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BLOW-UP OF POSITIVE-INITIAL-ENERGY SOLUTIONS
FOR AN INTEGRO-DIFFERENTIAL EQUATION

WITH NONLINEAR DAMPING

Shun-Tang Wu* and Long-Yi Tsai

Abstract. The initial boundary value problem for an integro-differential equa-
tion with nonlinear damping in a bounded domain is considered. The local
existence and blow-up of solutions with positive initial energy are discussed
under some conditions. Estimates of the lifespan of solutions are also given.

1. INTRODUCTION

This paper is concerned with the initial boundary value problem for the following
nonlinear integro-differential equation:

(1.1)

utt − M(‖∇u‖2
2)∆u +

∫ t

0

g(t− s)∆u(s)ds + h(ut) = f(u),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where Ω is a bounded domain in RN , N ≥ 1, with a smooth boundary ∂Ω so that
the divergence theorem can be applied, ∇ denotes the gradient operator and ∆ is the
Laplacian operator. Here, g is a nonincreasing positive function, h is a nonlinear
function, f is a nonlinear source term and M(s) is a positive locally Lipschitz
function with M(s) ≥ m0 > 0 for s ≥ 0 like M(s) = m0 + bsγ , m0 > 0, b ≥ 0,
γ > 0 and s ≥ 0. The initial value functions u0(x), u1(x) are given and subscript t
indicate the partial derivative with respect to t, and we denote ‖·‖p to be the norm
of Lp(Ω).
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When g ≡ 0, for the case that M ≡ 1, it is a nonlinear wave equation which
has been extensively studied and several results concerning existence and nonexis-
tence have been established ([2, 5, 6, 7, 18]). When M is not a constant function, the
equation (1.1) without damping and the source terms is often called the Kirchhoff
type equation; it was first introduced by Kirchhoff ([4]) in order to describe the
nonlinear vibrations of an elastic string. In this regard, the existence and nonex-
istence of solutions have been discussed by many authors and the references cited
therein ([11, 12, 13, 19]).

On the contrary, when g is not trivial on R and M ≡ 1, (1.1) becomes a
semilinear viscoelastic wave equation. Messaoudi ([8, 9]) studied (1.1) for h(ut) =
|ut|m−2 ut, m > 2 and f(u) = |u|p−2 u, p > 2. Under suitable conditions, he
proved that any solution blow-up in finite time if p > m and he also showed
the global existence for arbitrary initial data if m ≥ p. Later, Wu and Tsai ([20])
extended Messaoudi’s result to more general h and f. In that paper, we obtained
the blowup result with small positive initial energy if p > m and we also discussed
the global existence and energy decay without the relation between m and p. In the
event that M is not a constant function, the equation (1.1) is the model to describe
the motion of deformable solids as hereditary effect is incorporated. The equation
(1.1) was first studied by Torrejon and Yong ([17]) who proved the existence of
weakly asymptotic stable solution for large analytical datum. Later, Rivera ([10])
showed the existence of global solutions for small datum and the total energy decays
to zero exponentially under some restrictions. Recently, Wu and Tsai ([21]) studied
(1.1) for h(ut) = −∆ut and f is a power like function. The global existence, decay
result and blowup properties had been proved.

In this paper we shall establish the result for blow-up properties of local so-
lution for problem (1.1) with nonpositive as well as small positive initial energy
by modifying the method in [18]. In this way, we can extend the result of ([14])
in which he considered (1.1) with g ≡ 0 and the result of ([8, 20]) to nonconstant
M(s). The content of this paper is organized as follows. In section 2, we present
a lemma and some preliminaries, and state the local existence result. In section 3,
we study the blow-up problem in cases of the initial energy being nonpositive and
positive. Estimates of the blowup time are also given.

2. PRELIMINARY AND LOCAL EXISTENCE RESULTS

In this section, we shall discuss the local existence of solutions for problem
(1.1). We first state a well-known lemma which will be used throughout this work.

Lemma 2.1. (Adam [1]). If 1 ≤ p ≤ 2N
[N−2m]+

(1 ≤ p < ∞ if N = 2m), then

‖u‖p ≤ B1

∥∥∥(−∆)
m
2 u

∥∥∥
2
, for u ∈ D((−∆)

m
2 )
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holds with some positive constant B 1, where we put [a]+ = max{0, a} and 1
[a]+

=

∞ if [a]+ = 0.

Assume that

(A1) g : R+ → R+ is a bounded C1 function satisfying

g(0) > 0, g′(s) ≤ 0, m0 −
∫ ∞

0
g(s)ds = l > 0,

here l is any arbitrary number larger than 0, less than m0.

(A2) h is a C1 function defined on R and there exist positive constants k1 and k2

such that
(h(u) − h(υ)) (u − υ) ≥ k1 |u − υ|m ,

and
h(u)u ≤ k2 (|u|ν + |u|m) ,

for u, υ ∈ R and 2 < ν ≤ m ≤ p∗, here p∗ = 2N
N−2 (2 < ν ≤ m < ∞, if

N ≤ 2).

(A3) f(0) = 0 and there is a positive constant k3 such that

|f(u) − f(υ)| ≤ k3 |u − υ|
(
|u|p−2 + |υ|p−2

)
,

for u, υ ∈ R and 2 < p ≤ p∗1, here p∗1 = 2(N−3)
N−4 (2 < p < ∞, if N ≤ 4).

Now, we are in a position to state the local existence result. For this purpose,
we first take a related simpler problem into account. Then, we prove the existence of
solutions to problem (1.1) by contraction mapping principle. Consider the following
simpler problem:

(2.1)

utt − µ(t)∆u +
∫ t

0
g(t− s)∆u(s)ds + h(ut) = f1(x, t) on Ω × (0, T ),

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u (x, t) = 0, x ∈ ∂Ω, t > 0.

Here, T > 0, f1 is a fixed forcing term on Ω × (0, T ) and µ is a positive locally
Lipschitz function on [0,∞) with µ(t) ≥ m0 > 0 for t ≥ 0.

By means of Galerkin method as in [21], we have the following lemma.

Lemma 2.2. Suppose that (A1 ) and (A2 ) hold, and that u 0 ∈ H1
0 (Ω)∩H2(Ω),

u1 ∈ H1
0 (Ω) and f1 ∈ L2([0, T ), H1

0(Ω)). Then the problem (2.1) admits a unique
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solution u such that u ∈ H1 and u t ∈ Lm(Ω × (0, T )), where

H1 = Cw([0, T ), H1
0(Ω) ∩ H2(Ω)) ∩ C([0, T ), H1

0(Ω))

∩C1
w([0, T ), H1

0(Ω)) ∩ C1([0, T ), L2(Ω)),

here the subscript ”w” means the weak continuity with respect to t ([16]).

Theorem 2.3. Assume that (A1 ), (A2 ) and (A3 ) hold, and that u0 ∈ H1
0 (Ω)∩

H2(Ω), u1 ∈ H1
0 (Ω), then there exists a unique solution u of (1.1) satisfying

u ∈ H1 and ut ∈ Lm(Ω × (0, T )), and at least one of the following statements is
valid:

(2.2)
(i)T = ∞,

(ii) ‖∇ut(t)‖2
2 + ‖∆u(t)‖2

2 → ∞ as t → T−.

Proof. For T > 0, R0 > 0, we define a class of functions XT,R0 which consists
of functions v in H1 satisfying the initial conditions of (1.1) and e(v(t)) ≤ R2

0,

t ∈ [0, T ), where

(2.3) e(v(t)) = ‖vt‖2
2 + ‖∇vt‖2

2 + ‖∇v‖2
2 + ‖∆v‖2

2 .

Then XT,R0 is a complete metric space with the distance

(2.4) d(y, z) = sup
0≤t≤T

[
‖(y − z)t(t)‖2

2 + ‖∇(y − z)(t)‖2
2

]1
2
,

where y, z ∈ XT,R0. Given v ∈ XT,R0, we consider the following problem

(2.5)
utt − M(‖∇v‖2

2)∆u +
∫ t

0
g(t − s)∆u(s)ds + h(ut) = f(v),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

By (A3) and ‖∇f‖2 ≤ k4 ‖v‖p−2
N(p−2) ‖∇v‖ 2N

N−2
≤ k4B

p−1
1 ‖∆v‖p−1

2 , we see that

f ∈ L2([0, T ), H1
0(Ω)), where k4 = k3(p − 1)vol(Ω)

1
2 . Thus, by lemma 2.2, we

derive that problem (2.5) admits a unique solution u ∈ H1 and ut ∈ Lm(Ω×(0, T )).
Then, we define the nonlinear mapping Sv = u, and we would like to show that
there exist T > 0 and R0 > 0 such that S is a contraction mapping from XT,R0

into itself. For this, we multiply the first equation of (2.5) by 2ut and integrate it
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over Ω to get

(2.6)

d

dt

[
‖ut‖2

2 +
(

M(‖∇v‖2
2) −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 + (g 
 ∇u)(t)
]

+2
∫

Ω

h(ut)utdx

≤
(

d

dt
M(‖∇v‖2

2)
)
‖∇u(t)‖2

2 + 2
∫

Ω
f(v)utdx.

The equality in (2.6) is obtained, because

−2
∫ t

0

∫
Ω

g(t−τ)∇u(τ) · ∇ut(t)dxdτ =
d

dt

[
(g 
 ∇u)(t)−

∫ t

0
g(τ) ‖∇u(τ)‖2

2 dτ

]

−(g′ 
 ∇u)(t) + g(t) ‖∇u(t)‖2
2 ,

where
(g 
 ∇u)(t) =

∫ t

0
g(t− τ)

∫
Ω
|∇u(τ) −∇u(t)|2 dxdτ.

Next, multiplying the first equation of (2.5) by −2∆ut and integrating it over Ω,
we have

(2.7)

d

dt

[
‖∇ut‖2

2+
(

M(‖∇v‖2
2)−

∫ t

0
g(s)ds

)
‖∆u(t)‖2

2+(g 
∆u)(t)
]

+2
∫

Ω

h′(ut) |∇ut|2 dx

≤
(

d

dt
M(‖∇v‖2

2)
)
‖∆u(t)‖2

2 − 2
∫

Ω
f(v)∆utdx.

Combining (2.6) and (2.7) together, we obtain

(2.8)
d

dt
e1(t) + 2

∫
Ω

h(ut)utdx + 2
∫

Ω
h′(ut) |∇ut|2 dx ≤ I1 + I2,

where

e1(t) = ‖ut‖2
2 +

(
M(‖∇v‖2

2)−
∫ t

0
g(s)ds

)(
‖∇u(t)‖2

2 + ‖∆u(t)‖2
2

)

+(g 
 ∇u)(t) + ‖∇ut‖2
2 + (g 
 ∆u)(t),

I1 =
(

d

dt
M(‖∇v‖2

2)
)(

‖∇u(t)‖2
2 + ‖∆u(t)‖2

2

)
, I2=2

∫
Ω

f(v) (ut−∆ut) dx.
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To proceed further estimations, we note by (A1) that

(2.9) |I1| ≤ 2M1

l
‖∇v‖2 ‖∇vt‖2 e1(t) ≤ 2M1

l
R2

0e1(t),

and by (A3) and lemma 2.1 that

(2.10)

|I2| ≤ 2k3

(
‖v‖p−1

2(p−1) ‖ut‖2 + (p − 1) ‖v‖p−2
N(p−2) ‖∇v‖ 2N

N−2
‖∇ut‖2

)
≤ 2k3B

p−1
1 ‖∆v‖p−1

2 (‖ut‖2 + (p − 1) ‖∇ut‖2)

≤ c1R
p−1
0 e1(t)

1
2 ,

where M1 = sup{|M ′(s)| ; 0 ≤ s ≤ R2
0} and c1 = 2k3pBp−1

1 . Thus, integrating
(2.8) over (0, t) and using (2.9)-(2.10), we deduce that

(2.11)
e1(t) + 2

∫ t

0

∫
Ω

h(ut)utdxdt + 2
∫ t

0

∫
Ω

h′(ut) |∇ut|2 dxdt

≤ e1(0) +
∫ t

0

[
2M1

l
R2

0e1(t) + c1R
p−1
0 e1(t)

1
2 ]dt.

Hence, by Gronwall’s lemma and noting that e1(t) ≥ c−1∗ e(u(t)), here c−1∗ =
min(1, l), we arrive at

(2.12) e(u(t)) ≤ χ(u0, u1, R0, T )2e
2M1R2

0T

l , for any t ∈ (0, T ],

where χ(u0, u1, R0, T ) =
(√

e1(0) + c1
2 Rp−1

0 T
)

c
1
2∗ . Therefore, we see that for

parameters T and R0 satisfy

(2.13) χ(u0, u1, R0, T )2e
2M1R2

0T

l ≤ R2
0,

then S maps XT,R0 into itself. On the other hand, by lemma 2.2, u ∈ H1. Moreover,
it follows from (2.11) and (2.12) that ut ∈ Lm(Ω × (0, T )).

Next, we will verify that S is a contraction mapping. Let vi ∈ XT,R0 and
u(i) ∈ XT,R0, i = 1, 2 be the corresponding solution to problem (2.5). Setting
w(t) = (u(1) − u(2))(t), then w satisfy the following system:

(2.14)

wtt − M
(‖∇v1‖2

2

)
∆w +

∫ t
0 g(t − τ)∆w(τ)dτ + h(u(1)

t ) − h(u(2)
t )

= f(v1) − f(v2) +
[
M

(‖∇v1‖2
2

) − M
(‖∇v2‖2

2

)]
∆u(2),

w(0) = 0, wt(0) = 0,

w(x, t) = 0, x ∈ ∂Ω, and t ≥ 0.



Blow-up of Positive-initial-Energy Solutions 2049

We multiply the first equation of (2.14) by 2wt and integrate it over Ω to get

(2.15)

d

dt
e∗2(w(t)) + 2

∫
Ω

(
h(u(1)

t ) − h(u(2)
t )

)
wtdx

−(g′ 
 ∇w)(t) + g(t) ‖∇w(t)‖2
2

= I3 + I4 + I5,

where

(2.16)

e∗2(w(t))

= ‖wt‖2
2+

(
M(‖∇v1‖2

2)−
∫ t

0
g(s)ds

)
‖∇w(t)‖2

2+(g 
 ∇w)(t),

I3 = 2
[
M

(‖∇v1‖2
2

) − M
(‖∇v2‖2

2

)] ∫
Ω

∆u(2)wtdx,

I4 = 2
∫

Ω
(f(v1)−f(v2))wtdx and I5=

(
d

dt
M(‖∇v1‖2

2)
)
‖∇w(t)‖2

2 .

Applying the similar arguments as in estimating Ii, i = 1, 2, we observe that

|I3| ≤ 2L (‖∇v1‖2 + ‖∇v2‖2) ‖∇v1 −∇v2‖2

∥∥∥∆u(2)
∥∥∥

2
‖wt‖2

≤ 4LR2
0e2(v1 − v2)

1
2 e∗2(w(t))

1
2 ,

|I4| ≤ 4k3B
2(p−1)
1 Rp−2

0 e2(v1 − v2)
1
2 e∗2(w(t))

1
2 ,

and

|I5| ≤ 2M1R
2
0

l
e∗2(w(t)),

where e2(v) = ‖vt‖2
2 + ‖∇v‖2

2 , and L = L(R0) is the Lipschitz constant of M(r)
in [0, R0]. Exploiting these inequalities in (2.15) and integrating it over (0, t), we
obtain

e∗2(w(t)) ≤ e∗2(w(0)) +
∫ t

0

[
2M1R

2
0

l
e∗2(w(s)) + c2e2(v1 − v2)

1
2 e∗2(w(s))

1
2

]
ds,

where c2 = 4
(
LR2

0 + k3B
2(p−1)
1 Rp−2

0

)
. Thus, applying Gronwall’s lemma and

noting that e∗2(w(0)) = 0, we have

e∗2(w(t)) ≤ c2
2T

2

4
e

2M1R2
0T

l sup
0≤t≤T

e2(v1 − v2).
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On the other hand, by (2.16), we note that e∗2(w(t)) ≥ c−1∗ e2(w). Hence, by (2.4),
we deduce that

(2.17) d(u(1), u(2)) ≤ C(T, R0)
1
2 d(v1, v2),

where C(T, R0)2 = c∗c22T 2

4 e
2M1R2

0T

l . Therefore, under inequality (2.13), S is a
contraction mapping if C(T, R0) < 1. We choose R0 sufficiently large and T

sufficiently small so that (2.13) and (2.17) are satisfied at the same time. By
applying Banach fixed point theorem, we obtain the local existence result.

The second statement of the theorem is proved by a standard continuation argu-
ment ([15]). Indeed, let [0, T ) be a maximal existence interval on which the solu-
tion of (1.1) exists. Suppose that T < ∞ and lim

t→T−

(
‖∇ut(t)‖2

2 + ‖∆u(t)‖2
2

)
<

∞.Then, there are a sequence {tn} and a constant K > 0 such that tn → T− as
n → ∞ and ‖∇ut(tn)‖2

2 + ‖∆u(tn)‖2
2 ≤ K, n = 1, 2,. . . . Since for all n ∈ N,

there exists a unique solution of (1.1) with initial data (u(tn), ut(tn)) on [tn, tn+τ ],
τ > 0 depending on K and independent of n ∈ N . Thus, we can get T < tn +τ for
n ∈ N large enough. It contradicts to the maximality of T. The proof of theorem
2.3 is now completed.

3. BLOW-UP PROPERTY

In this section, we shall discuss the blow up phenomena for a kind of problem
(1.1):

(3.1)

utt − M(‖∇u‖2
2)∆u +

∫ t

0
g(t− s)∆u(s)ds + a |ut|ν−2 ut

+a |ut|m−2 ut = |u|p−2 u,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where M(s) = 1 + bsγ , b ≥ 0, γ > 0 and s ≥ 0, a > 0, 2 < ν ≤ m ≤ p∗ and
2 < p ≤ p∗1. In order to state our results, we make an extra assumption on g:

(3.2)
∫ ∞

0

g(s)ds < min
(

2(p − 2)
2p − 3

,
p(E1 − E(0)

2λ2
1

)
,

where E1 and λ1 are some positive constants given later. We first define the energy
function associated with a solution u of (3.1) by

(3.3) E(t) =
1
2
‖ut‖2

2 + J(t) for t ≥ 0,
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where
J(t) =

1
2

(
1 −

∫ t

0

g(s)ds

)
‖∇u(t)‖2

2 +
1
2
(g 
 ∇u)(t)

+
b

2(γ + 1)
‖∇u(t)‖2(γ+1)

2 − 1
p
‖u‖p

p.

We observe, from (A1) and lemma 2.1, that

(3.4)

E(t)

≥ 1
2

(
l ‖∇u(t)‖2

2+
b

(γ+1)
‖∇u(t)‖2(γ+1)

2 +(g 
 ∇u)(t)
)
−Bp

1 l
p
2

p
‖∇u‖p

2

≥ G

[(
l ‖∇u(t)‖2

2 +
b

(γ + 1)
‖∇u(t)‖2(γ+1)

2 + (g 
 ∇u)(t)
)1

2

]
,

for t ≥ 0, where

G(λ) =
1
2
λ2 − Bp

1

p
λp, B1 =

B√
l
, l = 1 −

∫ ∞

0
g(s)ds > 0.

It is easy to verify that G(λ) has a maximum at λ1 = B
− p

p−2

1 and the maximum
value is E1 = p−2

2p λ2
1. Before we prove our main result, we need the following

lemmas.

Lemma 3.1. Suppose that (A1 ) holds, and that u 0 ∈ H1
0 (Ω) ∩ H2(Ω),

u1 ∈ H1
0 (Ω) and let u be a solution of (3.1). Then E(t) is a nonincreasing

function on [0, T ] and

(3.5) E ′(t) = −a

∫
Ω
(|ut|ν + |ut|m)dx +

1
2
(g′ 
 ∇u)(t)− 1

2
g(t) ‖∇u‖2

2 .

Proof. Multiplying (3.1) by ut and integrating it over Ω, and using integrating
by parts, we obtain (3.5).

Lemma 3.2. [22]. Assume that (A1 ) holds, u 0 ∈ H1
0 (Ω) ∩ H2(Ω) and u1 ∈

H1
0 (Ω). Let u be a solution of (3.1) with initial data satisfying E(0) < E 1 and(
l ‖∇u0‖2

2 + b
γ+1 ‖∇u0‖2(γ+1)

2

) 1
2

> λ1. Then there exists λ2 > λ1 such that

(3.6) l ‖∇u(t)‖2
2 +

b

γ + 1
‖∇u(t)‖2(γ+1)

2 + (g 
 ∇u)(t) ≥ λ2
2, for t > 0.

Theorem 3.3. (Nonexistence of global solutions). Let p > m and γ < max(1−l
4l ,

p−2
2 ). Assume that (A1) and (3.2) hold, and that u 0 ∈ H1

0 (Ω) ∩ H2(Ω), u1 ∈
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H1
0 (Ω). Then any solution of (3.1) with initial data satisfying 0 ≤ E (0) < E 1

and
(
l ‖∇u0‖2

2 + b
γ+1 ‖∇u0‖2(γ+1)

2

) 1
2

> λ1 blows up at finite time in the sense of

(2.2). We remark that the lifespan T is estimated by 0 < T ≤ L(0)1−θ1

c12(θ1−1) , where
L(t) and c12 are given in (3.18) and (3.24) respectively, and θ1 is some positive
constant given in the following proof.

Proof. We set

(3.7) H (t) = E2 − E (t) , t ≥ 0,

where E2 = E1+E(0)
2 . By (3.4), we see that H′(t) ≥ 0. Thus we obtain

(3.8) H(t) ≥ H (0) = E2 − E (0) > 0, t ≥ 0.

Let

(3.9) A (t) =
∫

Ω
uutdx.

By differentiating (3.9) and using (3.1) , we have

(3.10)

A′ (t) = ‖ut‖2
2 − ‖�u‖2

2 − b ‖�u‖2(γ+1)
2

+
∫

Ω

∫ t

0
g(t − s)∇u(s) · ∇u(t)dsdx

−a

∫
Ω

(|ut|ν−2 + |ut|m−2)utudx + ‖u‖p
p .

Exploiting Hölder inequality and Young’s inequality, we observe that

(3.11)

∫
Ω

∫ t

0
g(t− s)∇u(s) · ∇u(t)dsdx

=
∫

Ω

∫ t

0

g(t− s)∇u(t) · (∇u(s)−∇u(t)) dsdx

+
∫ t

0

g(t − s)ds ‖∇u(t)‖2
2

≥ −(g 
 ∇u)(t) +
3
4

∫ t

0
g(s)ds ‖�u(t)‖2

2 ,

Then, by (3.11) and using (3.3) to substitute for ‖u‖p
p, (3.10) becomes

A′ (t) ≥ a1 ‖ut‖2
2 + a2(g 
 ∇u)(t) + a3

b

γ + 1
‖�u(t)‖2(γ+1)

2 + a4l ‖�u(t)‖2
2

−a

∫
Ω
(|ut|µ−2 + |ut|m−2)utudx + pH(t) − pE2.
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where a1 = p+2
2 , a2 = p−2

2 , a3 = p−2(γ+1)
2 and a4 = 1

l

(
p−2
2 − 2p−3

4

∫ ∞
0 g(s)ds

)
.

By (3.2), we observe that a4 > 0 and by the restriction on γ, we deduce that

(3.12)
A′ (t) ≥ a1 ‖ut‖2

2+a4

[
(g 
 ∇u)(t)+

b

γ+1
‖�u(t)‖2(γ+1)

2 +l ‖�u(t)‖2
2

]

−a

∫
Ω
(|ut|µ−2 + |ut|m−2)utudx + pH(t)− pE2.

Moreover,

a4

[
l ‖�u(t)‖2

2 +
b

(γ + 1)
‖�u(t)‖2(γ+1)

2 + (g 
 ∇u)(t)
]
− pE2

= a4
λ2

2 − λ2
1

λ2
2

[
l ‖�u(t)‖2

2 +
b

(γ + 1)
‖�u(t)‖2(γ+1)

2 + (g 
 ∇u)(t)
]

+a4λ
2
1

[
l ‖�u(t)‖2

2 + b
(γ+1) ‖�u(t)‖2(γ+1)

2 + (g 
 ∇u)(t)
]

λ2
2

− pE2

≥ c1

[
l ‖�u(t)‖2

2 +
b

(γ + 1)
‖�u(t)‖2(γ+1)

2 + (g 
 ∇u)(t)
]

+ c2,

where the last inequality is obtained by lemma 3.2, λ2 is given in lemma 3.2,
c1 = a4

λ2
2−λ2

1

λ2
2

and c2 = a4λ
2
1 − pE2. By lemma 3.2, we have c1 > 0 and by (3.2),

we see that

c2 =
1
l

(
p − 2

2
− 2p − 3

4

∫ ∞

0
g(s)ds

)
λ2

1 − pE2

>

(
p − 2

2
− 2p− 3

4

∫ ∞

0

g(s)ds

)
λ2

1 − pE2

=
p(E1 − E(0))

2
− 2p − 3

4

∫ ∞

0
g(s)dsλ2

1 > 0.

Thus, (3.12) yields

(3.13)

A′ (t) ≥ a1 ‖ut‖2
2 + c1(g 
 ∇u)(t)

+
bc1

γ + 1
‖�u(t)‖2(γ+1)

2 + c1l ‖�u(t)‖2
2

−a

∫
Ω
(|ut|µ−2 + |ut|m−2)utudx + pH(t).
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On the other hand, by Hölder inequality, we have

(3.14)
∣∣∣∣
∫

Ω
|ut|m−2 utudx

∣∣∣∣ ≤ ‖u‖m ‖ut‖m−1
m ≤ c3 ‖u‖1− p

m
p ‖u‖

p
m
p ‖ut‖m−1

m ,

where c3 = (vol(Ω))
p−m
mp . Noting that, from (3.3) and lemma 3.2, we get

H (t) ≤ E1 − 1
2

(
l ‖∇u(t)‖2

2 +
b

γ + 1
‖∇u‖2(γ+1)

2 + (g 
 ∇u)(t)
)

+
1
p
‖u‖p

p

≤ E1 − 1
2
λ2

1 +
1
p
‖u‖p

p <
1
p
‖u‖p

p.

Hence,

(3.15) 0 < H (0) ≤ H (t) ≤ 1
p
‖u‖p

p for t ≥ 0.

Then, by Young’s inequality and (3.5), (3.14) becomes

(3.16)

∣∣∣∣
∫

Ω
|ut|m−2 utudx

∣∣∣∣
≤ c5

(
εm
1 H (0)−α1 ‖u‖p

p+ε−m′
1 H (0)α−α1 H(t)−αH ′(t)

)
,

where α1 = 1
m − 1

p > 0, 0 < α < α1, ε1 > 0, m′ = m
m−1 , c4 = c3(p)

1
p
− 1

m and
c5 = c4 max(1, 1

a). Similarly, we also have the following inequality

(3.17)

∣∣∣∣
∫

Ω
|ut|ν−2 utudx

∣∣∣∣
≤ c6

(
εν
2H (0)−α2 ‖u‖p

p + ε−ν′
2 H (0)α−α2 H(t)−αH ′(t)

)
,

where 0 < α < α2, α2 = 1
ν−1

p > 0, ε2 > 0, ν′ = ν
ν−1 and c6 = c3(p)

1
p
− 1

ν max(1, 1
a).

In order to satisfy both (3.16) and (3.17), we choose 0 < α < min{α1, α2}.
Now, we define

(3.18) L (t) = H (t)1−α + δ1A(t), t ≥ 0,

where δ1 is a positive constant to be specified later. By differentiating (3.18), and
then using (3.16), (3.17) and (3.13), we derive that

(3.19)

L′ (t)

≥
(
1−α−δ1ac5ε

−m′
1 H (0)α−α1−δ1ac6ε

−ν′
2 H (0)α−α2

)
H(t)−αH ′(t)

+δ1

[
a1 ‖ut‖2

2+c1(g 
 ∇u)(t)+
bc1

(γ+1)
‖�u‖2(γ+1)

2 + c1l ‖∇u(t)‖2
2

]

+δ1pH(t)− δ1a
(
c5ε

m
1 H (0)−α1 + c6ε

ν
2H (0)−α2

) ‖u‖p
p.
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Letting a5 = min{a1, c1l,
(γ+1)c1

b , p
2} and decomposing δ1pH(t) in (3.19) by δ1

pH(t) = 2a5δ1H(t) + (p − 2a5)δ1H(t). Thus, by (3.7) and (3.3), we obtain

(3.20)

L′ (t) ≥
(
1−α−δ1ac5ε

−m′
1 H (0)α−α1

−δ1ac6ε
−ν′
2 H (0)α−α2

)
H(t)−αH ′(t)

+δ1

[
2a5

p
− a

(
c5ε

m
1 H (0)−α1 + c6ε

ν
2H (0)−α2

)] ‖u‖p
p

+δ1 (a1−a5) ‖ut‖2
2+δ1 (c1l−a5) ‖∇u(t)‖2

2+(p−2a5)δ1H (t)

+δ1 (c1 − a5)
(

b

(γ + 1)
‖�u‖2(γ+1)

2 + (g 
 ∇u)(t)
)

.

Now, we choose ε1, ε2 > 0 small enough such that 2a5
p − a(c5ε

m
1 H (0)−α1 +

c6ε
ν
2H (0)−α2)≥ a5

2p , and 0<δ1 <
(1−α)

2 (c5aε−m′
1 H (0)α−α1+c6aε−ν′

2 H (0)α−α2)−1.
Then (3.20) becomes

(3.21) L′ (t) ≥ c7δ1

(
‖u‖p

p + ‖ut‖2
2 + H (t) + (g 
 ∇u)(t) + ‖�u‖2(γ+1)

2

)
,

here c7 = min
{

a5
2p , a1 − a5, c1l − a5,

b(c1−a5)
γ+1 , p − 2a5

}
. Thus L(t) is a non-

decreasing function on t ≥ 0. Letting δ1 be small enough in (3.18), then we
have L (0) > 0. Hence L (t) > 0, for t ≥ 0. Now set θ1 = 1

1−α . Since α <

min{α1, α2} < 1, it is evident that 1 < θ1 < 1
1−min{α1,α2} . By Young’s inequality

and Hölder inequality, it follows that

(3.22) L (t)θ1 ≤ 2θ1−1

[
H (t) +

(
δ1

∫
Ω

utudx

)θ1
]

.

On the other hand, for p > 2 and using Hölder inequality and Young’s inequality,
we have (∫

Ω
utudx

)θ1

≤ c8 ‖ut‖θ1
2 ‖u‖θ1

p ≤ c9

(
‖u‖θ1β1

p + ‖ut‖θ1β2
2

)
,

where c8 = (vol(Ω))
θ1(p−2)

2p , 1
β1

+ 1
β2

= 1, and c9 = c9(c8, β1, β2) > 0. Now choose

α ∈
(
0, min(α1, α2,

1
2 − 1

p)
)

and take θ1β2 = 2 to get θ1β1 = 2
1−2α < p.

Noting that from (3.15), we have

‖u‖θ1β1
p =

[(
1

pH(0)

) 1
p

‖u‖p

]θ1β1 (
1

pH(0)

)− θ1β1
p

≤ c10 ‖u‖p
p ,
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where c10 =
(

1
pH(0)

)1− θ1β1
p

. Consequently, (3.22) becomes

(3.23) L (t)θ1 ≤ c11

[
H (t) + ‖u‖p

p + ‖ut‖2
2

]
,

here c11 is some positive constant. Combining (3.22) and (3.23) together, we get

(3.24) L′ (t) ≥ c12L (t)θ1 , t ≥ 0,

here c12 = c7δ1
c12

. An integration of (3.24) over (0, t) then yields

L (t) ≥
(
L (0)1−θ1 − c12 (θ1 − 1) t

)− 1
θ1−1

.

Since L (0) > 0, (3.24) shows that L becomes infinite in a finite time T ≤ T ∗ =
L(0)1−θ1

c12(θ1−1) . From (3.7) and (3.3), we have

H(t) ≤ E2 +
1
p
‖u‖p

p .

Thus, by (3.23) and lemma 2.1, we deduce that

L (t)θ1 ≤ c14

[
c13 + ‖∆u‖2

2 + ‖∇ut‖2
2

]p
2

,

here c13, c14 are some positive constants. Therefore, we complete the proof.

Remark. If E(0) < 0, we replace the conditions of theorem 3.3 to be p >

max {2(γ + 1), m} , and
∫ ∞
0 g(s)ds < 2(p−2)

2p−3 . Then we set H(t) = −E(t),
instead of (3.6). Applying the same arguments as in theorem 3.3, we have our
result.
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