([a, b]), pu′ ∈ C1([a, b]), u(a) = u(b) = 0
and −(p(x)u′(x))′ + q(x)u(x) = λf(x, u(x)) for every x ∈ [a, b]. Moreover,
u ∈ AC([a, b]) is called a generalized solution of (2.1) if pu′ ∈ AC([a, b]), u(a) =
u(b) = 0 and −(p(x)u′(x))′ + q(x)u(x) = λf(x, u(x)) for almost every x ∈
[a, b]. Finally, a function u : [a, b] → R is called a weak solution of (2.1) if
u ∈ W

1,2
0 ([a, b]) and∫ b

a
p(x)u′(x)v′(x)dx +

∫ b

a
q(x)u(x)v(x)dx = λ

∫ b

a
f(x, u(x))v(x)dx

for every v ∈ W1,2
0 ([a, b]). Clearly, the weak solutions of (2.1) are also generalized

solutions. In fact, if u is a weak solution of (2.1) one has∫ b

a
p(x)u′(x)v′(x)dx = −

∫ b

a

[
q(x)u(x)− λf(x, u(x))

]
v(x)dx

for every v ∈ C1
0 ([a, b]), that is, the weak derivative of pu′ is qu − λf(·, u) which

belongs to L2([a, b]) ⊆ L1([a, b]). Hence, pu′ ∈ AC([a, b]) and (p(x)u′(x))′ =
q(x)u(x)− λf(x, u(x)) for almost every x ∈ [a, b].

3. MAIN RESULTS

Here, and in the sequel, X is the Sobolev space W 1,2
0 ([a, b]) endowed with the

norm

‖u‖ =
( ∫ b

a
p|u′|2 +

∫ b

a
q|u|2

) 1
2

for all u ∈ X , which is equivalent to the usual one. Put

(3.1) p0 := ess inf
x∈[a,b]

p(x) > 0, q0 := ess inf
x∈[a,b]

q(x) ≥ 0

and

(3.2) m :=
2p0

b − a
.

It is known that X is compactly embedded in C0([a, b]) and, moreover, one has

(3.3) ‖u‖∞ ≤ 1√
2m

‖u‖.

Put

(3.4) K :=
6p0

12‖p‖∞ + (b − a)2‖q‖∞ .

Our first result is the following theorem.
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Theorem 3.3. Let f : [a, b] × R → R be a function belonging to H. Put
F (x, ξ) :=

∫ ξ
0 f(x, t)dt for all (x, ξ) ∈ [a, b]× R and assume that

(h1) there exist two positive constants c,d, with c < d, such that

F (x, ξ) ≥ 0 for all (x, ξ) ∈ [a, b]× [0, d]

and ∫ b
a max|ξ|≤c F (x, ξ)dx

c2
< K

∫ b− 1
4
(b−a)

a+1
4
(b−a)

F (x, d)dx

d2
.

(h2) there exists a positive constant s, with s < 2, and µ ∈ L 1([a, b]) such that
F (x, ξ) ≤ µ(x)(1 + |ξ|s) for almost all x ∈ [a, b] and for all ξ ∈ R;

(h3) for almost every x ∈ [a, b], for all z ∈ Df , for each λ ∈ Λc,d, where

Λc,d =
] 1
K

md2∫ b− 1
4
(b−a)

a+1
4
(b−a)

F (x, d)dx
,

mc2∫ b
a max|ξ|≤c F (x, ξ)dx

[
,

one has that
λf−(x, z)− q(x)z ≤ 0 ≤ λf+(x, z)− q(x)z implies λf(x, z)− q(x)z = 0.

Then, for each λ ∈ Λc,d the problem (2.1) admits at least three weak solutions.

Proof. Put

Φ(u) :=
1
2
‖u‖2, Ψ(u) :=

∫ b

a
F (x, u(x))dx

for all u ∈ X . Clearly, Φ, Ψ are locally Lipschitz functions in X . Fix λ ∈ Λc,d.
We claim that the generalized critical points of Φ − λΨ are weak solutions for the
problem (2.1). To this end, let u0 ∈ X be a generalized critical point of Φ − λΨ,
that is

(Φ − λΨ)0(u0; v − u0) ≥ 0

for all v ∈ X . Therefore, Φ′(u0)(w) + λ(−Ψ)0(u0; w) ≥ 0 for all w ∈ X , that is

−
( ∫ b

a
p(x)u′

0(x)w′(x)dx +
∫ b

a
q(x)u0(x)w(x)dx

)
≤ λ(−Ψ)0(u0; w)

for all w ∈ X. Setting L(w) := −(
∫ b
a p(x)u′

0(x)w′(x)dx +
∫ b
a q(x)u0(x)w(x)dx)

for all w ∈ X , L is a continuous and linear function on X and L ∈ λ∂(−Ψ)(u0).
Now, since X is dense in L2([a, b]) and Ψ is also defined and locally Lipschitz in



Two Point Boundary Value Problems with Highly Discontinuous Nonlinearities 2065

L2([a, b]), from [6, Theorem 2.2] we obtain ∂(−Ψ)|X(u0) ⊆ ∂(−Ψ)|L2([a,b])(u0),
so that L is a continuous and linear function on L2([a, b]). Therefore, there exists
w ∈ L2([a, b]) such that L(w) =

∫ b
a w(x)w(x)dx for all w ∈ L2([a, b]).

Consider now the problem{
(p(x)u(x)′)′ − q(x)u(x) = w(x) in ]a, b[

u(a) = u(b) = 0.

Therefore (see, for instance [4, Example 2, Chapter VIII.4]), there exists a unique
function u ∈ W 2,2([a, b])∩ X such that

−
( ∫ b

a
p(x)u′(x)w′(x)dx +

∫ b

a
q(x)u(x)w(x)dx

)
=

∫ b

a
w(x)w(x)dx = L(w)

for all w ∈ X. Hence, since a continuous and linear function on X is uniquely deter-
mined by a function in X (see, for instance [11, Theorem 5.9.3]), we have u = u0.
For which, u0 ∈ W 2,2([a, b]) and

∫ b
a (p(x)u′

0(x))′w(x)dx−∫ b
a q(x)u0(x)w(x)dx =

−
( ∫ b

a p(x)u′
0(x)w′(x)dx +

∫ b
a q(x)u0(x)w(x)dx

)
≤ λ(−Ψ)0(u0; w) for all w ∈

X. ¿From [6, Theorem 2.1] one has

(p(x)u′
0(x))′ − q(x)u0(x) ∈ [(−λf)−(x, u0(x)), (−λf)+(x, u0(x))]

for almost every x ∈ [a, b], so that

−(p(x)u′
0(x))′ ∈ [λf−(x, u0(x))− q(x)u0(x), λf+(x, u0(x))− q(x)u0(x)]

for almost every x ∈ [a, b]. It follows that, for almost every x ∈ [a, b]\u−1
0 (Df), the

previous condition reduces to −(p(x)u′
0(x))′ + q(x)u0(x) = λf(x, u0(x)), while

for almost every x ∈ u−1
0 (Df), since m(Df) = 0, from Lemma 1 of [8] one has

−(p(x)u′
0(x))′ = 0 and, from (h3) one has λf(x, u0(x)) − q(x)u0(x) = 0 for

almost every x ∈ u−1
0 (Df), so that −(p(x)u′

0(x))′+q(x)u0(x) = λf(x, u0(x)) for
almost every x ∈ u−1

0 (Df). Hence, −(p(x)u′
0(x))′ + q(x)u0(x) = λf(x, u0(x))

for almost every x ∈ [a, b] and our claim is proved.
Now, to obtain our assertion it is enough to apply Theorem 2.1. To this end, we

observe that all assumptions on Φ and Ψ, as requested in Theorem 2.1 are verified,
and moreover, as standard computation shows, condition (h2) implies that Φ− λΨ
is coercive. Hence, it is bounded below. In addition, it satisfies (PS)c condition.
In fact, let {un} be a sequence in X such that Φ(un) − λΨ(un) → c ∈ R and
(Φ − λΨ)0(un; v − un) ≥ −εn‖v − un‖ for all v ∈ X , where εn → 0+. Clearly,
since Φ − λΨ is coercive, {un} is a bounded sequence in X , then there exists
a subsequence, denoted again by {un}, such that un ⇀ u ∈ X and un → u ∈
L2([a, b]). So, by rewriting the previous inequality with u instead of v, we have

Φ′(un)(u − un) + λ(−Ψ)0(un; u − un) ≥ −εn||u − un||
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and being Φ′(un)(u−un) =
∫ b
a p(x)u′

n(x)(u′(x)−u′
n(x))dx+

∫ b
a q(x)un(x)(u(x)−

un(x))dx ≤ 1
2 (

∫ b
a p(x)u′

n
2(x) + q(x)u2

n(x)dx +
∫ b
a p(x)u′2(x) + q(x)u(x)2dx) −

‖un‖2 = 1
2‖un‖2 + 1

2‖u‖2 − ‖un‖2, we have

−εn‖u − un‖ +
1
2
‖un‖2 ≤ 1

2
‖u‖2 + λ(−Ψ)0(un; u− un).

Taking into account that the function Ψ is well defined and locally Lipschitz in
L2([a, b]), and that one has (−Ψ|X)0(u; v) ≤ (−Ψ)0|X(u; v) for all u, v ∈ X (see,
for instance, [6, p.111]), the upper semicontinuity of (−Ψ)0 in the strong topology
of L2([a, b]) × L2([a, b]) (see, for instance, [12, Proposition 1.1]) then implies
lim supn→∞(−Ψ)0(un; u−un) ≤ 0 and, therefore, the previous inequality ensures
that

lim sup
n→∞

‖un‖ ≤ ||u||.

Hence, since X is uniformly convex, from [4, Proposition III.30] one has un → u

strongly in X and our claim is proved. Hence, (ii) of Theorem 2.1 is verified.
In order to prove (i) of Theorem 2.1, put r := mc2 and

v(x) =




4d
b−a(x − a), x ∈ [a, a + 1

4 (b − a)[ ;

d, x ∈ [a + 1
4 (b − a), b − 1

4 (b − a)];
4d

b−a(b − x), x ∈]b − 1
4 (b − a), b].

Clearly, v ∈ X and 4d2
(

p0
b−a + q0

12 (b− a)
)
≤ 1

2‖v‖2 ≤ 4d2
( ||p||∞

b−a + ||q||∞
12 (b− a)

)
.

Hence, from c < d it follows that r < Φ(v). Moreover, from (3.3) one has
maxx∈[a,b] |u(x)| ≤ √

r
m = c for all u ∈ X such that ‖u‖ ≤ √

2r. Therefore, one
has

(3.5)
sup

x∈Φ−1(]−∞,r])

Ψ(x)

r
=

sup
||u||≤√

2r

∫ b

a
F (x, u(x))dx

r
≤

∫ b

a

max
|ξ|≤c

F (x, ξ)dx

mc2
.

On the other hand, taking into account that F (x, ξ) ≥ 0 for all (x, ξ) ∈ [a, b]×[0, d],
one has

(3.6)

Ψ(v)
Φ(v)

=

∫ b

a

F (x, v(x))dx

1
2‖v‖2

≥

∫ b− 1
4
(b−a)

a+ 1
4
(b−a)

F (x, d)dx

4d2
( ||p||∞

b−a + ||q||∞
12 (b − a)

)

= K

∫ b− 1
4
(b−a)

a+ 1
4
(b−a)

F (x, d)dx

md2
.
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Therefore, owing to (3.5), (3.6) and (h1), assumption (i) of Theorem 2.1 is verified

and, moreover, Λc,d ⊆
]Φ(v)
Ψ(v)

,
r

sup
x∈Φ−1(]−∞,r])

Ψ(x)

[
.

Hence, Theorem 2.1 ensures three distinct generalized critical points for Φ−λΨ,
which are, as seen before, three weak solutions for the problem (2.1) and the proof
is complete.

Remark 3.1. If f does not depend on x ∈ [a, b] the assumptions of Theorem
3.3 take a simpler form. To be precise, assumption (h1) becomes

(h′
1) there exist two positive constants c,d, with c < d, such that

F (ξ) ≥ 0 for all ξ ∈ [0, d]

and
max|ξ|≤c F (ξ)

c2
<

K

2
F (d)
d2

,

and, in this case, the interval Λc,d is
]

2
K

m
b−a

d2

F (d) ,
m

b−a
c2

max|ξ|≤c F (ξ)

[
. Clearly, if f is

nonnegative in [0, d] and
F (c)
c2

<
K

2
F (d)
d2

,

then (h′
1) is verified.

Obviously, in the autonomous case, the following condition

lim
t→+∞

f(t)
tr

= 0,

with 0 < r < 1, implies (h2).
Finally, if f : R → R is a locally essentially bounded and almost everywhere
continuous function, then it belongs to H. In addition, if, for instance, for each
z ∈ Df there exists a neighbourhood V of z such that

inf
V

f >
p0K

m2

F (d)
d2

max
{
‖q‖∞z; qoz

}
,

then (h3) is verified. In fact, if z > 0 one has f(z) − p0K
m2

F (d)
d2 ‖q‖∞z ≥ infV f −

p0K
m2

F (d)
d2 ‖q‖∞z := l > 0, f(z) − (b−a)K

2m
F (d)
d2 ‖q‖∞z ≥ l, 2m

(b−a)K
d2

F (d)
f(z) −

‖q‖∞z ≥ l 2m
(b−a)K

d2

F (d) , λf(z) − q(x)z ≥ l 2m
(b−a)K

d2

F (d) for all z ∈ V , λ >
2m

(b−a)K
d2

F (d)
, a.e. x ∈ [a, b]; hence, λf−(z) − q(x)z > 0 for all λ > 2m

(b−a)K
d2

F (d)
,

a.e. x ∈ [a, b]. If z ≤ 0, arguing as before with q0 instead of ‖q‖∞, the same
conclusion is obtained.
In particular, when q ≡ 0 and f is strictly positive, that is inf

R

f > 0, then (h3) is
true.
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The other result is the following theorem.

Theorem 3.4. Let f : [a, b] × R → R be a function belonging to H. Put
F (x, ξ) :=

∫ ξ
0 f(x, t)dt for all (x, ξ) ∈ [a, b]× R and assume that

(k1) f(x, u) ≥ 0 for almost every x ∈ [a, b] and for all u ≥ 0;

(k2) there exist three positive constants c 1, d, c2, with c1 < d <
√

K
2 c2, such that

∫ b

a
F (x, c1)dx

c2
1

<
2
3
K

∫ b− 1
4
(b−a)

a+ 1
4
(b−a)

F (x, d)dx

d2
.

and ∫ b

a
F (x, c2)dx

c2
2

<
1
3
K

∫ b− 1
4
(b−a)

a+ 1
4
(b−a)

F (x, d)dx

d2
.

(k3) for almost every x ∈ [a, b], for all z ∈ Df , for each λ ∈ Λc1,c2,d, where

Λc1,c2,d : =

]
3
2

1
K

md2∫ b− 1
4
(b−a)

a+ 1
4
(b−a)

F (x, d)dx

,

m

2
min

{
2c2

1∫ b
a F (x, c1)dx

,
c2
2∫ b

a
F (x, c2)dx

}[
,

one has that

λf−(x, z)− q(x)z ≤ 0 ≤ λf+(x, z)− q(x)z implies λf(x, z)− q(x)z = 0.

Then, for each λ ∈ Λc1,c2,d the problem (2.1) admits at least three nonnegative
weak solutions ui, i = 1, 2, 3, such that

max
x∈[a,b]

|ui(x)| < c2, i = 1, 2, 3.

Proof. The proof is similar to that of Theorem 3.3 and we give only an
outline. Let Φ and Ψ be as in the proof of Theorem 3.3, and fix λ ∈ Λc1,c2,d.
As seen before, generalized critical points of Φ − λΨ are weak solutions of the
Problem (2.1). Our aim is to apply Theorem 2.2. First, we observe that, owing to
the maximum principle and (k1), assumption (a) is easily verified and, moreover,
for all M > 0 the function Φ − λΨM , arguing as in the proof of Theorem 3.3
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and taking into account that it is coercive since Φ is corcive, satisfies the (PS)c-
condition, c ∈ R. Next, we set r1 := mc2

1, r2 := mc2
2, and v ∈ X as in the proof

of Theorem 3.3. From c1 < d <
√

K
2 c2 one has 2r1 < Φ(v) < r2

2 . Moreover (see
(3.5) and (3.6)), one has

sup
x∈Φ−1(]−∞,r1])

Ψ(x)

r1
≤

∫ b

a
F (x, c1)dx

mc2
1

,
sup

x∈Φ−1(]−∞,r2])

Ψ(x)

r2
≤

∫ b

a
F (x, c2)dx

mc2
2

,

Ψ(v)
Φ(v)

≥ K

∫ b− 1
4
(b−a)

a+ 1
4
(b−a)

F (x, d)dx

md2
. Hence, owing to (k2) the assumption (i’) of The-

orem 2.2 is verified and the conclusion is obtained.

Remark 3.2. When f(·, 0) �≡ 0 the three solutions in the conclusion of Theorem
3.4 are positive. Otherwise, Theorem 3.4 ensures at least two positive solutions.

Remark 3.3. If f does not depend on x ∈ [a, b], as seen in Remark 3.1, the
assumptions of Theorem 3.4 take a simpler form. In particular, assumption (k2)
becomes
(k′

2) there exist three positive constants c1, d, c2, with c1 < d <
√

K
2 c2, such that

F (c1)
c2
1

<
K

3
F (d)
d2

,

and
F (c2)

c2
2

<
K

6
F (d)
d2

,

and, in this case, the interval Λc1,c2,d is
]

3
K

m
b−a

d2

F (d) ,
1
2

m
b−a min

{
2c21

F (c1)
,

c22
F (c2)

}[
.

Remark 3.4. The conclusion of Theorem 3.4 is more precise than that of The-
orem 3.3. In addition, in Theorem 3.3 asymptotic conditions on the nonlinear term
(see (h2) in Theorem 3.4) are not requested. On the other hand, the sign assumption
on the nonliner term in Theorem 3.4 is stronger than the one in Theorem 3.3. We
also note that the first inequality in (k2) is more restrictive than the one in (h1)
since one has 2

3K instead of K.

Now, as an application of previous theorems, we present multiplicity results for
Problem (1.1). To this end, taking into account that r

p is (Lebesgue) integrable in
[a, b], denote by R the function such that

R′ =
r

p
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almost everywhere in [a, b], and put

C :=
∫ b− 1

4
(b−a)

a+ 1
4
(b−a)

e−R(x)dx, D :=
∫ b

a
e−R(x)dx, m1 :=

2
b − a

ess inf
[a,b]

(e−Rp),

K :=
6 ess inf[a,b](e−Rp)

12||e−Rp||∞ + (b − a)2||e−Rq||∞ , K1 :=
C

D
K.

Theorem 3.5. Let g : R → R be a locally essentially bounded and almost
everywhere continuous function. Put G(ξ) :=

∫ ξ
0 g(x)dx for every ξ ∈ R and

assume that

(j1) there exist two positive constants c,d, with c < d, such that

G(ξ) ≥ 0 for all ξ ∈ [0, d]

and
max|ξ|≤c G(ξ)

c2
< K1

G(d)
d2

,

(j2) there exist two positive constants a and s, with s < 2, such that
G(ξ) ≤ a(1 + |ξ|s) for all ξ ∈ R;

(j3) for almost every x ∈ [a, b], for all z ∈ Dg, for each λ ∈ Λc,d, where

Λc,d =
] m1

K1D

d2

G(d)
,
m1

D

c2

max|ξ|≤c G(ξ)

[
,

one has that
λg−(z) − q(x)z ≤ 0 ≤ λg+(z)− q(x)z implies λg(z)− q(x)z = 0.

Then, for each λ ∈ Λc,d problem (1.1) admits at least three generalized solutions.

Proof. Consider the following problem

(3.1)

{ −(e−R(x)p(x)u′(x))′ + e−R(x)q(x)u(x) = λe−R(x)g(u(x)) in ]a, b[

u(a) = u(b) = 0.

It is easy to verify that all the solutions of problem (3.1) are also solutions of
(1.1). Hence, setting p(x) = e−R(x)p(x), q(x) = e−R(x)q(x) and f(x, u(x)) =
e−R(x)g(u(x)), from Theorem 3.3 the conclusion follows.

Theorem 3.6. Let g : [0, +∞) → [0, +∞) be a locally essentially bounded and
almost everywhere continuous function. Put G(ξ) :=

∫ ξ
0 g(x)dx for every ξ ∈ R

and assume that
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(i1) there exist three positive constants c 1, d, c2, with c1 < d <

√
K
2 c2, such that

G(c1)
c2
1

<
2
3
K1

G(d)
d2

,

and
G(c2)

c2
2

<
1
3
K1

G(d)
d2

.

(i2) for almost every x ∈ [a, b], for all z ∈ Dg, for each λ ∈ Λc1,c2,d, where

Λc1,c2,d :=
]3
2

m1

DK1

d2

G(d)
,
m1

2D
min

{ 2c2
1

G(c1)
,

c2
2

G(c2)

}[
,

one has that

λg−(z) − q(x)z ≤ 0 ≤ λg+(z) − q(x)z implies λg(z)− q(x)z = 0.

Then, for each λ ∈ Λc1,c2,d the problem (1.1) admits at least three nonnegative
generalized solutions u i, i = 1, 2, 3, such that

max
t∈[a,b]

|ui(x)| < c2, i = 1, 2, 3.

Proof. Arguing as in the proof of Theorem 3.5, from Theorem 3.4 the con-
clusion follows.

Proof of Example 1.1. Since K1 = e3/4−e1/4

2e(e−1) > 2
25 , m1

K1D = 4e
e3/4−e1/4 < 55

4 ,
m1
D = 2

e−1 > 11
10 , the conclusion is an immediate consequence of Theorem 3.5,

taking Remark 3.1 into account.

Proof of Example 1.2. Since
√

K
2 =

√
3

13e > 1
4 , m1

D = 2
e−1 > 1, 3

2
m1

K1D =
13
2

e
e3/4−e1/4 < 22, by choosing c1 = α, d = β and c2 = 4γ , one has c1 < d <√
K
2 c2. Moreover, from a1), a2) and a3) one has G(c1)

c21
≤ 1, G(d)

d2 ≥ 22 and
G(c2)

c22
≤ 1

2 . Hence, one has 3
2

m1
DK1

d2

G(d) < 1 < min{m1
D

c21
G(c1) ,

m1
D

c22/2
G(c2)} and the

conclusion is an immediate consequence of Theorem 3.6.
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