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ON LOCAL INTEGRATED C-COSINE FUNCTION
AND WEAK SOLUTION OF SECOND ORDER
ABSTRACT CAUCHY PROBLEM

Chung-Cheng Kuo

Abstract. Let « be a nonnegative number, C : X — X a bounded linear
injection on a Banach space X and A : D(4) € X — X a closed linear
operator in X which satisfies C-1 AC = A and may not be densely defined.
We prove some equivalence relations between the generation of a local a-
times integrated C-cosine function on X with generator A and the uniqueness
existence of weak solutions of the abstract Cauchy problem:

u”(ﬁ) = Au(t) + f(t) fort € (0,Tp),

ACPQ(Aafa Z, y) {
u(0) =z, u'(0) =y,

where z,y € X are given and f is an X-valued function defined on a subset
of R.

1. INTRODUCTION

Let X be a Banach space over F with norm | - || and dual space X*, and let
B(X) denote the set of all bounded linear operators from X into itself. For each
0 < Ty < oo, we consider the following abstract Cauchy problem:

u”(t) = Au(t) + f(t) fort e (0,Tp),

ACP2(A7f7 €, y) {
u(O) =, u'(O) =Y,

where z,y € X are given, A: D(A) € X — X is a closed linear operator and f is
an X-valued function defined on a subset of R containing (0, 7). A function w is
called a strong solution of ACPy(A, f, z, ), if u € C2((0, Tp), X)NC([0, Tp), X)N
C((0,Tp), [D(A)]) and satisfies ACP4y(A, f, z, y). Here [D(A)] denotes the Banach
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space D(A) equipped with the graph norm |z|4 = ||z| + ||Az|| for x € D(A).
For each a > 0 and C € B(X), a family C(-)(= {C(¢) |0 < ¢ < Tp}) in B(X) is
called a local a-times integrated C-cosine function on X if it is strongly continuous,
C(-)C = CC(+), and satisfies

20(H)C(s)a :ﬁ{[ /0 T /O - /0 1+ 5 — 1100 Cadr
+ /t (s —t 4+ )2 1C(r)Cadr
sl

+ / (t —s+r)*tC(r)Cadr
[t

—s|
+ /0 s P10 Cadr )

forall0 <t,s,t+s < Tyand z € X; or called a local (0-times integrated) C-cosine
function on X if it is strongly continuous, C(-)C = CC(-), and satisfies

(1.2) 2C(t)C(s)x=C(t+s)Cx+C(|t—s|)Cz for all 0<t,s,t+s<Tp and z€ X,

where T'(-) denotes the Gamma function. Moreover, we say that C(-) is nonde-
generate, if + = 0 whenever C(t)xz = 0 for all 0 < ¢ < Tp. In this case, its
(integral) generator A : D(A) € X — X is a closed linear operator in X defined

by D(A) = {z |2 € X and there exists a y, € X such that C(t)x — F(O’fé—il)Cx =

I3 [ C(r)yedrds for all 0 < t < Tp} and Az = y, for all 2 € D(A). In gen-
eral, a local a-times integrated C-cosine function on X is also called an a-times
integrated C-cosine function on X if Ty = oo; or called a local a-times integrated
cosine function on X if C = I the identity operator on X. The relation between the
existence of an exponentially bounded a-times integrated C-cosine function with
generator A and the unique existence of strong solutions of ACP3 (A, f,x,y) have
been considered as in [4, 5, 9, 12, 14, 15] if « € NU {0}. When o« = 0 and A
is densely defined, some results concerning the relation between the existence of
a C-cosine function with generator A and the unique existence of weak solutions
of ACPy(A,f,x,y) are also investigated in [9], and in [7] for the case C = I.
Just as in the case a € N U {0}, some equivalence relations between the exis-
tence of an «-times integrated C-cosine function on X and the unique existence
of strong solutions for ACPy(A, f, x,y) are also obtained in [10,11] for which the
resolvent set p(A) of A may be nonempty and D(A) may be dense in X. Sev-
eral examples concerning a-times integrated cosine functions with densely defined
generators are given as in [8], and in [16] when integrated cosine functions are
exponentially bounded. Unfortunately, the generator of a local C-cosine function or
a local a-times integrated cosine function may not be densely defined except for
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the case « = 0 and C = I. In this case, the adjoint of a closed linear operator
A : D(A) € X — X is the multi-valued function A* : D(A*) c X* — 2X" de-
fined by D(A*) = {a* € X*| there exists a y}. € X* such that < z*, Az >=<
yre,x > forall z € D(A)} and A*z* = {y}. € X*| < z*, Az >=< y}.,x >
forall z € D(A)}. In particular, we write A*z* = yZ. for 2* € D(A*) if A
is densely defined, where 2X° denotes the power set of X* and either < z*,z >
or < x,x* > denotes the value of z* at x for all x € X and z* € X*. More-
over, a function « is called a weak solution of ACPy(A, f,x,y), if <u(-),z* >€
WZL([0,Tv)), < u(t),z* > im0 =< z,2* >, & <u(t),2* > |10 =< y,2* >
and % <u(t),z* >=< u(t),y* > +< f(t),2* > for a.e. 0 <t <Tp whenever
z* € D(A*) and y* € A*z*. Here W21([0,Tp)) = {v|v: [0,Tp) — F is contin-
uously differentiable, v’ is differentiable a.e. on [0, Tp) and v” is locally Lebesque
integrable on [0,7y)}. The purpose of this paper is to obtain some generalization
theorems concerning local a-times integrated C-cosine functions for o > 0 when
their generators may not be densely defined. We first investigate an important result
(see Lemma 2.1 below) which has been deduced by Ball in [3] when A is densely
defined. Under the assumption C~' AC = A. We show that A generates a nondegen-
erate local («+1)-times (respectively, a-times) integrated C-cosine function on X if
and only if ACP5(A,jo—1(-)Cz + ja—1%Cg(+),0,0) has a unique weak solution in
C([0, Tp), X)(respectively, in C1([0, Tp), X)) for all z € X and ¢ € L}, ([0, Tp), X)
if and only if ACP3(A,j,—1(-)Cz,0,0) has a unique weak solution in C([0, Ty), X)
(respectively, in C1([0, Tp), X)) for all = € X, where a > 0 (see Theorems 2.4 and
2.5 below). Here jg(t) = F(é—il)for B3> —1and t > 0. Applying these results, we
then show that A generates a nondegenerate local 1-times (respectively, O-times) in-
tegrated C-cosine function on X if and only if ACPy(A,Cg(-),0,Cx) has a unique
weak solution in C([0, Tp), X)(respectively, in C([0, Tp), X)) for all z € X and
g € L} ([0, Tp), X) if and only if ACP5(A, 0,0, Cz) has a unique weak solution in
C([0, Tp), X)(respectively, in CL([0,Tp), X)) for all 2 € X (see Theorems 2.6 and
2.7 below), which can be applied to show that A generates a nondegenerate local
(0-times integrated) C-cosine function on X if and only if ACP2(A, Cg(-),Cz, Cy)
has a unique weak solution in C([0, T;), X) for all z,y € X and g € L}, ([0, Tp), X)
if and only if ACP2(A, Cy(+), Cz, 0) has a unique weak solution in C([0, Ty), X) for
all z € Xand g € L}, ([0, Tp), X) if and only if ACP5(A, 0, Cz, Cy) has a unique
weak solution in C([0, Tp), X) for all z, y € X if and only if ACPy(A, 0, Cx,0) has
a unique weak solution in C([0, T9), X) for all z € X (see Theorem 2.8 below). Our
results are still new even when o = 0. An illustrative example concerning these

theorems is also presented in the final part of this paper.

2. ExisTENCE THEOREMS

In this section, we always assume that C € B(X) is an injection. We first inves-
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tigate an important lemma which is used in the proofs of the following theorems,
and has been obtained by Ball in [3] when A is densely defined.

Lemma 2.1. Let A:D(A) C X — X be a closed linear operator. Assume that
xo, Yo € X and <y*, zog >=< z*,yo > for all z* € D(A*) and y* € A*z*. Then
xo € D(A) and Axg = Yo-

Proof. If not, then there exist z*,y* € X* such that y*(zo) + 2*(y0) # 0
and y*(x) + 2*(Az) = 0 for all z € D(A), and so < —y*, z >=< z*, Az > for
all x € D(A). Hence z* € D(A*) and —y* € A*z*. By hypothesis, we have
< —y*,me >=< x*,yo > or equivalently, y*(xo) + 2*(yo) = 0. We obtain a
contradiction. Consequently, zo € D(A) and Az = yo. [ ]

By slightly modifying the proofs of [11. Proposition 1.5 ] and [11. Lemma 1.6
], the next proposition and lemma are also attained, and so their proofs are omitted.

Proposition 2.2. Let A be the generator of a nondegenerate local a-times
integrated C-cosine function C(-) on X. Then

(2.1) C(0)=C on X if «=0, and C(0)=0 (the zero operator) on X if a>0;
(2.2) O is injective and C~tAC = A4;

(2.3) C(t)reD(A) and AC(t)x=C(t)Ax for all zrte D(A) and 0<t<Ty;

(2.4) /0 /08 C(r)xzdrds € D(A) and A fot Jy C(r)zdrds = C(t)x — jo(t)Ca

forallz e Xand 0 <t < Ty;

(2.5) R(C(t)) c D(A) forall 0 <t < Tp.

Lemma 2.3. Let A be the generator of a nondegenerate local a-times inte-
grated C-cosine function C(-) on X, and let 0 < t¢ < Ty be fixed. Assume that
u € C([0, tp), X) satisfies u(t) = A [} (t — s)u(s)ds for all 0 < ¢ < to. Then u =0
on [0, tg).

Theorem 2.4. Let a > 0, and A: D(A) C X — X be a closed linear operator
such that C"'AC = A. Then the following are equivalent :

(i) A generates a nondegenerate local (a+ 1)-times integrated C-cosine function
S(+) on X;
(ii) For each zeX and geL;, ([0,T),X), ACP2(A, ja—1(-)Cz + ja—1 * Cg(-),

0,0) has a unique weak solution in C([0, T), X);
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(iii) For each z € X, ACP2(A, jo—1(-)Cz,0,0) has a unique weak solution in

C([OvTO)vx)
Here L} .([0,Tp),X) denotes the set of all locally Bochner integrable functions
from [0, Tp) into X and jz * g(t) = [ijs(t — s)g(s)ds for all 0 < ¢ < T and

g € L}.([0,T), X). Moreover,
(i) [|S()]| < Ke*! for all t > 0 and for some K,w > 0 if and only if for each
x € X, ||u(t,Cx)|| < Ke“t||z|| for all ¢ > 0;

(ii) ||S(t+ h) — S(t)|| < KheM for all t,h > 0 and for some K,w > 0 if
and only if for each = € X, |Ju(t 4 h, Cz) — u(t, Cz)|| < Khe“(t+M)||z|| for
all ¢,h > 0;

(iii) Foreach0 <ty < Tp, ||S(t+h)=S(#)|| < Ki,hforall0 <t h <t+h <t
and for some K, > 0 if and only if for each x € X and 0 < t( < Ty,
|lu(t + h,Cz) —u(t,Cx)|| < Ky, h||z| forall 0 <t,h <t+h <ty and for
some Ky, > 0.

Proof. (i)=-(ii). Indeed, if A is the generator of a nondegenerate local (o +1)-
times integrated C-cosine function S(-) on X and = € X is given. Then for z* €
D(A*) and y* € A*z*, we have < S(t)z,z* >= [| [ < S(r)z,y* > drds +
Jat1(t) < Cz,x* > forall 0 < t < Tp, and so

d t .
7 < S(t)x, z* >:/ < S(s)x,y* > ds+ja(t) < Cx,z* >
0
for all 0 <t < Ty. Hence
d? .
a2 < St)x,z* >=< S(t)x,y" > +ja-1(t) < Cz,z* >

for all 0 < t < Tp. Now if g € C([0, Tp), X) is given, then

/St—s s)ds,z* >

:/ < S(t—s)g(s)ds,z* > ds

0
t o~ t
:/ <S(t—s)g(s),y*>ds—|—/ <Jat1(t — s)Cg(s),z* > ds
0 0

forall 0 <t < Ty. HereS y_fofo r)ydrds forall 0 <t < Ty and y € X.
By differentiation, we have

/St—s s)ds,z* >

:/ <S(t—s)g( ),y >d$—|—/ <Ja(t—s)Cg(s),z" > ds
0 0
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forall 0 <t < Ty, and

dt2 /St—s s)ds,z* >

t
:/ < S(t—s)g(s),y" >d$—|—/ <Ja—1(t —s)Cg(s),z" > ds
0 0

for all ¢ € (0,Tp), where S(t)y = fo r)ydr forall 0 < t < Ty and y € X.
Next we set u(-) = S(-)z + S x g(+), then u € C([0,Tp),X), u(0) = 0 and
% < u(t),z* > |4—o = 0 and 4 dtg < u(t),z* >=< u(t),y* > + < jo—1(t)Cx +
Ja—1 % Cg(t),z* > for t € (0,Tp), which implies that « € C([0, Ty), X) is a weak
solution of ACPy(A,ja—1(-)Cx + ja—1 * Cg(-), 0, 0) satisfying «(0) = 0. Finally,
we turn to the case that g is only an L}, ([0, Tp), X) function and {g.,}5°_, is a
sequence in C([0,Tp), X) such that g,,, — g in L1([0,¢e], X) for all 0 < o < Tp.
We define
u(-) =S()x+ S*g()

and
um(-) = S()x + 5 * gm()
for m € N, then ||u,,, (t) — u(t)| < f sup 1S (7)[|lgm(s) — g(s)]|ds for all 0 <
0,to
t <ty <Tp, and SO uy, () — u() unlformly on compact subsets of [0, 7p). Hence
u(-) is continuous on [0, Tp). The previous argument shows that wu,, (0) = 0, 4 <

U (t), 2% > 12070 and L5 < up (1), 2% >=< up(t),y* > + < jo_1(t)Cz, z* >
+ <Ja—1*Cgn(t),x* > for t € (0,Tp). By integration, we have

d t .
7 < U (), 2" > = / < Um(8),y" > ds+ < jo(t)Cz,z* >
0
+ <Ja*xCgn(t),z* >

and

t

< Up(t), " > = / / < U (1), y" > drds+ < jo41(t)Crx, ™ >
o Jo
+ < joc—f—l * Cgm(t)v >

for all 0 <t < Ty. Letting m — oo, we get that

/ < U (8),y" > ds+ < Jo()Cx,x™ > + < Jo *Cgp(-), " >
0

— / <u(s),y* > ds+ <jao(-)Cx,z* >+ < jo *Cyg(:), 2" >
0
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uniformly on compact subsets of [0, 7p) and

t s
<u(t),z* > = / / <u(r),y* > drds+ < jot1(t)Cz,z* >
0o Jo
+ <Jat+1*Cg(t), 2" >

for all 0 < ¢ < Tp. In particular, u(0) = 0, 4 < u(t),z* > |;—o = 0 and % <
u(t), z* >=< u(t),y* > + < ja—1(t)Cx,2* > + < jo—1 *Cg(t),a* > for t €
(0,Tp), which implies that u € C([0, Tp), X) is a weak solution of ACPy(A, jo—1(+)
Cz + jo—1 *Cyg(+),0,0) satisfying «w(0) = 0. To prove the uniqueness, let v be
another weak solution of ACP3(A, jo—1(-)Cz + ja—1 *Cg(+),0,0) in C([0, Tp), X)
and w(-) = u(-) — v(-) on [0, Ty). Applying the continuity of w, we get that

cutiat> = ([ [ wtan

forall 0 <t < Ty, 2" € D(A¥) and y* € A*z™,

which together with Lemma 2.1 implies that [, [’ w(r)drds € D(A) and A [} [
w(r)drds = w(t) for all 0 < ¢t < Tp. It follows from Lemma 2.3 that we have
w =0 on [0, Ty) or equivalently, u = v on [0, Tp).

(iii)=-(i). Indeed, if the unique weak solution of ACP2(A,j,—1(-)Cz,0,0) in
C([0, Tp), X) is denoted by w(-, Cz) for all x € X. We define the map S(¢) : X — X
by S(t)x = w(t,Czx) for all z € X and 0 < ¢t < Ty. Clearly, S(-)z : [0,7p) — X
is continuous for all x € X. It follows from the uniqueness of weak solutions of
ACP3(A,ja-1(-)Cz,0,0) in C([0, Tp), X) and Lemma 2.1 that S(¢) is linear for all
0<t<Ty S()(={S(t)]0<t < Tp}) commutes with C and is nondegenerate.
Next we shall show that S(-) c B(X). By the closed graph theorem, we need
only to show that the linear map n : X — C([0, Tp), X) defined by n(z) = S()z
for x € X, is a continuous function from the Banach space X into the Frechet
space C([0,Tp), X) with the quasi-norm | - | defined by |v| = Z 2k(1‘i|‘\];|\k for
v € C([0,Tp), X), where ||v||x = tren[foi)li] |lv(t)||. Indeed, if {xm} is a sequence

m=1

in X such that z,,, — = in X and n(x,,) — u(-) in C([0, Tp), X) as m — oo. Then
for 2* € D(A*) and y* € A*z*, we have

t s
/ / < S(r)xm,y* > drds
t s
/ / )T, ° > drds —/ / < Ja—1(r)Cy, z* > drds

=< S(t)xm, 2" > —jar1(t) < Cxpy, ™ >
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forall 0 <t < Ty, and so
t s
< u(t),x* >=jat+1(t) < Cz,z* > —I—/ / <u(r),y* > drds
0 Jo

forall 0 < ¢ < Tp. Hence < u(:),z* > W2H[0,Tp)), < u(t),z* > |img =

loc
4 < out),z* > |0 = 0 and L, < u(t),z* >= jo_i(t) < Cz,a* > + <
u(t),y* > for ae. 0 < t < Ty, which implies that » is a weak solution of
ACP2(A,ja-1(-)Cz,0,0) in C(]0,Tp), X). The uniqueness of weak solutions in
C([0,Tp), X) implies that u(-) = S(-)z = n(x). Consequently, n is closed. In
order, we shall show that S(-) is a local (« + 1)-times integrated C-cosine function
on X. Indeed, if z € X and 0 < s < Tj are given. We first assume that oo > 1 and

define

va(t) = ﬁ{[/ot%—/ot—/os](t—i—s—r)O‘S(r)der

+ A_ﬂ(s —t+r)*S(r)Cxdr + / (t—s+r)*S(r)Cxdr

[t—sl
[t—sl
—I—/ (|t = s| +7r)*S(r)Cxdr}
0
forall 0 <t <t+s < Ty Then for z* € D(A*) and y* € A*x*, we obtain from
[11, Lemma 2.1] that
<wvs(t),y* >
1 t+s t
et
Lla+1)" /g 0
S d2
—/ [(t-4 5= 1)°[ < S()Ca,a° > — < jaa(r)Cor,a° >ldr
0

t d? .
—|—/ (s—t+ r)o‘[w < S(r)Cx,x* > — < jo_1(r)C?z, z* >]dr
[t—s]

s d? .
—|—/ (t—s+ r)o‘[W < S(r)Cx,z* > — < jo_1(r)C?x, z* >]dr
[t—s]

[t—s| d2
—|—/ (|t — s —HA)OC[W < S(r)Cx,z* > — < jo_1(r)C?z, 2* >|dr}
0
1 t+s t s d2
:m{[/o —/0—/0](t+s—r) o < S(r)Cr,a* > dr
t d2

+A_S|(s — t—i—r)o‘w < S(r)Cx,z* > dr
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s d2
t— “— < S(r)Cx,z* > d
—|—A 3|( s+r) 53 < (r)Cx,a™ > dr

[t—s| 2
—I—/O (|t —s|+r)* F<S( r)Cx, ™ > dr}
forall 0 <t <t+ s < Tp. Using integration by parts twice, we also have, for
0<t<t+s<T,.

< vs(

t+s
Ta—1) / / / (t+s—r)*"= < S(r)Cx,x™ > dr

S

—I—/ (s—t+7)*"2 < S(r)Cx, x* > dr—i—/ (t—s+7)*"2 < S(r)Cx, z* >dr
[t—s|

[t—s|
[t—s|
—|—/ (|t—s|+7r)*"2 < S(r)Cx,z* > dr}—2jo_1(s) < S(t)Czx, z* >
0

~2jo_1(t) < S(s)Ca,a" >,

L <ug(t), 3% > [1=0 = 0 =< v(t), 2* > |4—o and
d2
Pl <v8(t)

t+s
F(a—l / / / (t+s—r)*"= < S(r)Cx,z™ > dr

S

t
—|—/ (s—t+7)*"2 < S(r)Cx, x* > dr—l—/ (t—s+7)*"2 <S(r)Cx, x* >dr

[t—s] [t—s|

jt—sf , _
—|—/ (|t —s|+7r)** < S(r)Cx,x* > dr} — 2ja-1(s) < S(t)Czx,z* >
0
=< 0s(t),y" > 42 < ja-1(t)CS(s)z, 2" >
when o« > 1. Similarly, we can show that for 0 < ¢ <t+ s < Ty
<vs(t),y* > =< S(t+s)Cx,z* >+ < S(|t — s])Cx, 2™ >
-2 < S(s)Cx,x* > -2 < S(t)Cx, ™ >,

4 < wg(t), 2" > |1=0 = 0 =< v,(t), 2* > |4—o and
d2

a2 < vs(t), 2" > =< S(t+ s)Cx, 2" > + < S(|t — s|)Cx, z* >

-2 < S(t)Cx,x™ >

=< 0s(t),y" > 42 <ja-1(t)CS(s)z, 2" >
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when o = 1. Applying the uniqueness of weak solutions of ACPy(A, 2j,—1(+)
CS(s)x,0,0) in C([0,Tp), X), we get that vs(t) = 25(¢)S(s)x for all 0 < ¢t <
t + s < Ty. Consequently, S(-) is a nondegenerate local (« + 1)-times integrated
C-cosine function on X when o > 1. We now turn to the case 0 < a < 1. By
hypothesis, [, w(s,Cx)ds is a unique weak solution of ACP3(A, j,(-)Cz,0,0) in
C'([0,Ty), X) for all z € X. Just as in the proof of the case o > 1, we can show
that S(-) |s a nondegenerate local (o + 2)-times integrated C-cosine function on X.
Here S(t)x = fo s)xds forall 0 < ¢t < Ty and x € X. An easy computation
shows that S(-)isa nondegenerate local (a+ 1)-times integrated C-cosine function
on X. Finally, we shall show that A is its generator. Indeed, if B denotes the
generator of S(-) and = € D(B) is given. Then for z* € D(A*) and y* € A*z*,
we have

2
< St)x,y* > = 2 < S(t)x,x* > — <jo-1(t)Cx,z* >
=< S(t)Bz,z* >
for a.e. 0 <t < Ty because S(-)x is a weak solution of ACPy(A, j,—1(+)Cz,0,0).
The strong continuity of S(-) implies that < S(t)z,y* > =< S(t)Bzx,z* >
for all 0 < ¢t < Ty. Applying Lemma 2.1, we get that S(¢t)x € D(A) and

AS(t)z = S(t)Bx for all 0 < t < Tpy. Since S(-)Bz is a weak solution of
ACPy (A, jo-1(-)CBz,0,0), we also have

t s
</ / S(r)Bxdrds, y* >
0 Jo
t s
= / / < S(r)Bz,y* > drds

/ / g2 < S(1)Bz, 2" > = <Jo1(r)CBz, 2" >drds
=< S(t)Bz, 2" > — < jot+1(t)CBx, z* >

for all z* € D(A*), y* € A*z* and 0 < ¢t < Ty. Applying Lemma 2.1 again, we
get that

fo Jo S(r)Bazdrds € D(A) and Afo Jo S(r)Badrds = S(t)Bx — jat1(t)CBx for
all 0 <t < Ty, and s0 —jat1(t)Cx = [ [ S(r)Bzdrds — S(t)z € D(A) and

—Jjat1(t)ACz = A /0 /0 S(r)Badrds — AS(t)x
= [S(t)Bx — jo+1(t)CBz] — S(t)Bx
= —ja+1(t)CB$
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for all 0 < ¢t < Ty. Hence x € D(C™'AC) and C"'ACz = Bz. Having shown
that B c ClAC. We next show that A C B. Indeed, if z € D(A) is given, then
I3 S S(r)xdrds, [ [ S(r)Axdrds € D(A),

(2.6) S(H)7 = jusr (H)Cz + A /0 /0 " S(r)xdrds
and
(2.7) S(t)Ar = jo+1(t)CAz + A/Ot /08 S(r)Azxdrds

for all 0 <t< Ty ltis easy to see from (2.6) and (2.7) that the function ¢t —
I3 [3 S(r)Azdrds — A [} [ S(r)zdrds is a weak solution of ACP»(A,0,0,0) in
C([O To) X), and hence it must be the zero function on [0,7y) or equivalently,
I3 [s S(r)Azdrds = A [} [ S(r)adrds for all 0 < t < Ty, which together with
(2.6) |mpI|es that € D(B) and Bx = Az. Consequently, A = B.

Theorem 2.5. Let o > 0, and A: D(A) C X — X be a closed linear operator
such that C"'AC = A. Then the following are equivalent :

(i) Foreachz e Xand g € L}, ([0,Tp), X), ACP2(A, ja(-)Cz +jo * Cg(-), 0,0)
has a unique strong solution in C2([0, Ty), X) N C([0, To), [D(A)]);

(ii) For each x € X, ACP2(A,j.(-)Cz,0,0) has a unique strong solution in
C2([0, To), X) NC([0, Tp), [D(A)));

(iii) A generates a nondegenerate local a-times integrated C-cosine function C(-)
on X;

(iv) For each z € X and g € L}, ([0,T),X), ACP2(A,ja—1(-)Cx + ja—1 *
Cg(+),0,0) has a unique weak solution in C*([0, Tp), X);

(v) For each x € X,ACP3(A,jo—1(-)Cz,0,0) has a unique weak solution in
Cl([O,To),X).

Moreover, ||C(t)|| < Ke** for all t > 0 and for some K,w > 0 if and only if
for each = € X, the unique weak solution (-, Cz) of ACP2(A,j,—1(-)Cz,0,0)
satisfies ||u(t + h, Cz) — u(t, Cx)|| < Khe*M)||z|| for all ¢, h > 0.

Proof. The equivalence relations (i)-(iii) follow from [11, Theorem 2.3]. To
show that (iii)=-(iv). Indeed, if C(-) is a nondegenerate local a-times integrated
C-cosine function on X with generator A, then S(-) is a nondegenerate local («+1)-
times integrated C-cosine function on X with generator A and satisfies S(-)x €
C1(]0, Ty), X) for all z € X, where S(t)z = fo r)azdr. It follows from Theorem
2.4 that S(-)x + S * g(-) is the unique weak solutlon of ACP3(A,jo—1(-)Cz +
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ja—1%Cg(+),0,0) in CL([0,Ty), X) for all z € X and g € L}, ([0, Tp), X). Finally,
we shall show that (v)=-(iii). Indeed, if u(-,Cxz) denotes the unique weak solution
of ACP2(A,j,_1(-)Cx,0,0) in C}([0,Tp), X) and S(t) : X — X is defined by
S(t)x = u(t,Czx) for all 0 < ¢t < Ty and x € X. Applying Theorem 2.4, we
get that S(-) is a nondegenerate local (« + 1)-times integrated C-cosine function
on X with generator A, which implies that C(-) is a nondegenerate local «-times
integrated C-cosine function on X with generator A, where C(t)x = %S(t)x for all

0<t<Tyand z € X.

Applying Theorem 2.5, the next theorem concerning local 1-times integrated
C-cosine functions is also obtained.

Theorem 2.6. Let A: D(A) C X — X be a closed linear operator such that
C~1AC = A. Then the following are equivalent :

(i) A generates a nondegenerate local 1-times integrated C-cosine function C(-)
on X;

(ii) Foreachz € Xandg € L} (]0,Tp), X), ACPo(A, Cg(-),0,Cz) has a unique

loc
weak solution in C([0, T), X);
(iif) For each = € X, ACP3(A,0,0,Cz) has a unique weak solution (-, Cz) in
C([OvTO)vx)

Moreover,

(i) ()| < Ke“t for all t > 0 and for some K,w > 0 if and only if for each
z e X, |Ju(t,Cz)|| < Ke**||z| for all ¢ > 0;

(i) |C(t + h) — C(t)|| < Khe*(t+1) for all t,h > 0 and for some K,w > 0 if
and only if for each z € X, |lu(t 4+ h, Cz) — u(t, Cz)|| < Khe“t+m) | z|| for
all ¢, h > 0;

(iii) Foreach0 <ty < T, ||C(t+h)—C(t)|] < Ky,hforall0 <t h <t+h <tg
and for some K, > 0 if and only if for each x € X and 0 < to < Ty,
|lu(t + h,Cz) — u(t,Cz)|| < Ky h||z| forall 0 < ¢, h <t+h <ty and for
some K;, > 0.

Proof. We first show that (i)=-(ii). Indeed, if A generates a nondegenerate
local 1-times integrated C-cosine function on X. Then for each x € X and g €
L}..([0, Tp), X), we obtain from Theorem 2.5 that ACP4(A, Cz + jo x Cg(+),0,0)
has a unique weak solution u in C1([0, Tp), X) which satisfies u(0) = 0, so that for
each z* € D(A*) and y* € A*z*, we have < u/(t),z* > |4—0 = % < u(t),z* >

=0 = 0, < v/(-),z* >€ W ([0, Tp)) and

loc
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d? d?
— <d(t),z" > = B < u(t), x* >

d .
= Ek u(t),y* >+ < Cx +joxCg(t),z* >]

=<u'(t),y* >+ < Cg(t),z* >

forae. 0 <t <Tp. Clearly, 4 < u/(t),z* >= % < u(t),z* >=< u(t),y* >
+ < Cz +jo* Cg(t),z* > for all 0 < ¢t < Tp. In particular, 4 < «/(t),z* >
lt=o0 =< Cz,x* >. It follows that «/ is a weak solution of ACP5(A,Cg,0,Cxz)
in C([0,Tp),X). The uniqueness of weak solutions of ACP4(A,Cg,0,Cx) in
C([0,Tp), X) follows from the uniqueness of weak solutions of ACP2(A,0,0,0)
in C([0,Tp),X). In order, we show that (iii)=-(i). Indeed, if u(-,z) denotes the
unique weak solution of ACP4(A,0,0,Cz) in C([0,Ty), X) for all z € X, then
v = jo * u is the unique weak solution of ACP4(A,Cz,0,0) in C([0, Tp), X).
Applying Theorem 2.5, we get that A generates a nondegenerate local 1-times in-
tegrated C-cosine function C(-) on X which is defined by C(t)x = u(t, z) for all

0<t<Tpand z € X.

By slightly modifying the proof of Theorem 2.5, we can apply Theorem 2.6 to
prove the next theorem concerning local (0-times integrated) C-cosine functions.

Theorem 2.7. Let A: D(A) C X — X be a closed linear operator such that
C~1AC = A. Then the following are equivalent :

(i) Foreach z € Xand g € L} ([0, Tp), X), ACP2(A, Cz +jo x Cg(-),0,0) has
a unique strong solution in C2([0, Tp), X) N C([0, Ty), [D(A)]);

(ii) Foreachz € X, ACPy(A, Cz,0,0) has a unique strong solution in C2([0, Tp),
X) N C([0, To), [B(A)]);

(iii) A generates a nondegenerate local (0-times integrated) C-cosine function
C(-) on X;

(iv) Foreachz € Xand g € L}, ([0, Tp), X), ACP2(A, Cg(-), 0, Cz) has a unique
weak solution in C1([0, Tp), X);

(v) For each z € X, ACP3(A,0,0,Cz) has a unique weak solution (-, Cz) in
Cl([O,TO),X).

Moreover, ||C(t)|] < Ke** for all ¢t > 0 and for some K,w > 0 if and only if for
each z € X, ||u(t 4+ h,Cz) — u(t, Cz)|| < Khe?t+h) | z|| for all £, h > 0.

Similarly, we can apply Theorem 2.7 to prove the next theorem concerning local
(0-times integrated) C-cosine functions which has been obtained in [9] when A is
densely defined.
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Theorem 2.8. Let A: D(A) C X — X be a closed linear operator such that
C~1AC = A. Then the following are equivalent :

(i) Foreach z,y € Xand g€ L} ([0, Tp),X), ACPo(A, Cz+j1(-)Cy+jo*Cg(-),

loc

0,0) has a unigque strong solution in C2([0, Tp), X) N C([0, Ty), [D(A)]);
(ii) Foreachz € Xand g € L} ([0, Tp),X), ACPy(A, Cz +jo*Cg(+),0,0) has

loc
a unique strong solution in C2([0, Ty), X) N C([0, Tp), [D(A)]);
(iii) For each z,y € X, ACP3(A, Cz+j1(-)Cy, 0, 0) has a unique strong solution
in C*([0, Tp), X) N C([0, Tp), [D(A)));

(iv) A generates a nondegenerate local (0-times integrated) C-cosine function
C(-) on X;

(v) For each z,y € Xand g € L} ([0,Tp),X), ACPy(A,Cg(-),Cx,Cy) has a

loc

unique weak solution in C([0, T), X);
(vi) Foreachx € Xandg € Li ([0, Tp),X), ACPy(A, Cg(-), Cz, 0) has a unique

loc
weak solution in C([0, T), X);
(vii) For each z,y € X, ACPy(A,0,Cz,Cy) has a unique weak solution in
C([07T0)7X)1

(viii) For each x € X, ACP4(A,0,Cz,0) has a unique weak solution u(-,Cz) in
C([OvTO)vx)

Moreover,

(i) |C@t)| < Ke for all t > 0 and for some K,w > 0 if and only if for each
z € X, |Ju(t,Cz)|| < Ke**||z| for all ¢ > 0;

(i) |C(t + h) — C(t)|| < Khe*(t+1) for all t,h > 0 and for some K,w > 0 if
and only if for each z € X, |lu(t 4+ h, Cz) — u(t, Cz)|| < Khe“t+m) | z|| for
all ¢, h > 0;

(iii) Foreach0 <ty < T, ||C(t+h)—C(t)|| < Ky,hforall0 <t h <t+h <tg
and for some K, > 0 if and only if for each x € X and 0 < to < Ty,
|lu(t + h,Cz) — u(t,Cz)|| < Ky, h||z| forall 0 < ¢, h <t+h <ty and for
some K;, > 0.

We end this paper with a simple illustrative example. Let X = C,(R)( or
L*(R)), and A be the maximal differential operator in X defined by Au =

k ,

a;Diu on R for all w € D(A), then UC,(R) ( or Cy(R)) = D(A). Here
5=0
ag, a,- -, ax € C and Diu(z) = ul)(z) for all z € R. It is shown in [2, Theo-
rem 6.7] that A generates an exponentially bounded, norm continuous 1-times inte-

grated cosine function C(-) on X which is defined by (C(t)f)(z) = \/LQ_W(@ * f) ()
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k ,
forall f € X and ¢t > 0 if the real-valued polynomial p(z) = > a;(iz)’ sat-
j=0
isfies sup p(x) < oco. Here ¢, denotes the inverse Fourier transform of ¢; with

z€R
¢e(x) = [§ cosh(y/p(x)s)ds. Applying Theorem 2.6, we get that for each f € X
and continuous function g on [0,7y) x R with fot sup |g(s,z)|ds < oo for all
z€R

0 <t < Ty, the function w on [0, Tp) x R defined by u(t, z) = \/LQ_W e @(m -

y) f(y)dy + \/%—W fot 17 q;;_/s(x —y)g(s,y)dyds forall 0 <t < Ty and z € R, is
the unique weak solution of

0u(t, x) b 0 ..
g = > aj(5-)ult,x) + g(t z) for t € (0,Tp) and ae. x €R,
j=0

u(0,z) =0 and %(O,w) = f(x) forae z€R

in C([0, T), X).
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