TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 5, pp. 2027-2042, October 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

ON LOCAL INTEGRATED C-COSINE FUNCTION AND WEAK SOLUTION OF SECOND ORDER ABSTRACT CAUCHY PROBLEM

Chung-Cheng Kuo

Abstract. Let α be a nonnegative number, $C : X \to X$ a bounded linear injection on a Banach space X and $A : D(A) \subset X \to X$ a closed linear operator in X which satisfies $C^{-1}AC = A$ and may not be densely defined. We prove some equivalence relations between the generation of a local α -times integrated C-cosine function on X with generator A and the uniqueness existence of weak solutions of the abstract Cauchy problem:

ACP₂(A, f, x, y)
$$\begin{cases} u''(t) = Au(t) + f(t) & \text{ for } t \in (0, T_0), \\ u(0) = x, u'(0) = y, \end{cases}$$

where $x, y \in X$ are given and f is an X-valued function defined on a subset of \mathbb{R} .

1. INTRODUCTION

Let X be a Banach space over \mathbb{F} with norm $\|\cdot\|$ and dual space X^{*}, and let B(X) denote the set of all bounded linear operators from X into itself. For each $0 < T_0 \leq \infty$, we consider the following abstract Cauchy problem:

ACP₂(A, f, x, y)
$$\begin{cases} u''(t) = Au(t) + f(t) & \text{for } t \in (0, T_0), \\ u(0) = x, u'(0) = y, \end{cases}$$

where $x, y \in X$ are given, $A : D(A) \subset X \to X$ is a closed linear operator and f is an X-valued function defined on a subset of \mathbb{R} containing $(0, T_0)$. A function u is called a strong solution of $ACP_2(A, f, x, y)$, if $u \in C^2((0, T_0), X) \cap C^1([0, T_0), X) \cap$ $C((0, T_0), [D(A)])$ and satisfies $ACP_2(A, f, x, y)$. Here [D(A)] denotes the Banach

Communicated by Sen-Yen Shaw.

Received January 14, 2008, accepted March 20, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 47D60, 47D62.

Key words and phrases: Local integrated C-cosine function, Generator, Abstract Cauchy problem.

space D(A) equipped with the graph norm $|x|_A = ||x|| + ||Ax||$ for $x \in D(A)$. For each $\alpha > 0$ and $C \in B(X)$, a family $C(\cdot)(= \{C(t) \mid 0 \le t < T_0\})$ in B(X) is called a local α -times integrated C-cosine function on X if it is strongly continuous, $C(\cdot)C = CC(\cdot)$, and satisfies

$$2C(t)C(s)x = \frac{1}{\Gamma(\alpha)} \Big\{ \Big[\int_0^{t+s} - \int_0^t - \int_0^s \Big] (t+s-r)^{\alpha-1} C(r) C x dr \\ + \int_{|t-s|}^t (s-t+r)^{\alpha-1} C(r) C x dr \\ + \int_{|t-s|}^s (t-s+r)^{\alpha-1} C(r) C x dr \\ + \int_0^{|t-s|} (|t-s|+r)^{\alpha-1} C(r) C x dr \Big\}$$

for all $0 \le t, s, t+s < T_0$ and $x \in X$; or called a local (0-times integrated) C-cosine function on X if it is strongly continuous, $C(\cdot)C = CC(\cdot)$, and satisfies

(1.2)
$$2C(t)C(s)x = C(t+s)Cx + C(|t-s|)Cx$$
 for all $0 \le t, s, t+s < T_0$ and $x \in X$,

where $\Gamma(\cdot)$ denotes the Gamma function. Moreover, we say that $C(\cdot)$ is nondegenerate, if x = 0 whenever C(t)x = 0 for all $0 \le t < T_0$. In this case, its (integral) generator $A : D(A) \subset X \to X$ is a closed linear operator in X defined by $D(A) = \{x \mid x \in X \text{ and there exists a } y_x \in X \text{ such that } C(t)x - \frac{t^{\alpha}}{\Gamma(\alpha+1)}Cx =$ $\int_0^t \int_0^s \mathbb{C}(r) y_x dr ds$ for all $0 \le t < T_0$ and $Ax = y_x$ for all $x \in \mathbb{D}(A)$. In general, a local α -times integrated C-cosine function on X is also called an α -times integrated C-cosine function on X if $T_0 = \infty$; or called a local α -times integrated cosine function on X if C = I the identity operator on X. The relation between the existence of an exponentially bounded α -times integrated C-cosine function with generator A and the unique existence of strong solutions of $ACP_2(A, f, x, y)$ have been considered as in [4, 5, 9, 12, 14, 15] if $\alpha \in \mathbb{N} \cup \{0\}$. When $\alpha = 0$ and A is densely defined, some results concerning the relation between the existence of a C-cosine function with generator A and the unique existence of weak solutions of $ACP_2(A, f, x, y)$ are also investigated in [9], and in [7] for the case C = I. Just as in the case $\alpha \in \mathbb{N} \cup \{0\}$, some equivalence relations between the existence of an α -times integrated C-cosine function on X and the unique existence of strong solutions for $ACP_2(A, f, x, y)$ are also obtained in [10,11] for which the resolvent set $\rho(A)$ of A may be nonempty and D(A) may be dense in X. Several examples concerning α -times integrated cosine functions with densely defined generators are given as in [8], and in [16] when integrated cosine functions are exponentially bounded. Unfortunately, the generator of a local C-cosine function or a local α -times integrated cosine function may not be densely defined except for

the case $\alpha = 0$ and C = I. In this case, the adjoint of a closed linear operator $A: D(A) \subset X \to X$ is the multi-valued function $A^*: D(A^*) \subset X^* \to 2^{X^*}$ defined by $D(A^*) = \{x^* \in X^* \mid \text{ there exists a } y^*_{x^*} \in X^* \text{ such that } \langle x^*, Ax \rangle = \langle$ $y_{x^*}^*, x > \text{ for all } x \in D(A)$ and $A^*x^* = \{y_{x^*}^* \in X^* \mid \langle x^*, Ax \rangle = \langle y_{x^*}^*, x \rangle$ for all $x \in D(A)$. In particular, we write $A^*x^* = y_{x^*}^*$ for $x^* \in D(A^*)$ if A is densely defined, where 2^{X^*} denotes the power set of X^{*} and either $\langle x^*, x \rangle$ or $\langle x, x^* \rangle$ denotes the value of x^* at x for all $x \in X$ and $x^* \in X^*$. Moreover, a function u is called a weak solution of $ACP_2(A, f, x, y)$, if $\langle u(\cdot), x^* \rangle \in$ $W^{2.1}_{loc}([0,T_0)), < u(t), x^* > |_{t=0} = < x, x^* >, \ \frac{d}{dt} < u(t), x^* > |_{t=0} = < y, x^* >$ and $\frac{d^2}{dt^2} < u(t), x^* > = < u(t), y^* > + < f(t), x^* > \text{ for a.e. } 0 \le t < T_0 \text{ whenever } x^* \in \mathbf{D}(A^*) \text{ and } y^* \in \mathbf{A}^* x^*.$ Here $W^{2.1}_{loc}([0, T_0)) = \{v \mid v : [0, T_0) \to \mathbb{F} \text{ is continuous continuous } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t < T_0 \text{ whenever } v > 0 \le t$ uously differentiable, v' is differentiable a.e. on $[0, T_0)$ and v'' is locally Lebesque integrable on $[0, T_0)$. The purpose of this paper is to obtain some generalization theorems concerning local α -times integrated C-cosine functions for $\alpha \geq 0$ when their generators may not be densely defined. We first investigate an important result (see Lemma 2.1 below) which has been deduced by Ball in [3] when A is densely defined. Under the assumption $C^{-1}AC = A$. We show that A generates a nondegenerate local $(\alpha+1)$ -times (respectively, α -times) integrated C-cosine function on X if and only if $ACP_2(A, j_{\alpha-1}(\cdot)Cx + j_{\alpha-1} * Cg(\cdot), 0, 0)$ has a unique weak solution in $C([0, T_0), X)$ (respectively, in $C^1([0, T_0), X)$) for all $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$ if and only if $ACP_2(A, j_{\alpha-1}(\cdot)Cx, 0, 0)$ has a unique weak solution in $C([0, T_0), X)$ (respectively, in $C^1([0, T_0), X)$) for all $x \in X$, where $\alpha > 0$ (see Theorems 2.4 and 2.5 below). Here $j_{\beta}(t) = \frac{t^{\beta}}{\Gamma(\beta+1)}$ for $\beta > -1$ and t > 0. Applying these results, we then show that A generates a nondegenerate local 1-times (respectively, 0-times) integrated C-cosine function on X if and only if $ACP_2(A, Cg(\cdot), 0, Cx)$ has a unique weak solution in $C([0, T_0), X)$ (respectively, in $C^1([0, T_0), X)$) for all $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$ if and only if $ACP_2(A, 0, 0, Cx)$ has a unique weak solution in $C([0, T_0), X)$ (respectively, in $C^1([0, T_0), X)$) for all $x \in X$ (see Theorems 2.6 and 2.7 below), which can be applied to show that A generates a nondegenerate local (0-times integrated) C-cosine function on X if and only if $ACP_2(A, Cq(\cdot), Cx, Cy)$ has a unique weak solution in $C([0, T_0), X)$ for all $x, y \in X$ and $g \in L^1_{loc}([0, T_0), X)$ if and only if $ACP_2(A, Cg(\cdot), Cx, 0)$ has a unique weak solution in $C([0, T_0), X)$ for all $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$ if and only if $ACP_2(A, 0, Cx, Cy)$ has a unique weak solution in $C([0, T_0), X)$ for all $x, y \in X$ if and only if $ACP_2(A, 0, Cx, 0)$ has a unique weak solution in $C([0, T_0), X)$ for all $x \in X$ (see Theorem 2.8 below). Our results are still new even when $\alpha = 0$. An illustrative example concerning these theorems is also presented in the final part of this paper.

2. EXISTENCE THEOREMS

In this section, we always assume that $C \in B(X)$ is an injection. We first inves-

tigate an important lemma which is used in the proofs of the following theorems, and has been obtained by Ball in [3] when A is densely defined.

Lemma 2.1. Let $A : D(A) \subset X \to X$ be a closed linear operator. Assume that $x_0, y_0 \in X$ and $\langle y^*, x_0 \rangle = \langle x^*, y_0 \rangle$ for all $x^* \in D(A^*)$ and $y^* \in A^*x^*$. Then $x_0 \in D(A)$ and $Ax_0 = y_0$.

Proof. If not, then there exist $x^*, y^* \in X^*$ such that $y^*(x_0) + x^*(y_0) \neq 0$ and $y^*(x) + x^*(Ax) = 0$ for all $x \in D(A)$, and so $\langle -y^*, x \rangle = \langle x^*, Ax \rangle$ for all $x \in D(A)$. Hence $x^* \in D(A^*)$ and $-y^* \in A^*x^*$. By hypothesis, we have $\langle -y^*, x_0 \rangle = \langle x^*, y_0 \rangle$ or equivalently, $y^*(x_0) + x^*(y_0) = 0$. We obtain a contradiction. Consequently, $x_0 \in D(A)$ and $Ax_0 = y_0$.

By slightly modifying the proofs of [11. Proposition 1.5] and [11. Lemma 1.6], the next proposition and lemma are also attained, and so their proofs are omitted.

Proposition 2.2. Let A be the generator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X. Then

- (2.1) C(0) = C on X if $\alpha = 0$, and C(0) = 0 (the zero operator) on X if $\alpha > 0$;
- (2.2) C is injective and $C^{-1}AC = A$;
- (2.3) $C(t)x \in D(A)$ and AC(t)x = C(t)Ax for all $x \in D(A)$ and $0 \le t < T_0$;
- (2.4) $\int_0^t \int_0^s C(r) x dr ds \in D(A) \text{ and } A \int_0^t \int_0^s C(r) x dr ds = C(t) x j_\alpha(t) C x$ for all $x \in X$ and $0 \le t < T_0$;
- (2.5) $R(C(t)) \subset \overline{D(A)}$ for all $0 \le t < T_0$.

Lemma 2.3. Let A be the generator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X, and let $0 < t_0 < T_0$ be fixed. Assume that $u \in C([0, t_0), X)$ satisfies $u(t) = A \int_0^t (t-s)u(s)ds$ for all $0 \le t < t_0$. Then $u \equiv 0$ on $[0, t_0)$.

Theorem 2.4. Let $\alpha > 0$, and $A : D(A) \subset X \to X$ be a closed linear operator such that $C^{-1}AC = A$. Then the following are equivalent :

- (i) A generates a nondegenerate local (α+1)-times integrated C-cosine function S(·) on X;
- (ii) For each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$, $ACP_2(A, j_{\alpha-1}(\cdot)Cx + j_{\alpha-1} * Cg(\cdot), 0, 0)$ has a unique weak solution in $C([0, T_0), X)$;

(iii) For each $x \in X$, ACP₂($A, j_{\alpha-1}(\cdot)Cx, 0, 0$) has a unique weak solution in $C([0, T_0), X)$.

Here $L^1_{loc}([0,T_0),X)$ denotes the set of all locally Bochner integrable functions from $[0,T_0)$ into X and $j_\beta * g(t) = \int_0^t j_\beta(t-s)g(s)ds$ for all $0 \le t < T_0$ and $g \in L^1_{loc}([0,T_0),X)$. Moreover,

- (i) $||S(t)|| \le Ke^{\omega t}$ for all $t \ge 0$ and for some $K, \omega \ge 0$ if and only if for each $x \in X$, $||u(t, Cx)|| \le Ke^{\omega t} ||x||$ for all $t \ge 0$;
- (ii) $||S(t+h) S(t)|| \leq Khe^{\omega(t+h)}$ for all $t, h \geq 0$ and for some $K, \omega \geq 0$ if and only if for each $x \in X$, $||u(t+h, Cx) - u(t, Cx)|| \leq Khe^{\omega(t+h)}||x||$ for all $t, h \geq 0$;
- (iii) For each $0 < t_0 < T_0$, $||S(t+h) S(t)|| \le K_{t_0}h$ for all $0 \le t, h \le t+h \le t_0$ and for some $K_{t_0} > 0$ if and only if for each $x \in X$ and $0 < t_0 < T_0$, $||u(t+h, Cx) - u(t, Cx)|| \le K_{t_0}h||x||$ for all $0 \le t, h \le t+h \le t_0$ and for some $K_{t_0} > 0$.

Proof. (i) \Rightarrow (ii). Indeed, if A is the generator of a nondegenerate local $(\alpha + 1)$ -times integrated C-cosine function $S(\cdot)$ on X and $x \in X$ is given. Then for $x^* \in D(A^*)$ and $y^* \in A^*x^*$, we have $\langle S(t)x, x^* \rangle = \int_0^t \int_0^s \langle S(r)x, y^* \rangle drds + j_{\alpha+1}(t) \langle Cx, x^* \rangle$ for all $0 \leq t < T_0$, and so

$$\frac{d}{dt} < S(t)x, x^* > = \int_0^t < S(s)x, y^* > ds + j_{\alpha}(t) < Cx, x^* >$$

for all $0 \le t < T_0$. Hence

$$\frac{d^2}{dt^2} < S(t)x, x^* > = < S(t)x, y^* > +\mathbf{j}_{\alpha-1}(t) < \mathbf{C}x, x^* >$$

for all $0 < t < T_0$. Now if $g \in C([0, T_0), X)$ is given, then

$$<\int_{0}^{t} S(t-s)g(s)ds, x^{*} >$$

$$=\int_{0}^{t} < S(t-s)g(s)ds, x^{*} > ds$$

$$=\int_{0}^{t} <\tilde{\widetilde{S}}(t-s)g(s), y^{*} > ds + \int_{0}^{t} < j_{\alpha+1}(t-s)Cg(s), x^{*} > ds$$

for all $0 \le t < T_0$. Here $\widetilde{\widetilde{S}}(t)y = \int_0^t \int_0^s S(r)y dr ds$ for all $0 \le t < T_0$ and $y \in \mathbf{X}$. By differentiation, we have

$$\frac{d}{dt} < \int_0^t S(t-s)g(s)ds, x^* >$$
$$= \int_0^t < \widetilde{S}(t-s)g(s), y^* > ds + \int_0^t < \mathbf{j}_\alpha(t-s)\mathbf{C}g(s), x^* > ds$$

for all $0 \le t < T_0$, and

$$\frac{d^2}{dt^2} < \int_0^t S(t-s)g(s)ds, x^* > \\ = \int_0^t < S(t-s)g(s), y^* > ds + \int_0^t < \mathbf{j}_{\alpha-1}(t-s)\mathbf{C}g(s), x^* > ds$$

for all $t \in (0, T_0)$, where $\widetilde{S}(t)y = \int_0^t S(r)ydr$ for all $0 \le t < T_0$ and $y \in X$. Next we set $u(\cdot) = S(\cdot)x + S * g(\cdot)$, then $u \in C([0, T_0), X)$, u(0) = 0 and $\frac{d}{dt} < u(t), x^* > |_{t=0} = 0$ and $\frac{d^2}{dt^2} < u(t), x^* > = < u(t), y^* > + < j_{\alpha-1}(t)Cx + j_{\alpha-1} * Cg(t), x^* >$ for $t \in (0, T_0)$, which implies that $u \in C([0, T_0), X)$ is a weak solution of $ACP_2(A, j_{\alpha-1}(\cdot)Cx + j_{\alpha-1} * Cg(\cdot), 0, 0)$ satisfying u(0) = 0. Finally, we turn to the case that g is only an $L^1_{loc}([0, T_0), X)$ function and $\{g_m\}_{m=1}^{\infty}$ is a sequence in $C([0, T_0), X)$ such that $g_m \to g$ in $L^1([0, t_0], X)$ for all $0 < t_0 < T_0$. We define

$$u(\cdot) = S(\cdot)x + S * g(\cdot)$$

and

$$u_m(\cdot) = S(\cdot)x + S * g_m(\cdot)$$

for $m \in \mathbb{N}$, then $||u_m(t) - u(t)|| \leq \int_0^{t_0} \sup_{\tau \in [0,t_0]} ||S(\tau)|| ||g_m(s) - g(s)||ds$ for all $0 \leq t \leq t_0 < T_0$, and so $u_m(\cdot) \to u(\cdot)$ uniformly on compact subsets of $[0, T_0)$. Hence $u(\cdot)$ is continuous on $[0, T_0)$. The previous argument shows that $u_m(0) = 0$, $\frac{d}{dt} < u_m(t)$, $x^* > |_{t=0}=0$ and $\frac{d^2}{dt^2} < u_m(t)$, $x^* > = < u_m(t)$, $y^* > + < \mathbf{j}_{\alpha-1}(t)\mathbf{C}x$, $x^* > + < \mathbf{j}_{\alpha-1} * \mathbf{C}g_m(t)$, $x^* >$ for $t \in (0, T_0)$. By integration, we have

$$\begin{split} \frac{d}{dt} &< u_m(t), x^* > = \int_0^t < u_m(s), y^* > ds + < \mathbf{j}_\alpha(t) \mathbf{C} x, x^* > \\ &+ < \mathbf{j}_\alpha * \mathbf{C} g_m(t), x^* > \end{split}$$

and

$$< u_m(t), x^* > = \int_0^t \int_0^s < u_m(r), y^* > dr ds + < \mathbf{j}_{\alpha+1}(t) \mathbf{C}x, x^* >$$

 $+ < \mathbf{j}_{\alpha+1} * \mathbf{C}g_m(t), x^* >$

for all $0 \le t < T_0$. Letting $m \to \infty$, we get that

$$\int_{0}^{\cdot} \langle u_{m}(s), y^{*} \rangle ds + \langle \mathbf{j}_{\alpha}(\cdot)\mathbf{C}x, x^{*} \rangle + \langle \mathbf{j}_{\alpha} * \mathbf{C}g_{m}(\cdot), x^{*} \rangle$$
$$\rightarrow \int_{0}^{\cdot} \langle u(s), y^{*} \rangle ds + \langle \mathbf{j}_{\alpha}(\cdot)\mathbf{C}x, x^{*} \rangle + \langle \mathbf{j}_{\alpha} * \mathbf{C}g(\cdot), x^{*} \rangle$$

2032

uniformly on compact subsets of $[0, T_0)$ and

$$< u(t), x^* > = \int_0^t \int_0^s < u(r), y^* > dr ds + < j_{\alpha+1}(t)Cx, x^* >$$

+ $< j_{\alpha+1} * Cg(t), x^* >$

for all $0 \le t < T_0$. In particular, u(0) = 0, $\frac{d}{dt} < u(t)$, $x^* > |_{t=0} = 0$ and $\frac{d^2}{dt^2} < u(t)$, $x^* > = < u(t)$, $y^* > + < j_{\alpha-1}(t)Cx$, $x^* > + < j_{\alpha-1} * Cg(t)$, $x^* >$ for $t \in (0, T_0)$, which implies that $u \in C([0, T_0), X)$ is a weak solution of ACP₂(A, $j_{\alpha-1}(\cdot)Cx + j_{\alpha-1} * Cg(\cdot), 0, 0)$ satisfying u(0) = 0. To prove the uniqueness, let v be another weak solution of ACP₂(A, $j_{\alpha-1}(\cdot)Cx + j_{\alpha-1} * Cg(\cdot), 0, 0)$ in $C([0, T_0), X)$ and $w(\cdot) = u(\cdot) - v(\cdot)$ on $[0, T_0)$. Applying the continuity of w, we get that

$$\langle w(t), x^* \rangle = \left\langle \int_0^t \int_0^s w(r) dr ds, y^* \right\rangle$$

for all $0 \le t < T_0, x^* \in \mathcal{D}(\mathcal{A}^*)$ and $y^* \in \mathcal{A}^* x^*$,

which together with Lemma 2.1 implies that $\int_0^t \int_0^s w(r) dr ds \in D(A)$ and $A \int_0^t \int_0^s w(r) dr ds = w(t)$ for all $0 \le t < T_0$. It follows from Lemma 2.3 that we have w = 0 on $[0, T_0)$ or equivalently, u = v on $[0, T_0)$.

(iii) \Rightarrow (i). Indeed, if the unique weak solution of ACP₂(A, j_{α -1}(·)Cx, 0, 0) in C([0, T₀), X) is denoted by $w(\cdot, Cx)$ for all $x \in X$. We define the map $S(t) : X \to X$ by S(t)x = w(t, Cx) for all $x \in X$ and $0 \le t < T_0$. Clearly, $S(\cdot)x : [0, T_0) \to X$ is continuous for all $x \in X$. It follows from the uniqueness of weak solutions of ACP₂(A, j_{α -1}(·)Cx, 0, 0) in C([0, T₀), X) and Lemma 2.1 that S(t) is linear for all $0 \le t < T_0$, $S(\cdot)(= \{S(t) \mid 0 \le t < T_0\})$ commutes with C and is nondegenerate. Next we shall show that $S(\cdot) \subset B(X)$. By the closed graph theorem, we need only to show that the linear map $\eta : X \to C([0, T_0), X)$ defined by $\eta(x) = S(\cdot)x$ for $x \in X$, is a continuous function from the Banach space X into the Frechet space $C([0, T_0), X)$ with the quasi-norm $|\cdot|$ defined by $|v| = \sum_{k=1}^{\infty} \frac{||v||_k}{2^k(1+||v||_k)}$ for $v \in C([0, T_0), X)$, where $||v||_k = \max_{t \in [0,k]} ||v(t)||$. Indeed, if $\{x_m\}_{m=1}^{\infty}$ is a sequence in X such that $x_m \to x$ in X and $\eta(x_m) \to u(\cdot)$ in $C([0, T_0), X)$ as $m \to \infty$. Then for $x^* \in D(A^*)$ and $y^* \in A^*x^*$, we have

$$\int_{0}^{t} \int_{0}^{s} \langle S(r)x_{m}, y^{*} \rangle dr ds$$

=
$$\int_{0}^{t} \int_{0}^{s} \frac{d^{2}}{dt^{2}} \langle S(r)x_{m}, x^{*} \rangle dr ds - \int_{0}^{t} \int_{0}^{s} \langle \mathbf{j}_{\alpha-1}(r)\mathbf{C}x_{m}, x^{*} \rangle dr ds$$

=
$$\langle S(t)x_{m}, x^{*} \rangle - \mathbf{j}_{\alpha+1}(t) \langle \mathbf{C}x_{m}, x^{*} \rangle$$

for all $0 \le t < T_0$, and so

$$< u(t), x^* >= \mathbf{j}_{\alpha+1}(t) < \mathbf{C}x, x^* > + \int_0^t \int_0^s < u(r), y^* > drds$$

for all $0 \leq t < T_0$. Hence $\langle u(\cdot), x^* \rangle \in W^{2,1}_{loc}([0,T_0)), \langle u(t), x^* \rangle |_{t=0} = \frac{d}{dt} \langle u(t), x^* \rangle |_{t=0} = 0$ and $\frac{d^2}{dt^2} \langle u(t), x^* \rangle = j_{\alpha-1}(t) \langle Cx, x^* \rangle + \langle u(t), y^* \rangle$ for a.e. $0 \leq t < T_0$, which implies that u is a weak solution of ACP₂(A, j_{\alpha-1}(·)Cx, 0, 0) in C([0, T_0), X). The uniqueness of weak solutions in C([0, T_0), X) implies that $u(\cdot) = S(\cdot)x = \eta(x)$. Consequently, η is closed. In order, we shall show that $S(\cdot)$ is a local $(\alpha + 1)$ -times integrated C-cosine function on X. Indeed, if $x \in X$ and $0 \leq s < T_0$ are given. We first assume that $\alpha \geq 1$ and define

$$\begin{aligned} v_s(t) &= \frac{1}{\Gamma(\alpha+1)} \{ [\int_0^{t+s} - \int_0^t - \int_0^s] (t+s-r)^{\alpha} S(r) \mathbf{C} x dr \\ &+ \int_{|t-s|}^t (s-t+r)^{\alpha} S(r) \mathbf{C} x dr + \int_{|t-s|}^s (t-s+r)^{\alpha} S(r) \mathbf{C} x dr \\ &+ \int_0^{|t-s|} (|t-s|+r)^{\alpha} S(r) \mathbf{C} x dr \} \end{aligned}$$

for all $0 \le t \le t + s < T_0$. Then for $x^* \in D(A^*)$ and $y^* \in A^*x^*$, we obtain from [11, Lemma 2.1] that

$$\begin{aligned} &< v_{s}(t), y^{*} > \\ &= \frac{1}{\Gamma(\alpha+1)} \{ [\int_{0}^{t+s} - \int_{0}^{t} \\ &- \int_{0}^{s}](t+s-r)^{\alpha} [\frac{d^{2}}{dr^{2}} < S(r) \mathbf{C}x, x^{*} > - < \mathbf{j}_{\alpha-1}(r) \mathbf{C}^{2}x, x^{*} >]dr \\ &+ \int_{|t-s|}^{t} (s-t+r)^{\alpha} [\frac{d^{2}}{dr^{2}} < S(r) \mathbf{C}x, x^{*} > - < \mathbf{j}_{\alpha-1}(r) \mathbf{C}^{2}x, x^{*} >]dr \\ &+ \int_{|t-s|}^{s} (t-s+r)^{\alpha} [\frac{d^{2}}{dr^{2}} < S(r) \mathbf{C}x, x^{*} > - < \mathbf{j}_{\alpha-1}(r) \mathbf{C}^{2}x, x^{*} >]dr \\ &+ \int_{0}^{|t-s|} (|t-s|+r)^{\alpha} [\frac{d^{2}}{dr^{2}} < S(r) \mathbf{C}x, x^{*} > - < \mathbf{j}_{\alpha-1}(r) \mathbf{C}^{2}x, x^{*} >]dr \\ &+ \int_{0}^{|t-s|} (|t-s|+r)^{\alpha} [\frac{d^{2}}{dr^{2}} < S(r) \mathbf{C}x, x^{*} > - < \mathbf{j}_{\alpha-1}(r) \mathbf{C}^{2}x, x^{*} >]dr \\ &= \frac{1}{\Gamma(\alpha+1)} \{ [\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s}](t+s-r)^{\alpha} \frac{d^{2}}{dr^{2}} < S(r) \mathbf{C}x, x^{*} > dr \\ &+ \int_{|t-s|}^{t} (s-t+r)^{\alpha} \frac{d^{2}}{dr^{2}} < S(r) \mathbf{C}x, x^{*} > dr \end{aligned}$$

2034

On Local Integrated C-Cosine Function and Weak Solution

$$+ \int_{|t-s|}^{s} (t-s+r)^{\alpha} \frac{d^2}{dr^2} < S(r) Cx, x^* > dr \\ + \int_{0}^{|t-s|} (|t-s|+r)^{\alpha} \frac{d^2}{dr^2} < S(r) Cx, x^* > dr \}$$

for all $0 \le t \le t + s < T_0$. Using integration by parts twice, we also have, for $0 \le t \le t + s < T_0$.

$$< v_{s}(t), y^{*} >$$

$$= \frac{1}{\Gamma(\alpha - 1)} \{ [\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s}](t+s-r)^{\alpha-2} < S(r)\mathbf{C}x, x^{*} > dr$$

$$+ \int_{|t-s|}^{t} (s-t+r)^{\alpha-2} < S(r)\mathbf{C}x, x^{*} > dr + \int_{|t-s|}^{s} (t-s+r)^{\alpha-2} < S(r)\mathbf{C}x, x^{*} > dr$$

$$+ \int_{0}^{|t-s|} (|t-s|+r)^{\alpha-2} < S(r)\mathbf{C}x, x^{*} > dr \} - 2\mathbf{j}_{\alpha-1}(s) < S(t)\mathbf{C}x, x^{*} >$$

$$- 2\mathbf{j}_{\alpha-1}(t) < S(s)\mathbf{C}x, x^{*} >,$$

$$\frac{d}{dt} < v_{s}(t), x^{*} > |_{t=0} = 0 = < v_{s}(t), x^{*} > |_{t=0} \text{ and }$$

$$\begin{aligned} &\frac{d^2}{dt^2} < v_s(t), x^* > \\ &= \frac{1}{\Gamma(\alpha - 1)} \{ [\int_0^{t+s} - \int_0^t - \int_0^s] (t+s-r)^{\alpha - 2} < S(r) \mathbf{C}x, x^* > dr \\ &+ \int_{|t-s|}^t (s-t+r)^{\alpha - 2} < S(r) \mathbf{C}x, x^* > dr + \int_{|t-s|}^s (t-s+r)^{\alpha - 2} < S(r) \mathbf{C}x, x^* > dr \\ &+ \int_0^{|t-s|} (|t-s|+r)^{\alpha - 2} < S(r) \mathbf{C}x, x^* > dr \} - 2\mathbf{j}_{\alpha - 1}(s) < S(t) \mathbf{C}x, x^* > \\ &= < v_s(t), y^* > + 2 < \mathbf{j}_{\alpha - 1}(t) \mathbf{C}\mathbf{S}(s) x, x^* > \end{aligned}$$

when $\alpha > 1$. Similarly, we can show that for $0 \le t \le t + s < T_0$

$$< v_s(t), y^* > = < S(t+s)Cx, x^* > + < S(|t-s|)Cx, x^* >$$

$$-2 < S(s)Cx, x^* > -2 < S(t)Cx, x^* >,$$

$$\begin{split} \frac{d}{dt} &< v_s(t), x^* > |_{t=0} = 0 = < v_s(t), x^* > |_{t=0} \text{ and} \\ & \frac{d^2}{dt^2} < v_s(t), x^* > = < S(t+s)\mathbf{C}x, x^* > + < S(|t-s|)\mathbf{C}x, x^* > \\ & -2 < S(t)\mathbf{C}x, x^* > \\ & = < v_s(t), y^* > + 2 < \mathbf{j}_{\alpha-1}(t)\mathbf{C}\mathbf{S}(s)x, x^* > \end{split}$$

2035

when $\alpha = 1$. Applying the uniqueness of weak solutions of $ACP_2(A, 2j_{\alpha-1}(\cdot) CS(s)x, 0, 0)$ in $C([0, T_0), X)$, we get that $v_s(t) = 2S(t)S(s)x$ for all $0 \le t \le t + s < T_0$. Consequently, $S(\cdot)$ is a nondegenerate local $(\alpha + 1)$ -times integrated C-cosine function on X when $\alpha \ge 1$. We now turn to the case $0 < \alpha < 1$. By hypothesis, $\int_0^{\cdot} w(s, Cx) ds$ is a unique weak solution of $ACP_2(A, j_{\alpha}(\cdot)Cx, 0, 0)$ in $C^1([0, T_0), X)$ for all $x \in X$. Just as in the proof of the case $\alpha > 1$, we can show that $\widetilde{S}(\cdot)$ is a nondegenerate local $(\alpha + 2)$ -times integrated C-cosine function on X. Here $\widetilde{S}(t)x = \int_0^t S(s)xds$ for all $0 \le t < T_0$ and $x \in X$. An easy computation shows that $S(\cdot)$ is a nondegenerate local $(\alpha + 1)$ -times integrated C-cosine function on X. Finally, we shall show that A is its generator. Indeed, if B denotes the generator of $S(\cdot)$ and $x \in D(B)$ is given. Then for $x^* \in D(A^*)$ and $y^* \in A^*x^*$, we have

$$< S(t)x, y^* > = \frac{d^2}{dt^2} < S(t)x, x^* > - < \mathbf{j}_{\alpha-1}(t)\mathbf{C}x, x^* >$$

=< $S(t)\mathbf{B}x, x^* >$

for a.e. $0 \le t < T_0$ because $S(\cdot)x$ is a weak solution of $ACP_2(A, j_{\alpha-1}(\cdot)Cx, 0, 0)$. The strong continuity of $S(\cdot)$ implies that $< S(t)x, y^* > = < S(t)Bx, x^* >$ for all $0 \le t < T_0$. Applying Lemma 2.1, we get that $S(t)x \in D(A)$ and AS(t)x = S(t)Bx for all $0 \le t < T_0$. Since $S(\cdot)Bx$ is a weak solution of $ACP_2(A, j_{\alpha-1}(\cdot)CBx, 0, 0)$, we also have

$$<\int_{0}^{t} \int_{0}^{s} S(r) \mathbf{B} x dr ds, y^{*} >$$

$$= \int_{0}^{t} \int_{0}^{s} < S(r) \mathbf{B} x, y^{*} > dr ds$$

$$= \int_{0}^{t} \int_{0}^{s} \left[\frac{d^{2}}{dr^{2}} < S(r) \mathbf{B} x, x^{*} > - < \mathbf{j}_{\alpha-1}(r) \mathbf{C} \mathbf{B} x, x^{*} >\right] dr ds$$

$$= < S(t) \mathbf{B} x, x^{*} > - < \mathbf{j}_{\alpha+1}(t) \mathbf{C} \mathbf{B} x, x^{*} >$$

for all $x^* \in D(A^*)$, $y^* \in A^*x^*$ and $0 \le t < T_0$. Applying Lemma 2.1 again, we get that

 $\int_0^t \int_0^s S(r) \mathbf{B} x dr ds \in \mathbf{D}(\mathbf{A}) \text{ and } \mathbf{A} \int_0^t \int_0^s S(r) \mathbf{B} x dr ds = S(t) \mathbf{B} x - \mathbf{j}_{\alpha+1}(t) \mathbf{C} \mathbf{B} x \text{ for all } 0 \le t < T_0, \text{ and so } -\mathbf{j}_{\alpha+1}(t) \mathbf{C} x = \int_0^t \int_0^s S(r) \mathbf{B} x dr ds - S(t) x \in \mathbf{D}(\mathbf{A}) \text{ and }$

$$-\mathbf{j}_{\alpha+1}(t)\mathbf{A}\mathbf{C}x = \mathbf{A}\int_0^t \int_0^s S(r)\mathbf{B}x dr ds - \mathbf{A}S(t)x$$
$$= [S(t)\mathbf{B}x - \mathbf{j}_{\alpha+1}(t)\mathbf{C}\mathbf{B}x] - S(t)\mathbf{B}x$$
$$= -\mathbf{j}_{\alpha+1}(t)\mathbf{C}\mathbf{B}x$$

for all $0 \le t < T_0$. Hence $x \in D(C^{-1}AC)$ and $C^{-1}ACx = Bx$. Having shown that $B \subset C^{-1}AC$. We next show that $A \subset B$. Indeed, if $x \in D(A)$ is given, then $\int_0^t \int_0^s S(r) x dr ds$, $\int_0^t \int_0^s S(r) Ax dr ds \in D(A)$,

(2.6)
$$S(t)x = \mathbf{j}_{\alpha+1}(t)\mathbf{C}x + \mathbf{A}\int_0^t \int_0^s S(r)xdrds$$

and

(2.7)
$$S(t)\mathbf{A}x = \mathbf{j}_{\alpha+1}(t)\mathbf{C}\mathbf{A}x + \mathbf{A}\int_0^t \int_0^s S(r)\mathbf{A}x dr ds$$

for all $0 \le t < T_0$. It is easy to see from (2.6) and (2.7) that the function $t \to \int_0^t \int_0^s S(r) Ax dr ds - A \int_0^t \int_0^s S(r) x dr ds$ is a weak solution of $ACP_2(A, 0, 0, 0)$ in $C([0, T_0), X)$, and hence it must be the zero function on $[0, T_0)$ or equivalently, $\int_0^t \int_0^s S(r) Ax dr ds = A \int_0^t \int_0^s S(r) x dr ds$ for all $0 \le t < T_0$, which together with (2.6) implies that $x \in D(B)$ and Bx = Ax. Consequently, A = B.

Theorem 2.5. Let $\alpha > 0$, and $A : D(A) \subset X \to X$ be a closed linear operator such that $C^{-1}AC = A$. Then the following are equivalent :

- (i) For each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$, $ACP_2(A, j_\alpha(\cdot)Cx + j_\alpha * Cg(\cdot), 0, 0)$ has a unique strong solution in $C^2([0, T_0), X) \cap C([0, T_0), [D(A)])$;
- (ii) For each $x \in X$, $ACP_2(A, j_\alpha(\cdot)Cx, 0, 0)$ has a unique strong solution in $C^2([0, T_0), X) \cap C([0, T_0), [D(A)]);$
- (iii) A generates a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X;
- (iv) For each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$, $ACP_2(A, j_{\alpha-1}(\cdot)Cx + j_{\alpha-1} * Cg(\cdot), 0, 0)$ has a unique weak solution in $C^1([0, T_0), X)$;
- (v) For each $x \in X$, ACP₂($A, j_{\alpha-1}(\cdot)Cx, 0, 0$) has a unique weak solution in $C^1([0, T_0), X)$.

Moreover, $||C(t)|| \leq Ke^{\omega t}$ for all $t \geq 0$ and for some $K, \omega \geq 0$ if and only if for each $x \in X$, the unique weak solution $u(\cdot, Cx)$ of ACP₂(A, $j_{\alpha-1}(\cdot)Cx, 0, 0)$ satisfies $||u(t+h, Cx) - u(t, Cx)|| \leq Khe^{\omega(t+h)} ||x||$ for all $t, h \geq 0$.

Proof. The equivalence relations (i)-(iii) follow from [11, Theorem 2.3]. To show that (iii) \Rightarrow (iv). Indeed, if C(·) is a nondegenerate local α -times integrated C-cosine function on X with generator A, then $S(\cdot)$ is a nondegenerate local $(\alpha+1)$ -times integrated C-cosine function on X with generator A and satisfies $S(\cdot)x \in C^1([0, T_0), X)$ for all $x \in X$, where $S(t)x = \int_0^t C(r)xdr$. It follows from Theorem 2.4 that $S(\cdot)x + S * g(\cdot)$ is the unique weak solution of $ACP_2(A, j_{\alpha-1}(\cdot)Cx + S) = C^1(I) + C^1(I$

Chung-Cheng Kuo

 $j_{\alpha-1} * Cg(\cdot), 0, 0)$ in $C^1([0, T_0), X)$ for all $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$. Finally, we shall show that $(v) \Rightarrow$ (iii). Indeed, if $u(\cdot, Cx)$ denotes the unique weak solution of $ACP_2(A, j_{\alpha-1}(\cdot)Cx, 0, 0)$ in $C^1([0, T_0), X)$ and $S(t) : X \to X$ is defined by S(t)x = u(t, Cx) for all $0 \le t < T_0$ and $x \in X$. Applying Theorem 2.4, we get that $S(\cdot)$ is a nondegenerate local $(\alpha + 1)$ -times integrated C-cosine function on X with generator A, which implies that $C(\cdot)$ is a nondegenerate local α -times integrated C-cosine function on X with generator A, where $C(t)x = \frac{d}{dt}S(t)x$ for all $0 \le t < T_0$ and $x \in X$.

Applying Theorem 2.5, the next theorem concerning local 1-times integrated C-cosine functions is also obtained.

Theorem 2.6. Let $A : D(A) \subset X \to X$ be a closed linear operator such that $C^{-1}AC = A$. Then the following are equivalent :

- (*i*) A generates a nondegenerate local 1-times integrated C-cosine function $C(\cdot)$ on X;
- (*ii*) For each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$, ACP₂(A, $Cg(\cdot), 0, Cx$) has a unique weak solution in $C([0, T_0), X)$;
- (iii) For each $x \in X$, ACP₂(A, 0, 0, Cx) has a unique weak solution $u(\cdot, Cx)$ in $C([0, T_0), X)$.

Moreover,

- (i) $||C(t)|| \le Ke^{\omega t}$ for all $t \ge 0$ and for some $K, \omega \ge 0$ if and only if for each $x \in X$, $||u(t, Cx)|| \le Ke^{\omega t} ||x||$ for all $t \ge 0$;
- (ii) $\|C(t+h) C(t)\| \le Khe^{\omega(t+h)}$ for all $t, h \ge 0$ and for some $K, \omega \ge 0$ if and only if for each $x \in X$, $\|u(t+h, Cx) - u(t, Cx)\| \le Khe^{\omega(t+h)} \|x\|$ for all $t, h \ge 0$;
- (iii) For each $0 < t_0 < T_0$, $||C(t+h)-C(t)|| \le K_{t_0}h$ for all $0 \le t, h \le t+h \le t_0$ and for some $K_{t_0} > 0$ if and only if for each $x \in X$ and $0 < t_0 < T_0$, $||u(t+h, Cx) - u(t, Cx)|| \le K_{t_0}h||x||$ for all $0 \le t, h \le t+h \le t_0$ and for some $K_{t_0} > 0$.

Proof. We first show that (i) \Rightarrow (ii). Indeed, if A generates a nondegenerate local 1-times integrated C-cosine function on X. Then for each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$, we obtain from Theorem 2.5 that $ACP_2(A, Cx + j_0 * Cg(\cdot), 0, 0)$ has a unique weak solution u in $C^1([0, T_0), X)$ which satisfies u(0) = 0, so that for each $x^* \in D(A^*)$ and $y^* \in A^*x^*$, we have $< u'(t), x^* > |_{t=0} = \frac{d}{dt} < u(t), x^* > |_{t=0} = 0, < u'(\cdot), x^* > \in W^{2,1}_{loc}([0, T_0))$ and

$$\begin{aligned} \frac{d^2}{dt^2} < u'(t), x^* > &= \frac{d^3}{dt^3} < u(t), x^* > \\ &= \frac{d}{dt} [< u(t), y^* > + < \mathbf{C}x + \mathbf{j}_0 * \mathbf{C}g(t), x^* >] \\ &= < u'(t), y^* > + < \mathbf{C}g(t), x^* > \end{aligned}$$

for a.e. $0 \le t < T_0$. Clearly, $\frac{d}{dt} < u'(t), x^* >= \frac{d^2}{dt^2} < u(t), x^* >= < u(t), y^* >$ + $< Cx + j_0 * Cg(t), x^* >$ for all $0 \le t < T_0$. In particular, $\frac{d}{dt} < u'(t), x^* >$ $|_{t=0} = < Cx, x^* >$. It follows that u' is a weak solution of ACP₂(A, Cg, 0, Cx) in C([0, T_0), X). The uniqueness of weak solutions of ACP₂(A, Cg, 0, Cx) in C([0, T_0), X) follows from the uniqueness of weak solutions of ACP₂(A, Cg, 0, Cx) in C([0, T_0), X). In order, we show that (iii) \Rightarrow (i). Indeed, if $u(\cdot, x)$ denotes the unique weak solution of ACP₂(A, 0, 0, 0, 0) in C([0, T_0), X). In order, we show that (iii) \Rightarrow (i). Indeed, if $u(\cdot, x)$ denotes the unique weak solution of ACP₂(A, 0, 0, Cx) in C([0, T_0), X) for all $x \in X$, then $v = j_0 * u$ is the unique weak solution of ACP₂(A, Cx, 0, 0) in C¹([0, T_0), X). Applying Theorem 2.5, we get that A generates a nondegenerate local 1-times integrated C-cosine function C(\cdot) on X which is defined by C(t)x = u(t, x) for all $0 \le t < T_0$ and $x \in X$.

By slightly modifying the proof of Theorem 2.5, we can apply Theorem 2.6 to prove the next theorem concerning local (0-times integrated) C-cosine functions.

Theorem 2.7. Let $A : D(A) \subset X \to X$ be a closed linear operator such that $C^{-1}AC = A$. Then the following are equivalent :

- (*i*) For each $x \in X$ and $g \in L^{1}_{loc}([0, T_{0}), X)$, ACP₂(A, $Cx + j_{0} * Cg(\cdot), 0, 0$) has a unique strong solution in $C^{2}([0, T_{0}), X) \cap C([0, T_{0}), [D(A)])$;
- (ii) For each $x \in X$, ACP₂(A, Cx, 0, 0) has a unique strong solution in $C^2([0, T_0), X) \cap C([0, T_0), [D(A)]);$
- (iii) A generates a nondegenerate local (0-times integrated) C-cosine function C(·) on X;
- (iv) For each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$, $ACP_2(A, Cg(\cdot), 0, Cx)$ has a unique weak solution in $C^1([0, T_0), X)$;
- (v) For each $x \in X$, ACP₂(A, 0, 0, Cx) has a unique weak solution $u(\cdot, Cx)$ in $C^1([0, T_0), X)$.

Moreover, $||C(t)|| \leq Ke^{\omega t}$ for all $t \geq 0$ and for some $K, \omega \geq 0$ if and only if for each $x \in X$, $||u(t+h, Cx) - u(t, Cx)|| \leq Khe^{\omega(t+h)}||x||$ for all $t, h \geq 0$.

Similarly, we can apply Theorem 2.7 to prove the next theorem concerning local (0-times integrated) C-cosine functions which has been obtained in [9] when A is densely defined.

Chung-Cheng Kuo

Theorem 2.8. Let $A : D(A) \subset X \to X$ be a closed linear operator such that $C^{-1}AC = A$. Then the following are equivalent :

- (i) For each $x, y \in X$ and $g \in L^1_{loc}([0, T_0), X)$, $ACP_2(A, Cx+j_1(\cdot)Cy+j_0 * Cg(\cdot), 0, 0)$ has a unique strong solution in $C^2([0, T_0), X) \cap C([0, T_0), [D(A)])$;
- (ii) For each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$, $ACP_2(A, Cx + j_0 * Cg(\cdot), 0, 0)$ has a unique strong solution in $C^2([0, T_0), X) \cap C([0, T_0), [D(A)])$;
- (iii) For each $x, y \in X$, ACP₂(A, $Cx + j_1(\cdot)Cy, 0, 0$) has a unique strong solution in $C^2([0, T_0), X) \cap C([0, T_0), [D(A)]);$
- (iv) A generates a nondegenerate local (0-times integrated) C-cosine function $C(\cdot)$ on X;
- (v) For each $x, y \in X$ and $g \in L^1_{loc}([0, T_0), X)$, $ACP_2(A, Cg(\cdot), Cx, Cy)$ has a unique weak solution in $C([0, T_0), X)$;
- (vi) For each $x \in X$ and $g \in L^1_{loc}([0, T_0), X)$, $ACP_2(A, Cg(\cdot), Cx, 0)$ has a unique weak solution in $C([0, T_0), X)$;
- (vii) For each $x, y \in X$, ACP₂(A, 0, Cx, Cy) has a unique weak solution in $C([0, T_0), X)$;
- (viii) For each $x \in X$, ACP₂(A, 0, Cx, 0) has a unique weak solution $u(\cdot, Cx)$ in $C([0, T_0), X)$.

Moreover,

- (i) $||C(t)|| \le Ke^{\omega t}$ for all $t \ge 0$ and for some $K, \omega \ge 0$ if and only if for each $x \in X$, $||u(t, Cx)|| \le Ke^{\omega t} ||x||$ for all $t \ge 0$;
- (ii) $\|C(t+h) C(t)\| \le Khe^{\omega(t+h)}$ for all $t, h \ge 0$ and for some $K, \omega \ge 0$ if and only if for each $x \in X$, $\|u(t+h, Cx) - u(t, Cx)\| \le Khe^{\omega(t+h)} \|x\|$ for all $t, h \ge 0$;
- (iii) For each $0 < t_0 < T_0$, $||C(t+h)-C(t)|| \le K_{t_0}h$ for all $0 \le t, h \le t+h \le t_0$ and for some $K_{t_0} > 0$ if and only if for each $x \in X$ and $0 < t_0 < T_0$, $||u(t+h, Cx) - u(t, Cx)|| \le K_{t_0}h||x||$ for all $0 \le t, h \le t+h \le t_0$ and for some $K_{t_0} > 0$.

We end this paper with a simple illustrative example. Let $X = C_b(\mathbb{R})$ (or $L^{\infty}(\mathbb{R})$), and A be the maximal differential operator in X defined by $Au = \sum_{j=0}^{k} a_j D^j u$ on \mathbb{R} for all $u \in D(A)$, then $UC_b(\mathbb{R})$ (or $C_0(\mathbb{R})) = \overline{D(A)}$. Here $a_0, a_1, \dots, a_k \in \mathbb{C}$ and $D^j u(x) = u^{(j)}(x)$ for all $x \in \mathbb{R}$. It is shown in [2, Theorem 6.7] that A generates an exponentially bounded, norm continuous 1-times integrated cosine function $C(\cdot)$ on X which is defined by $(C(t)f)(x) = \frac{1}{\sqrt{2\pi}}(\widetilde{\phi}_t * f)(x)$

for all $f \in X$ and $t \ge 0$ if the real-valued polynomial $p(x) = \sum_{j=0}^{k} a_j (ix)^j$ satisfies $\sup_{x \in \mathbb{R}} p(x) < \infty$. Here ϕ_t denotes the inverse Fourier transform of ϕ_t with $\phi_t(x) = \int_0^t \cosh(\sqrt{p(x)}s) ds$. Applying Theorem 2.6, we get that for each $f \in X$ and continuous function g on $[0, T_0) \times \mathbb{R}$ with $\int_0^t \sup_{x \in \mathbb{R}} |g(s, x)| ds < \infty$ for all $0 \le t < T_0$, the function u on $[0, T_0) \times \mathbb{R}$ defined by $u(t, x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi_t (x - y) f(y) dy + \frac{1}{\sqrt{2\pi}} \int_0^t \int_{-\infty}^{\infty} \phi_{t-s} (x - y) g(s, y) dy ds$ for all $0 \le t < T_0$ and $x \in \mathbb{R}$, is the unique weak solution of

$$\begin{cases} \frac{\partial^2 u(t,x)}{\partial t^2} = \sum_{j=0}^k a_j (\frac{\partial}{\partial x})^j u(t,x) + g(t,x) \text{ for } t \in (0,T_0) \text{ and a.e. } x \in \mathbb{R}, \\ u(0,x) = 0 \text{ and } \frac{\partial u}{\partial t}(0,x) = f(x) \quad \text{ for a.e. } x \in \mathbb{R} \end{cases}$$

in $C([0, T_0), X)$.

REFERENCES

- 1. W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander, *Vector-Valued Laplace Transforms and Cauchy Problems*, 96, Birkhauser Verlag, Basel-Boston-Berlin, 2001.
- W. Arendt and H. Kellermann Integrated Solutions of Volterra Integrodifferential Equations and Applications, Pitman Res. Notes Math. 190, Longman, Harlow 1989, pp. 21-51.
- J. M. Ball, Strongly Continuous Semigroups, Weak Solutions, and the Variation of Constant Formula, Proc. Amer. Math. Soc., 63 (1977), 370-373.
- 4. H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, in: *North-Holland Math. Stud.*, 108, North-Holland, Amsterdam, 1985.
- 5. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
- M. Hieber, Integrated Semigroups and Differential Operators on L^p Spaces, *Math. Ann.*, **291** (1991), 1-16.
- S. Kanda, Cosine Families and Weak Solution of Second Order Differential Equations, Proc. Japan Acad. Ser. A. Math. Sci., 54 (1978), 119-123.
- 8. M. Kostic, Distribution Cosine Functions, Taiwanese J. Math., 10 (2006), 739-775.
- C.-C. Kuo and S.-Y. Shaw, C-Cosine Functions and the Abstract Cauchy Problem I, II, J. Math. Anal. Appl., 210 (1997), 632-646, 647-666.
- C.-C. Kuo, On exponentially bounded α-Times Integrated C-Cosine Functions, Yokohama Math. J., 52 (2005), 59-72.

- C.-C. Kuo, On α-Times Integrated C-Cosine Functions and Abstract Cauchy Problem I, J. Math. Anal. Appl., 313 (2006), 142-162.
- Y.-C. Li and S.-Y. Shaw, On Generators of Integrated C-Semigroups and C-Cosine Functions, *Semigroup Forum*, 47 (1993), 29-35.
- 13. Y.-C. Li and S.-Y. Shaw, N-Times Integrated C-Semigroups and the Abstract Cauchy Problem, *Taiwanese J. Math.*, **1** (1997), 75-102.
- 14. S.-W. Wang and Z. Huang, Strongly Continuous Integrated C-Cosine Operator Functions, *Studia Math.*, **126** (1997), 273-289.
- 15. T.-J. Xiao and J. Liang, *The Cauchy Problem for Higher-Order Abstract Differential Equations*, Lectures Notes in Math., Springer, 1998, p. 1701.
- 16. Q. Zheng, Coercive Differential Operators and Fractionally Integrated Cosine Functions, *Taiwanese J. Math.*, **6** (2002), 59-65.

Chung-Cheng Kuo Department of Mathematics, Fu Jen University, Taipei 24205, Taiwan E-mail: cckuo@math.fju.edu.tw