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ON LOCAL INTEGRATED C-COSINE FUNCTION
AND WEAK SOLUTION OF SECOND ORDER

ABSTRACT CAUCHY PROBLEM

Chung-Cheng Kuo

Abstract. Let α be a nonnegative number, C : X → X a bounded linear
injection on a Banach space X and A : D(A) ⊂ X → X a closed linear
operator in X which satisfies C−1AC = A and may not be densely defined.
We prove some equivalence relations between the generation of a local α-
times integrated C-cosine function on X with generator A and the uniqueness
existence of weak solutions of the abstract Cauchy problem:

ACP2(A, f , x , y)

{
u′′(t) = Au(t) + f(t) for t ∈ (0, T0),

u(0) = x, u′(0) = y,

where x, y ∈ X are given and f is an X-valued function defined on a subset
of R.

1. INTRODUCTION

Let X be a Banach space over F with norm ‖ · ‖ and dual space X∗, and let
B(X) denote the set of all bounded linear operators from X into itself. For each
0 < T0 ≤ ∞, we consider the following abstract Cauchy problem:

ACP2(A, f , x , y)

{
u′′(t) = Au(t) + f(t) for t ∈ (0, T0),

u(0) = x, u′(0) = y,

where x, y ∈ X are given, A : D(A) ⊂ X → X is a closed linear operator and f is
an X-valued function defined on a subset of R containing (0, T0). A function u is
called a strong solution of ACP2(A, f , x , y), if u ∈ C2((0, T0), X)∩C1([0, T0), X)∩
C((0, T0), [D(A)]) and satisfies ACP2(A, f , x , y). Here [D(A)] denotes the Banach
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space D(A) equipped with the graph norm |x|A = ‖x‖ + ‖Ax‖ for x ∈ D(A).
For each α > 0 and C ∈ B(X), a family C(·)(= {C(t) | 0 ≤ t < T0}) in B(X) is
called a local α-times integrated C-cosine function on X if it is strongly continuous,
C(·)C = CC(·), and satisfies

(1.1)

2C(t)C(s)x =
1

Γ(α)

{
[
∫ t+s

0
−

∫ t

0
−

∫ s

0
](t + s − r)α−1C(r)Cxdr

+
∫ t

|t−s|
(s − t + r)α−1C(r)Cxdr

+
∫ s

|t−s|
(t − s + r)α−1C(r)Cxdr

+
∫ |t−s|

0

(|t − s| + r)α−1C(r)Cxdr
}

for all 0 ≤ t, s, t+s < T0 and x ∈ X; or called a local (0-times integrated) C-cosine
function on X if it is strongly continuous, C(·)C = CC(·), and satisfies

(1.2) 2C(t)C(s)x=C(t+s)Cx+C(|t−s|)Cx for all 0≤t, s, t+s<T0 and x∈X,

where Γ(·) denotes the Gamma function. Moreover, we say that C(·) is nonde-
generate, if x = 0 whenever C(t)x = 0 for all 0 ≤ t < T0. In this case, its
(integral) generator A : D(A) ⊂ X → X is a closed linear operator in X defined
by D(A) = {x | x ∈ X and there exists a yx ∈ X such that C(t)x − tα

Γ(α+1)Cx =∫ t
0

∫ s
0 C(r)yxdrds for all 0 ≤ t < T0} and Ax = yx for all x ∈ D(A). In gen-

eral, a local α-times integrated C-cosine function on X is also called an α-times
integrated C-cosine function on X if T0 = ∞; or called a local α-times integrated
cosine function on X if C = I the identity operator on X. The relation between the
existence of an exponentially bounded α-times integrated C-cosine function with
generator A and the unique existence of strong solutions of ACP2(A, f , x, y) have
been considered as in [4, 5, 9, 12, 14, 15] if α ∈ N ∪ {0}. When α = 0 and A
is densely defined, some results concerning the relation between the existence of
a C-cosine function with generator A and the unique existence of weak solutions
of ACP2(A, f , x, y) are also investigated in [9], and in [7] for the case C = I .
Just as in the case α ∈ N ∪ {0}, some equivalence relations between the exis-
tence of an α-times integrated C-cosine function on X and the unique existence
of strong solutions for ACP2(A, f , x, y) are also obtained in [10,11] for which the
resolvent set ρ(A) of A may be nonempty and D(A) may be dense in X. Sev-
eral examples concerning α-times integrated cosine functions with densely defined
generators are given as in [8], and in [16] when integrated cosine functions are
exponentially bounded. Unfortunately, the generator of a local C-cosine function or
a local α-times integrated cosine function may not be densely defined except for
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the case α = 0 and C = I . In this case, the adjoint of a closed linear operator
A : D(A) ⊂ X → X is the multi-valued function A∗ : D(A∗) ⊂ X∗ → 2X∗ de-
fined by D(A∗) = {x∗ ∈ X∗ | there exists a y∗x∗ ∈ X∗ such that < x∗, Ax >=<

y∗x∗ , x > for all x ∈ D(A)} and A∗x∗ = {y∗x∗ ∈ X∗ | < x∗, Ax >=< y∗x∗ , x >
for all x ∈ D(A)}. In particular, we write A∗x∗ = y∗x∗ for x∗ ∈ D(A∗) if A

is densely defined, where 2X∗ denotes the power set of X∗ and either < x∗, x >
or < x, x∗ > denotes the value of x∗ at x for all x ∈ X and x∗ ∈ X∗. More-
over, a function u is called a weak solution of ACP2(A, f , x, y), if < u(·), x∗ >∈
W 2.1

loc ([0, T0)), < u(t), x∗ > |t=0 =< x, x∗ >, d
dt < u(t), x∗ > |t=0 =< y, x∗ >

and d2

dt2 < u(t), x∗ >=< u(t), y∗ > + < f(t), x∗ > for a.e. 0 ≤ t < T0 whenever
x∗ ∈ D(A∗) and y∗ ∈ A∗x∗. Here W 2.1

loc ([0, T0)) = {v | v : [0, T0) → F is contin-
uously differentiable, v′ is differentiable a.e. on [0, T0) and v′′ is locally Lebesque
integrable on [0, T0)}. The purpose of this paper is to obtain some generalization
theorems concerning local α-times integrated C-cosine functions for α ≥ 0 when
their generators may not be densely defined. We first investigate an important result
(see Lemma 2.1 below) which has been deduced by Ball in [3] when A is densely
defined. Under the assumption C−1AC = A. We show that A generates a nondegen-
erate local (α+1)-times (respectively, α-times) integrated C-cosine function on X if
and only if ACP2(A, jα−1(·)Cx + jα−1 ∗Cg(·), 0, 0) has a unique weak solution in
C([0, T0), X)(respectively, in C1([0, T0), X)) for all x ∈ X and g ∈ L1

loc([0, T0), X)
if and only if ACP2(A, jα−1(·)Cx , 0, 0) has a unique weak solution in C([0, T0), X)
(respectively, in C1([0, T0), X)) for all x ∈ X, where α > 0 (see Theorems 2.4 and
2.5 below). Here jβ(t) = tβ

Γ(β+1)
for β > −1 and t > 0. Applying these results, we

then show that A generates a nondegenerate local 1-times (respectively, 0-times) in-
tegrated C-cosine function on X if and only if ACP2(A, Cg(·), 0, Cx) has a unique
weak solution in C([0, T0), X)(respectively, in C1([0, T0), X)) for all x ∈ X and
g ∈ L1

loc([0, T0), X) if and only if ACP2(A, 0, 0, Cx) has a unique weak solution in
C([0, T0), X)(respectively, in C1([0, T0), X)) for all x ∈ X (see Theorems 2.6 and
2.7 below), which can be applied to show that A generates a nondegenerate local
(0-times integrated) C-cosine function on X if and only if ACP2(A, Cg(·), Cx , Cy)
has a unique weak solution in C([0, T0), X) for all x, y ∈ X and g ∈ L1

loc([0, T0), X)
if and only if ACP2(A, Cg(·), Cx , 0) has a unique weak solution in C([0, T0), X) for
all x ∈ X and g ∈ L1

loc([0, T0), X) if and only if ACP2(A, 0, Cx , Cy) has a unique
weak solution in C([0, T0), X) for all x, y ∈ X if and only if ACP2(A, 0, Cx , 0) has
a unique weak solution in C([0, T0), X) for all x ∈ X (see Theorem 2.8 below). Our
results are still new even when α = 0. An illustrative example concerning these
theorems is also presented in the final part of this paper.

2. EXISTENCE THEOREMS

In this section, we always assume that C ∈ B(X) is an injection. We first inves-
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tigate an important lemma which is used in the proofs of the following theorems,
and has been obtained by Ball in [3] when A is densely defined.

Lemma 2.1. Let A : D(A) ⊂ X → X be a closed linear operator. Assume that
x0, y0 ∈ X and <y∗, x0 >=< x∗, y0 > for all x∗ ∈ D(A∗) and y∗ ∈ A∗x∗. Then
x0 ∈ D(A) and Ax0 = y0.

Proof. If not, then there exist x∗, y∗ ∈ X∗ such that y∗(x0) + x∗(y0) �= 0
and y∗(x) + x∗(Ax) = 0 for all x ∈ D(A), and so <−y∗, x >=< x∗, Ax > for
all x ∈ D(A). Hence x∗ ∈ D(A∗) and −y∗ ∈ A∗x∗. By hypothesis, we have
< −y∗, x0 >=< x∗, y0 > or equivalently, y∗(x0) + x∗(y0) = 0. We obtain a
contradiction. Consequently, x0 ∈ D(A) and Ax0 = y0.

By slightly modifying the proofs of [11. Proposition 1.5 ] and [11. Lemma 1.6
], the next proposition and lemma are also attained, and so their proofs are omitted.

Proposition 2.2. Let A be the generator of a nondegenerate local α-times
integrated C-cosine function C(·) on X . Then

(2.1) C(0)=C on X if α=0, and C(0)=0 (the zero operator) on X if α>0;

(2.2) C is injective and C−1AC = A;

(2.3) C(t)x∈D(A) and AC(t)x=C(t)Ax for all x∈D(A) and 0≤t<T0;

(2.4)
∫ t

0

∫ s

0
C(r)xdrds ∈ D(A) and A

∫ t
0

∫ s
0 C(r)xdrds = C(t)x − jα(t)Cx

for all x ∈ X and 0 ≤ t < T0;

(2.5) R(C(t)) ⊂ D(A) for all 0 ≤ t < T0.

Lemma 2.3. Let A be the generator of a nondegenerate local α-times inte-
grated C-cosine function C(·) on X, and let 0 < t0 < T0 be fixed. Assume that
u ∈ C([0, t0), X) satisfies u(t) = A

∫ t
0 (t− s)u(s)ds for all 0 ≤ t < t0. Then u ≡ 0

on [0, t0).

Theorem 2.4. Let α > 0, and A : D(A) ⊂ X → X be a closed linear operator
such that C−1AC = A. Then the following are equivalent :

(i) A generates a nondegenerate local (α+1)-times integrated C-cosine function
S(·) on X;

(ii) For each x∈X and g∈L1
loc([0, T0), X), ACP2(A, jα−1(·)Cx + jα−1 ∗ Cg(·),

0, 0) has a unique weak solution in C([0, T 0), X);



On Local Integrated C-Cosine Function and Weak Solution 2031

(iii) For each x ∈ X, ACP2(A, jα−1(·)Cx , 0, 0) has a unique weak solution in
C([0, T0), X).

Here L1
loc([0, T0), X) denotes the set of all locally Bochner integrable functions

from [0, T0) into X and jβ ∗ g(t) =
∫ t
0 jβ(t − s)g(s)ds for all 0 ≤ t < T0 and

g ∈ L1
loc([0, T0), X). Moreover,

(i) ‖S(t)‖ ≤ Keωt for all t ≥ 0 and for some K, ω ≥ 0 if and only if for each
x ∈ X, ‖u(t, Cx)‖ ≤ Keωt‖x‖ for all t ≥ 0;

(ii) ‖S(t + h) − S(t)‖ ≤ Kheω(t+h) for all t, h ≥ 0 and for some K, ω ≥ 0 if
and only if for each x ∈ X, ‖u(t + h, Cx) − u(t, Cx)‖ ≤ Kheω(t+h)‖x‖ for
all t, h ≥ 0;

(iii) For each 0 < t0 < T0, ‖S(t+h)−S(t)‖ ≤ Kt0h for all 0 ≤ t, h ≤ t+h ≤ t0
and for some Kt0 > 0 if and only if for each x ∈ X and 0 < t0 < T0,
‖u(t + h, Cx) − u(t, Cx)‖ ≤ Kt0h‖x‖ for all 0 ≤ t, h ≤ t + h ≤ t0 and for
some Kt0 > 0.

Proof. (i)⇒(ii). Indeed, if A is the generator of a nondegenerate local (α+1)-
times integrated C-cosine function S(·) on X and x ∈ X is given. Then for x∗ ∈
D(A∗) and y∗ ∈ A∗x∗, we have < S(t)x, x∗ >=

∫ t
0

∫ s
0 < S(r)x, y∗ > drds +

jα+1(t) < Cx , x∗ > for all 0 ≤ t < T0, and so

d

dt
< S(t)x, x∗ >=

∫ t

0
< S(s)x, y∗ > ds + jα(t) < Cx , x∗ >

for all 0 ≤ t < T0. Hence
d2

dt2
< S(t)x, x∗ >=< S(t)x, y∗ > +jα−1(t) < Cx , x∗ >

for all 0 < t < T0. Now if g ∈ C([0, T0), X) is given, then

<

∫ t

0
S(t− s)g(s)ds, x∗ >

=
∫ t

0
< S(t − s)g(s)ds, x∗ > ds

=
∫ t

0
<

˜̃
S(t − s)g(s), y∗ > ds +

∫ t

0
< jα+1(t − s)Cg(s), x∗ > ds

for all 0 ≤ t < T0. Here ˜̃
S(t)y =

∫ t
0

∫ s
0 S(r)ydrds for all 0 ≤ t < T0 and y ∈ X.

By differentiation, we have

d

dt
<

∫ t

0
S(t − s)g(s)ds, x∗ >

=
∫ t

0
< S̃(t − s)g(s), y∗ > ds +

∫ t

0
< jα(t − s)Cg(s), x∗ > ds
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for all 0 ≤ t < T0, and

d2

dt2
<

∫ t

0

S(t− s)g(s)ds, x∗ >

=
∫ t

0
< S(t − s)g(s), y∗ > ds +

∫ t

0
< jα−1(t − s)Cg(s), x∗ > ds

for all t ∈ (0, T0), where S̃(t)y =
∫ t
0 S(r)ydr for all 0 ≤ t < T0 and y ∈ X.

Next we set u(·) = S(·)x + S ∗ g(·), then u ∈ C([0, T0), X), u(0) = 0 and
d
dt < u(t), x∗ > |t=0 = 0 and d2

dt2
< u(t), x∗ >=< u(t), y∗ > + < jα−1(t)Cx +

jα−1 ∗ Cg(t), x∗ > for t ∈ (0, T0), which implies that u ∈ C([0, T0), X) is a weak
solution of ACP2(A, jα−1(·)Cx + jα−1 ∗ Cg(·), 0, 0) satisfying u(0) = 0. Finally,
we turn to the case that g is only an L1

loc([0, T0), X) function and {gm}∞m=1 is a
sequence in C([0, T0), X) such that gm → g in L1([0, t0], X) for all 0 < t0 < T0.
We define

u(·) = S(·)x + S ∗ g(·)
and

um(·) = S(·)x + S ∗ gm(·)
for m ∈ N, then ‖um(t)−u(t)‖ ≤ ∫ t0

0 sup
τ∈[0,t0]

‖S(τ)‖‖gm(s)− g(s)‖ds for all 0 ≤
t ≤ t0 < T0, and so um(·) → u(·) uniformly on compact subsets of [0, T0). Hence
u(·) is continuous on [0, T0). The previous argument shows that um(0) = 0, d

dt <

um(t), x∗ > |t=0=0 and d2

dt2
< um(t), x∗ >=< um(t), y∗ > + < jα−1(t)Cx , x∗ >

+ < jα−1 ∗ Cgm(t), x∗ > for t ∈ (0, T0). By integration, we have

d

dt
< um(t), x∗ > =

∫ t

0
< um(s), y∗ > ds+ < jα(t)Cx , x∗ >

+ < jα ∗ Cgm(t), x∗ >

and

< um(t), x∗ > =
∫ t

0

∫ s

0
< um(r), y∗ > drds+ < jα+1(t)Cx , x∗ >

+ < jα+1 ∗ Cgm(t), x∗ >

for all 0 ≤ t < T0. Letting m → ∞, we get that∫ ·

0
< um(s), y∗ > ds+ < jα(·)Cx , x∗ > + < jα ∗ Cgm(·), x∗ >

→
∫ ·

0
< u(s), y∗ > ds+ < jα(·)Cx , x∗ > + < jα ∗ Cg(·), x∗ >
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uniformly on compact subsets of [0, T0) and

< u(t), x∗ > =
∫ t

0

∫ s

0
< u(r), y∗ > drds+ < jα+1(t)Cx , x∗ >

+ < jα+1 ∗ Cg(t), x∗ >

for all 0 ≤ t < T0. In particular, u(0) = 0, d
dt < u(t), x∗ > |t=0 = 0 and d2

dt2
<

u(t), x∗ >=< u(t), y∗ > + < jα−1(t)Cx , x∗ > + < jα−1 ∗ Cg(t), x∗ > for t ∈
(0, T0), which implies that u ∈ C([0, T0), X) is a weak solution of ACP2(A, jα−1(·)
Cx + jα−1 ∗ Cg(·), 0, 0) satisfying u(0) = 0. To prove the uniqueness, let v be
another weak solution of ACP2(A, jα−1(·)Cx + jα−1 ∗ Cg(·), 0, 0) in C([0, T0), X)
and w(·) = u(·)− v(·) on [0, T0). Applying the continuity of w, we get that

< w(t), x∗ > =
〈∫ t

0

∫ s

0
w(r)drds, y∗

〉
for all 0 ≤ t < T0, x∗ ∈ D(A∗) and y∗ ∈ A∗x∗,

which together with Lemma 2.1 implies that
∫ t
0

∫ s
0 w(r)drds ∈ D(A) and A

∫ t
0

∫ s
0

w(r)drds = w(t) for all 0 ≤ t < T0. It follows from Lemma 2.3 that we have
w = 0 on [0, T0) or equivalently, u = v on [0, T0).

(iii)⇒(i). Indeed, if the unique weak solution of ACP2(A, jα−1(·)Cx , 0, 0) in
C([0, T0), X) is denoted by w(·, Cx) for all x ∈ X. We define the map S(t) : X → X
by S(t)x = w(t, Cx) for all x ∈ X and 0 ≤ t < T0. Clearly, S(·)x : [0, T0) → X
is continuous for all x ∈ X. It follows from the uniqueness of weak solutions of
ACP2(A, jα−1(·)Cx , 0, 0) in C([0, T0), X) and Lemma 2.1 that S(t) is linear for all
0 ≤ t < T0, S(·)(= {S(t) | 0 ≤ t < T0}) commutes with C and is nondegenerate.
Next we shall show that S(·) ⊂ B(X). By the closed graph theorem, we need
only to show that the linear map η : X → C([0, T0), X) defined by η(x) = S(·)x
for x ∈ X, is a continuous function from the Banach space X into the Frechet

space C([0, T0), X) with the quasi-norm | · | defined by |v| =
∞∑

k=1

‖v‖k

2k(1+‖v‖k)
for

v ∈ C([0, T0), X), where ‖v‖k = max
t∈[0,k]

‖v(t)‖. Indeed, if {xm}∞m=1 is a sequence

in X such that xm → x in X and η(xm) → u(·) in C([0, T0), X) as m → ∞. Then
for x∗ ∈ D(A∗) and y∗ ∈ A∗x∗, we have∫ t

0

∫ s

0
< S(r)xm, y∗ > drds

=
∫ t

0

∫ s

0

d2

dt2
< S(r)xm, x∗ > drds−

∫ t

0

∫ s

0
< jα−1(r)Cxm, x∗ > drds

=< S(t)xm, x∗ > −jα+1(t) < Cxm, x∗ >
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for all 0 ≤ t < T0, and so

< u(t), x∗ >= jα+1(t) < Cx , x∗ > +
∫ t

0

∫ s

0
< u(r), y∗ > drds

for all 0 ≤ t < T0. Hence < u(·), x∗ >∈ W 2,1
loc ([0, T0)), < u(t), x∗ > |t=0 =

d
dt < u(t), x∗ > |t=0 = 0 and d2

dt2
< u(t), x∗ >= jα−1(t) < Cx , x∗ > + <

u(t), y∗ > for a.e. 0 ≤ t < T0, which implies that u is a weak solution of
ACP2(A, jα−1(·)Cx , 0, 0) in C([0, T0), X). The uniqueness of weak solutions in
C([0, T0), X) implies that u(·) = S(·)x = η(x). Consequently, η is closed. In
order, we shall show that S(·) is a local (α + 1)-times integrated C-cosine function
on X. Indeed, if x ∈ X and 0 ≤ s < T0 are given. We first assume that α ≥ 1 and
define

vs(t) =
1

Γ(α + 1)
{[

∫ t+s

0
−

∫ t

0
−

∫ s

0
](t + s − r)αS(r)Cxdr

+
∫ t

|t−s|
(s − t + r)αS(r)Cxdr +

∫ s

|t−s|
(t − s + r)αS(r)Cxdr

+
∫ |t−s|

0
(|t − s| + r)αS(r)Cxdr}

for all 0 ≤ t ≤ t + s < T0. Then for x∗ ∈ D(A∗) and y∗ ∈ A∗x∗, we obtain from
[11, Lemma 2.1] that

< vs(t), y∗ >

=
1

Γ(α + 1)
{[

∫ t+s

0
−

∫ t

0

−
∫ s

0
](t + s − r)α[

d2

dr2
< S(r)Cx , x∗ > − < jα−1(r)C2x, x∗ >]dr

+
∫ t

|t−s|
(s − t + r)α[

d2

dr2
< S(r)Cx , x∗ > − < jα−1(r)C2x, x∗ >]dr

+
∫ s

|t−s|
(t − s + r)α[

d2

dr2
< S(r)Cx , x∗ > − < jα−1(r)C2x, x∗ >]dr

+
∫ |t−s|

0
(|t− s| + r)α[

d2

dr2
< S(r)Cx , x∗ > − < jα−1(r)C2x, x∗ >]dr}

=
1

Γ(α + 1)
{[

∫ t+s

0
−

∫ t

0
−

∫ s

0
](t + s − r)α d2

dr2
< S(r)Cx , x∗ > dr

+
∫ t

|t−s|
(s − t + r)α d2

dr2
< S(r)Cx , x∗ > dr
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+
∫ s

|t−s|
(t − s + r)α d2

dr2
< S(r)Cx , x∗ > dr

+
∫ |t−s|

0
(|t− s| + r)α d2

dr2
< S(r)Cx , x∗ > dr}

for all 0 ≤ t ≤ t + s < T0. Using integration by parts twice, we also have, for
0 ≤ t ≤ t + s < T0.

< vs(t), y∗ >

=
1

Γ(α − 1)
{[

∫ t+s

0
−

∫ t

0
−

∫ s

0
](t + s − r)α−2 < S(r)Cx , x∗ > dr

+
∫ t

|t−s|
(s−t+r)α−2 <S(r)Cx , x∗> dr+

∫ s

|t−s|
(t−s+r)α−2 <S(r)Cx , x∗>dr

+
∫ |t−s|

0

(|t−s|+r)α−2 < S(r)Cx , x∗ > dr}−2jα−1(s) < S(t)Cx , x∗ >

−2jα−1(t) < S(s)Cx , x∗ >,

d
dt < vs(t), x∗ > |t=0 = 0 =< vs(t), x∗ > |t=0 and

d2

dt2
< vs(t), x∗ >

=
1

Γ(α − 1)
{[

∫ t+s

0
−

∫ t

0
−

∫ s

0
](t + s − r)α−2 < S(r)Cx , x∗ > dr

+
∫ t

|t−s|
(s−t+r)α−2 <S(r)Cx , x∗> dr+

∫ s

|t−s|
(t−s+r)α−2 <S(r)Cx , x∗>dr

+
∫ |t−s|

0
(|t − s| + r)α−2 < S(r)Cx , x∗ > dr} − 2jα−1(s) < S(t)Cx , x∗ >

=< vs(t), y∗ > +2 < jα−1(t)CS(s)x, x∗ >

when α > 1. Similarly, we can show that for 0 ≤ t ≤ t + s < T0

< vs(t), y∗ > =< S(t + s)Cx , x∗ > + < S(|t − s|)Cx , x∗ >

−2 < S(s)Cx , x∗ > −2 < S(t)Cx , x∗ >,

d
dt < vs(t), x∗ > |t=0 = 0 =< vs(t), x∗ > |t=0 and

d2

dt2
< vs(t), x∗ > =< S(t + s)Cx , x∗ > + < S(|t− s|)Cx , x∗ >

−2 < S(t)Cx , x∗ >

=< vs(t), y∗ > +2 < jα−1(t)CS(s)x, x∗ >
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when α = 1. Applying the uniqueness of weak solutions of ACP2(A, 2jα−1(·)
CS(s)x, 0, 0) in C([0, T0), X), we get that vs(t) = 2S(t)S(s)x for all 0 ≤ t ≤
t + s < T0. Consequently, S(·) is a nondegenerate local (α + 1)-times integrated
C-cosine function on X when α ≥ 1. We now turn to the case 0 < α < 1. By
hypothesis,

∫ ·
0 w(s, Cx)ds is a unique weak solution of ACP2(A, jα(·)Cx , 0, 0) in

C1([0, T0), X) for all x ∈ X. Just as in the proof of the case α > 1, we can show
that S̃(·) is a nondegenerate local (α + 2)-times integrated C-cosine function on X.
Here S̃(t)x =

∫ t
0 S(s)xds for all 0 ≤ t < T0 and x ∈ X. An easy computation

shows that S(·) is a nondegenerate local (α+1)-times integrated C-cosine function
on X. Finally, we shall show that A is its generator. Indeed, if B denotes the
generator of S(·) and x ∈ D(B) is given. Then for x∗ ∈ D(A∗) and y∗ ∈ A∗x∗,
we have

< S(t)x, y∗ > =
d2

dt2
< S(t)x, x∗ > − < jα−1(t)Cx , x∗ >

=< S(t)Bx, x∗ >

for a.e. 0 ≤ t < T0 because S(·)x is a weak solution of ACP2(A, jα−1(·)Cx , 0, 0).
The strong continuity of S(·) implies that < S(t)x, y∗ > =< S(t)Bx, x∗ >
for all 0 ≤ t < T0. Applying Lemma 2.1, we get that S(t)x ∈ D(A) and
AS(t)x = S(t)Bx for all 0 ≤ t < T0. Since S(·)Bx is a weak solution of
ACP2(A, jα−1(·)CBx , 0, 0), we also have

<

∫ t

0

∫ s

0
S(r)Bxdrds, y∗ >

=
∫ t

0

∫ s

0
< S(r)Bx, y∗ > drds

=
∫ t

0

∫ s

0
[
d2

dr2
< S(r)Bx, x∗ > − < jα−1(r)CBx, x∗ >]drds

=< S(t)Bx, x∗ > − < jα+1(t)CBx, x∗ >

for all x∗ ∈ D(A∗), y∗ ∈ A∗x∗ and 0 ≤ t < T0. Applying Lemma 2.1 again, we
get that∫ t
0

∫ s
0 S(r)Bxdrds ∈ D(A) and A

∫ t
0

∫ s
0 S(r)Bxdrds = S(t)Bx − jα+1(t)CBx for

all 0 ≤ t < T0, and so −jα+1(t)Cx =
∫ t
0

∫ s
0 S(r)Bxdrds− S(t)x ∈ D(A) and

−jα+1(t)ACx = A
∫ t

0

∫ s

0
S(r)Bxdrds− AS(t)x

= [S(t)Bx − jα+1(t)CBx] − S(t)Bx

= −jα+1(t)CBx
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for all 0 ≤ t < T0. Hence x ∈ D(C−1AC) and C−1ACx = Bx. Having shown
that B ⊂ C−1AC. We next show that A ⊂ B. Indeed, if x ∈ D(A) is given, then∫ t
0

∫ s
0 S(r)xdrds,

∫ t
0

∫ s
0 S(r)Axdrds ∈ D(A),

(2.6) S(t)x = jα+1(t)Cx + A
∫ t

0

∫ s

0

S(r)xdrds

and

(2.7) S(t)Ax = jα+1(t)CAx + A
∫ t

0

∫ s

0
S(r)Axdrds

for all 0 ≤ t < T0. It is easy to see from (2.6) and (2.7) that the function t →∫ t
0

∫ s
0 S(r)Axdrds− A

∫ t
0

∫ s
0 S(r)xdrds is a weak solution of ACP2(A, 0, 0, 0) in

C([0, T0), X), and hence it must be the zero function on [0, T0) or equivalently,∫ t
0

∫ s
0 S(r)Axdrds = A

∫ t
0

∫ s
0 S(r)xdrds for all 0 ≤ t < T0, which together with

(2.6) implies that x ∈ D(B) and Bx = Ax. Consequently, A = B.

Theorem 2.5. Let α > 0, and A : D(A) ⊂ X → X be a closed linear operator
such that C−1AC = A. Then the following are equivalent :

(i) For each x ∈ X and g ∈ L1
loc([0, T0), X), ACP2(A, jα(·)Cx + jα ∗Cg(·), 0, 0)

has a unique strong solution in C 2([0, T0), X) ∩ C([0, T0), [D(A)]);
(ii) For each x ∈ X, ACP2(A, jα(·)Cx , 0, 0) has a unique strong solution in

C2([0, T0), X) ∩C([0, T0), [D(A)]);
(iii) A generates a nondegenerate local α-times integrated C-cosine function C(·)

on X;
(iv) For each x ∈ X and g ∈ L1

loc([0, T0), X), ACP2(A, jα−1(·)Cx + jα−1 ∗
Cg(·), 0, 0) has a unique weak solution in C1([0, T0), X);

(v) For each x ∈ X,ACP2(A, jα−1(·)Cx , 0, 0) has a unique weak solution in
C1([0, T0), X).

Moreover, ‖C(t)‖ ≤ Keωt for all t ≥ 0 and for some K, ω ≥ 0 if and only if
for each x ∈ X , the unique weak solution u(·, Cx) of ACP 2(A, jα−1(·)Cx , 0, 0)
satisfies ‖u(t + h, Cx) − u(t, Cx)‖ ≤ Kheω(t+h)‖x‖ for all t, h ≥ 0.

Proof. The equivalence relations (i)-(iii) follow from [11, Theorem 2.3]. To
show that (iii)⇒(iv). Indeed, if C(·) is a nondegenerate local α-times integrated
C-cosine function on X with generator A, then S(·) is a nondegenerate local (α+1)-
times integrated C-cosine function on X with generator A and satisfies S(·)x ∈
C1([0, T0), X) for all x ∈ X, where S(t)x =

∫ t
0 C(r)xdr. It follows from Theorem

2.4 that S(·)x + S ∗ g(·) is the unique weak solution of ACP2(A, jα−1(·)Cx +
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jα−1 ∗ Cg(·), 0, 0) in C1([0, T0), X) for all x ∈ X and g ∈ L1
loc([0, T0), X). Finally,

we shall show that (v)⇒(iii). Indeed, if u(·, Cx) denotes the unique weak solution
of ACP2(A, jα−1(·)Cx , 0, 0) in C1([0, T0), X) and S(t) : X → X is defined by
S(t)x = u(t, Cx) for all 0 ≤ t < T0 and x ∈ X. Applying Theorem 2.4, we
get that S(·) is a nondegenerate local (α + 1)-times integrated C-cosine function
on X with generator A, which implies that C(·) is a nondegenerate local α-times
integrated C-cosine function on X with generator A, where C(t)x = d

dtS(t)x for all
0 ≤ t < T0 and x ∈ X.

Applying Theorem 2.5, the next theorem concerning local 1-times integrated
C-cosine functions is also obtained.

Theorem 2.6. Let A : D(A) ⊂ X → X be a closed linear operator such that
C−1AC = A. Then the following are equivalent :

(i) A generates a nondegenerate local 1-times integrated C-cosine function C(·)
on X;

(ii) For each x ∈ X and g ∈ L1
loc([0, T0), X), ACP2(A, Cg(·), 0, Cx) has a unique

weak solution in C([0, T0), X);
(iii) For each x ∈ X, ACP2(A, 0, 0, Cx) has a unique weak solution u(·, Cx) in

C([0, T0), X).

Moreover,

(i) ‖C(t)‖ ≤ Keωt for all t ≥ 0 and for some K, ω ≥ 0 if and only if for each
x ∈ X, ‖u(t, Cx)‖ ≤ Keωt‖x‖ for all t ≥ 0;

(ii) ‖C(t + h) − C(t)‖ ≤ Kheω(t+h) for all t, h ≥ 0 and for some K, ω ≥ 0 if
and only if for each x ∈ X, ‖u(t + h, Cx) − u(t, Cx)‖ ≤ Kheω(t+h)‖x‖ for
all t, h ≥ 0;

(iii) For each 0 < t0 < T0, ‖C(t+h)−C(t)‖ ≤ Kt0h for all 0 ≤ t, h ≤ t+h ≤ t0
and for some Kt0 > 0 if and only if for each x ∈ X and 0 < t0 < T0,
‖u(t + h, Cx) − u(t, Cx)‖ ≤ Kt0h‖x‖ for all 0 ≤ t, h ≤ t + h ≤ t0 and for
some Kt0 > 0.

Proof. We first show that (i)⇒(ii). Indeed, if A generates a nondegenerate
local 1-times integrated C-cosine function on X. Then for each x ∈ X and g ∈
L1

loc([0, T0), X), we obtain from Theorem 2.5 that ACP2(A, Cx + j0 ∗ Cg(·), 0, 0)
has a unique weak solution u in C1([0, T0), X) which satisfies u(0) = 0, so that for
each x∗ ∈ D(A∗) and y∗ ∈ A∗x∗, we have < u′(t), x∗ > |t=0 = d

dt < u(t), x∗ >

|t=0 = 0, < u′(·), x∗ >∈ W 2,1
loc ([0, T0)) and



On Local Integrated C-Cosine Function and Weak Solution 2039

d2

dt2
< u′(t), x∗ > =

d3

dt3
< u(t), x∗ >

=
d

dt
[< u(t), y∗ > + < Cx + j0 ∗ Cg(t), x∗ >]

=< u′(t), y∗ > + < Cg(t), x∗ >

for a.e. 0 ≤ t < T0. Clearly, d
dt < u′(t), x∗ >= d2

dt2
< u(t), x∗ >=< u(t), y∗ >

+ < Cx + j0 ∗ Cg(t), x∗ > for all 0 ≤ t < T0. In particular, d
dt < u′(t), x∗ >

|t=0 =< Cx , x∗ >. It follows that u′ is a weak solution of ACP2(A, Cg , 0, Cx)
in C([0, T0), X). The uniqueness of weak solutions of ACP2(A, Cg , 0, Cx) in
C([0, T0), X) follows from the uniqueness of weak solutions of ACP2(A, 0, 0, 0)
in C([0, T0), X). In order, we show that (iii)⇒(i). Indeed, if u(·, x) denotes the
unique weak solution of ACP2(A, 0, 0, Cx) in C([0, T0), X) for all x ∈ X, then
v = j0 ∗ u is the unique weak solution of ACP2(A, Cx , 0, 0) in C1([0, T0), X).
Applying Theorem 2.5, we get that A generates a nondegenerate local 1-times in-
tegrated C-cosine function C(·) on X which is defined by C(t)x = u(t, x) for all
0 ≤ t < T0 and x ∈ X .

By slightly modifying the proof of Theorem 2.5, we can apply Theorem 2.6 to
prove the next theorem concerning local (0-times integrated) C-cosine functions.

Theorem 2.7. Let A : D(A) ⊂ X → X be a closed linear operator such that
C−1AC = A. Then the following are equivalent :

(i) For each x ∈ X and g ∈ L1
loc([0, T0), X), ACP2(A, Cx + j0 ∗Cg(·), 0, 0) has

a unique strong solution in C 2([0, T0), X) ∩ C([0, T0), [D(A)]);
(ii) For each x ∈ X, ACP2(A, Cx , 0, 0) has a unique strong solution in C 2([0, T0),

X) ∩ C([0, T0), [D(A)]);
(iii) A generates a nondegenerate local (0-times integrated) C-cosine function

C(·) on X;
(iv) For each x ∈ X and g ∈ L1

loc([0, T0), X), ACP2(A, Cg(·), 0, Cx) has a unique
weak solution in C1([0, T0), X);

(v) For each x ∈ X, ACP2(A, 0, 0, Cx) has a unique weak solution u(·, Cx) in
C1([0, T0), X).

Moreover, ‖C(t)‖ ≤ Keωt for all t ≥ 0 and for some K, ω ≥ 0 if and only if for
each x ∈ X, ‖u(t + h, Cx) − u(t, Cx)‖ ≤ Kheω(t+h)‖x‖ for all t, h ≥ 0.

Similarly, we can apply Theorem 2.7 to prove the next theorem concerning local
(0-times integrated) C-cosine functions which has been obtained in [9] when A is
densely defined.
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Theorem 2.8. Let A : D(A) ⊂ X → X be a closed linear operator such that
C−1AC = A. Then the following are equivalent :

(i) For each x, y ∈ X and g∈L1
loc([0, T0), X), ACP2(A, Cx+j1(·)Cy+j0 ∗Cg(·),

0, 0) has a unique strong solution in C 2([0, T0), X) ∩ C([0, T0), [D(A)]);
(ii) For each x ∈ X and g ∈ L1

loc([0, T0), X), ACP2(A, Cx + j0 ∗Cg(·), 0, 0) has
a unique strong solution in C 2([0, T0), X) ∩ C([0, T0), [D(A)]);

(iii) For each x, y ∈ X, ACP2(A, Cx + j1(·)Cy , 0, 0) has a unique strong solution
in C2([0, T0), X) ∩ C([0, T0), [D(A)]);

(iv) A generates a nondegenerate local (0-times integrated) C-cosine function
C(·) on X;

(v) For each x, y ∈ X and g ∈ L1
loc([0, T0), X), ACP2(A, Cg(·), Cx , Cy) has a

unique weak solution in C([0, T0), X);
(vi) For each x ∈ X and g ∈ L1

loc([0, T0), X), ACP2(A, Cg(·), Cx , 0) has a unique
weak solution in C([0, T0), X);

(vii) For each x, y ∈ X, ACP2(A, 0, Cx , Cy) has a unique weak solution in
C([0, T0), X);

(viii) For each x ∈ X, ACP2(A, 0, Cx , 0) has a unique weak solution u(·, Cx) in
C([0, T0), X).

Moreover,

(i) ‖C(t)‖ ≤ Keωt for all t ≥ 0 and for some K, ω ≥ 0 if and only if for each
x ∈ X, ‖u(t, Cx)‖ ≤ Keωt‖x‖ for all t ≥ 0;

(ii) ‖C(t + h) − C(t)‖ ≤ Kheω(t+h) for all t, h ≥ 0 and for some K, ω ≥ 0 if
and only if for each x ∈ X, ‖u(t + h, Cx) − u(t, Cx)‖ ≤ Kheω(t+h)‖x‖ for
all t, h ≥ 0;

(iii) For each 0 < t0 < T0, ‖C(t+h)−C(t)‖ ≤ Kt0h for all 0 ≤ t, h ≤ t+h ≤ t0
and for some Kt0 > 0 if and only if for each x ∈ X and 0 < t0 < T0,
‖u(t + h, Cx) − u(t, Cx)‖ ≤ Kt0h‖x‖ for all 0 ≤ t, h ≤ t + h ≤ t0 and for
some Kt0 > 0.

We end this paper with a simple illustrative example. Let X = Cb(R)( or
L∞(R)), and A be the maximal differential operator in X defined by Au =
k∑

j=0
ajD

ju on R for all u ∈ D(A), then UCb(R) ( or C0(R)) = D(A). Here

a0, a1, · · · , ak ∈ C and Dju(x) = u(j)(x) for all x ∈ R. It is shown in [2, Theo-
rem 6.7] that A generates an exponentially bounded, norm continuous 1-times inte-
grated cosine function C(·) on X which is defined by (C(t)f)(x) = 1√

2π
(φ̃t ∗f)(x)
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for all f ∈ X and t ≥ 0 if the real-valued polynomial p(x) =
k∑

j=0
aj(ix)j sat-

isfies sup
x∈R

p(x) < ∞. Here φ̃t denotes the inverse Fourier transform of φt with

φt(x) =
∫ t
0 cosh(

√
p(x)s)ds. Applying Theorem 2.6, we get that for each f ∈ X

and continuous function g on [0, T0) × R with
∫ t
0 sup

x∈R

|g(s, x)|ds < ∞ for all

0 ≤ t < T0, the function u on [0, T0) × R defined by u(t, x) = 1√
2π

∫ ∞
−∞ φ̃t(x −

y)f(y)dy + 1√
2π

∫ t
0

∫ ∞
−∞ φ̃t−s(x − y)g(s, y)dyds for all 0 ≤ t < T0 and x ∈ R, is

the unique weak solution of
∂2u(t, x)

∂t2
=

k∑
j=0

aj(
∂

∂x
)ju(t, x) + g(t, x) for t ∈ (0, T0) and a.e. x ∈ R,

u(0, x) = 0 and
∂u

∂t
(0, x) = f(x) for a.e. x ∈ R

in C([0, T0), X).

REFERENCES

1. W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander, Vector-Valued Laplace
Transforms and Cauchy Problems, 96, Birkhauser Verlag, Basel-Boston-Berlin, 2001.

2. W. Arendt and H. Kellermann Integrated Solutions of Volterra Integrodifferential
Equations and Applications, Pitman Res. Notes Math. 190, Longman, Harlow 1989,
pp. 21-51.

3. J. M. Ball, Strongly Continuous Semigroups, Weak Solutions, and the Variation of
Constant Formula, Proc. Amer. Math. Soc., 63 (1977), 370-373.

4. H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, in:
North-Holland Math. Stud., 108, North-Holland, Amsterdam, 1985.

5. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.

6. M. Hieber, Integrated Semigroups and Differential Operators on Lp Spaces, Math.
Ann., 291 (1991), 1-16.

7. S. Kanda, Cosine Families and Weak Solution of Second Order Differential Equa-
tions, Proc. Japan Acad. Ser. A. Math. Sci., 54 (1978), 119-123.

8. M. Kostic, Distribution Cosine Functions, Taiwanese J. Math., 10 (2006), 739-775.

9. C.-C. Kuo and S.-Y. Shaw, C-Cosine Functions and the Abstract Cauchy Problem I,
II, J. Math. Anal. Appl., 210 (1997), 632-646, 647-666.

10. C.-C. Kuo, On exponentially bounded α-Times Integrated C-Cosine Functions, Yoko-
hama Math. J., 52 (2005), 59-72.



2042 Chung-Cheng Kuo

11. C.-C. Kuo, On α-Times Integrated C-Cosine Functions and Abstract Cauchy Problem
I, J. Math. Anal. Appl., 313 (2006), 142-162.

12. Y.-C. Li and S.-Y. Shaw, On Generators of Integrated C-Semigroups and C-Cosine
Functions, Semigroup Forum, 47 (1993), 29-35.

13. Y.-C. Li and S.-Y. Shaw, N-Times Integrated C-Semigroups and the Abstract Cauchy
Problem, Taiwanese J. Math., 1 (1997), 75-102.

14. S.-W. Wang and Z. Huang, Strongly Continuous Integrated C-Cosine Operator Func-
tions, Studia Math., 126 (1997), 273-289.

15. T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential
Equations, Lectures Notes in Math., Springer, 1998, p. 1701.

16. Q. Zheng, Coercive Differential Operators and Fractionally Integrated Cosine Func-
tions, Taiwanese J. Math., 6 (2002), 59-65.

Chung-Cheng Kuo
Department of Mathematics,
Fu Jen University,
Taipei 24205,
Taiwan
E-mail: cckuo@math.fju.edu.tw


