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FIXED POINT THEOREMS FOR THE GENERALIZED Ψ-SET
CONTRACTION MAPPING ON AN ABSTRACT CONVEX SPACE

T. H. Chang and C. M. Chen*

Abstract. In this paper, we establish some fixed point theorems for the
generalized Ψ-set contraction mapping on an abstract convex space, which
need not to be a compact map.

1. INTRODUCTION AND PRELIMINARIES

In 1929, Knaster, Kuratowski and Mazurkiewicz [8] had proved the well-known
KKM theorem on n-simplex. Besides, in 1961, Ky Fan [7] had generalized the
KKM theorem in the infinite dimensional topological vector space. Later, Chang
and Yen [4] introduced the generalized KKM property on a convex subset of a
Haudorff topological vector space and they establish some fixed point theorems
on this class. Recently, Amini et al. [1] had showed that each compact closed
multifunction F ∈ S-KKMC(X,X,X) has a fixed point in an abstract convex
space X . In this paper, we establish some fixed point theorems for the generalized
Ψ-set contraction mapping on an abstract convex space (X, C), which need not to
be a compact map.

Let X and Y be two sets, and let T : X → 2Y be a set-valued mapping. We
shall use the following notations in the sequel.

(i) T (x) = {y ∈ Y : y ∈ T (x)},
(ii) T (A) = ∪x∈AT (x),
(iii) T−1(y) = {x ∈ X : y ∈ T (x)},
(iv) T−1(B) = {x ∈ X : T (x) ∩ B �= φ}, and
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(v) if D is a nonempty subset of X , then 〈D〉 denotes the class of all nonempty
finite subset of D.

For the case that X and Y are two topological spaces, a set-valued map T :
X → 2Y is said to be closed if its graph GT = {(x, y) ∈ X × Y : y ∈ T (x)} is
closed. T is said to be compact if the image T (X) of X under T is contained in a
compact subset of Y .

Definition 1. [1]. An abstract convex space (X, C) consists of a nonempty
topological space X and a family C of subsets of X such that X and φ belong to
C and C is closed under arbitrary intersection.

Suppose A is a nonempty subset of an abstract convex space (X, C). Then

(i) the C-admissible hull of A is defined by

adC(A) = ∩{B ∈ C : A ⊂ B},

(ii) a subset A is called C-admissible if A = adC(A), and
(iii) A is called C-subadmissible if for each D ∈ 〈A〉, adC(D) ⊂ A.

Remark 1. It is clear that if Ai is C-subadmissible for each i ∈ I , then ∩i∈IAi

is C-subadmissible.

The following is a main example of an abstract convex space.

Example 1. Let (M, d) be a bounded metric space, and A be a subset of M .
Then

(i) ad(A) = ∩{B ⊂M : B is a closed ball in M such that A ⊂ B}.
(ii) a subset A is called admissible if A = ad(A).
(iii) A is called subadmissible if for each D ∈ 〈A〉, ad(D) ⊂ A.

Let A be a nonempty subset of an abstract convex space (X, C) which has
a uniformity U and U has an open symmetric base family N . Then A is called
C-almost subadmissible if for any K = {x1, x2, ..., xn} ∈ 〈A〉 and for any V ∈
N , there exists a mappping hK,V : K → A such that hK,V (xi) ∈ V [xi] for
all i ∈ {1, 2, ..., n} and adC(hK,V (K)) ⊂ A. Moreover, we call the mapping
hK,V : K → A a C-subadmissible-inducing mapping.

Remark 2. It is clear that every C-subadmissible set must be C-almost subad-
missible, but the converse is not true.
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Proposition 1. Let (X, C) be an abstract convex space which has a uniformity
U and U has an open symmetric base family N . If A is a nonempty C-almost
subadmissible subset of X and B is a nonempty open C-subadmissible subset of
X , then A ∩B is C-almost subadmissible.

Proof. Let K = {x1, x2, ..., xn} ∈ 〈A ∩ B〉. Since B is open, there exists
a U ∈ N such that U [K] ⊂ B. For any V ∈ N with V ◦ V ⊂ U , there exists
a C-subadmissible-inducing mapping hK,V : K → A such that hK,V (x) ∈ V [x]
for all x ∈ K and adC(hK,V (K)) ⊂ A, since A is C-almost subadmissible. Since
hK,V (K) ⊂ V [K] ⊂ B and B is C-subadmissible, adC(hK,V (K)) ⊂ B. Thus
adC(hK,V (K)) ⊂ A ∩B.

Remark 3. Let us note that the open condition of the above Proposition 1 is
really needed. For instance, if we consider the metric space (M, d), M = R2

and d(x, y) = max{|x1 − y1|, |x2 − y2|}, where x = (x1, x2), y = (y1, y2) ∈ M ,
let X = N (0, 1) ∪ {(1, 1), (1,−1), (−1, 1), (−1,−1)} and Y = B(−2, 1) be two
nonempty subsets of M , then X is C-almost subadmissible, Y is C-subadmissible,
but X ∩ Y = {(−1, 1), (−1,−1)} is not C-almost subadmissible.

Recently, Amini et al.[1] introduced the class of multifunctions with the KKM
and S −KKM properties in abstract convex spaces.

Definition 2. [1]. Let Z be a nonempty set, (X, C) an abstract convex space,
and Y a topological space. If S : Z → 2X , T : X → 2Y and F : Z → 2Y are
three multifunctions satisfying

T (adC(S(A))) ⊂ ∪x∈AF (x), for each A ∈ 〈Z〉,

then F is called a C-S-KKM mapping with respect to T . If the multifunction
T : X → 2Y satisfies the requirement that for any C-S-KKM mapping F with
respect to T , the family {clF (x) : x ∈ Z} has the finite intersection property, then
T is said to have the S-KKM property with respect to C. We define

S −KKMC(Z,X, Y ) := {T : X → 2Y |T has the S −KKM property with

respect to C}

Remark 4. It is clear that if S is the identity mapping I , then S-KKMC(X,X, Y )
= KKMC(X, Y ).

Moreover, KKMC(X, Y ) is contained in S-KKMC(Z,X, Y ) for any S : Z →
2X .
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Definition 3. LetX be a nonempty C-almost subadmissible subset of an abstract
convex space (E, C) which has a uniformity U and U has an open symmetric base
family N , and Y a topological space. If T : X → 2Y and F : X → 2Y are two
multifunctions such that for each A ∈ 〈X〉 and for each V ∈ N , there exists a
C-subadmissible-inducing mapping hA,V : A→ X satisfying

T (adC(hA,V (A))) ⊂ F (A), for each A ∈ 〈X〉,
then F is called a C-KKM ∗ mapping with respect to T . If the multifunction
T : X → 2Y satisfies the requirement that for any generalized C-KKM∗ mapping
F with respect to T , the family {clF (x) : x ∈ X} has the finite intersection
property, then T is said to have the C-KKM∗ property with respect to C. We
define

KKM∗
C (X, Y ) := {T : X → 2Y |T has the KKM ∗ property with

respect to C}

The Φ-mapping and the Φ-spaces, in an abstract convex space setting, were also
introduced by Amini et al.[1].

Definition 4. [1]. Let (X, C) be an abstract convex space, and Y a topological
space. A map T : Y → 2X is called a Φ-mapping if there exists a multifunction
F : Y → 2X such that

(i) for each y ∈ Y , A ∈ 〈F (y)〉 implies adC(A) ⊂ T (y), and
(ii) Y = ∪x∈XintF

−1(x).

The mapping F is called a companion mapping of T .
Furthermore, if the abstract convex space (X, C) which has a uniformity U and

U has an open symmetric base family N , then X is called a Φ-space if for each
entourage V ∈ N , there exists a Φ-mapping T : X → 2X such that GT ⊂ V .

Remark 5.
(i) If T : Y → 2X is a Φ-mapping, then for each nonempty subset Y1 of Y ,

T |Y1 : Y1 → X is also a Φ-mapping.
(ii) It is easy to see that if X1 ⊂ X and C1 = {C ∩X1 : C ∈ C}, then (X1, C1)

is also a Φ-space.

Definition 5. An abstract convex space (X, C) is said to be a locally abstract
convex space if X is a uniform topological space with uniformity U which has an
open basis N = {Vi : i ∈ I}of symmetric encourages such that for each V ∈ N ,
the set V [x] is an C-subadmissible subset of X .
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The measure of noncompactness of topological vector spaces were introduced
in [2]. In the following, we extend the definition to the abstract convex spaces.

Definition 6. Let (X, C) be an abstract convex space and α : 2X → 
+,
where 
+ denote the set of all nonegative real nunbers. α is called a measure of
noncompactness with respect to C provided that the following conditions hold.

(i) α(adC(A)) = α(A) for each A ∈ 2X ,
(ii) α(A) = 0 if and only if A is precompact, and
(iii) α(A ∪ B) = max{α(A), α(B)}, for each A,B ∈ 2X .

Remark 6. It is clear that if A ⊂ B, then α(A) ≤ α(B).

In the sequel, we let Ψ = {ψ : 
+ → 
+ : ψ is upper semicontinuous with
ψ(t) < t for all t > 0 and ψ(0) = 0 }. The following proposition have showed by
Chen [6], and it plays an important role for this paper.

Proposition 2. If ψ ∈ Ψ, then there exists a strictly increasing, continuous
function α : 
+ → 
+ such that ψ(t) ≤ α(t) < t for all t > 0.

Remark 7. In above Proposition 2, the function α is invertible. If for each
t > 0, we denote α0(t) = 0 and α−n(t) = α−1(α−n+1(t)) for each n ∈ N , then
we have limn→∞ α−n(t) = ∞, that is; limn→∞ αn(t) = 0. Moreover, we also
conclude that limn→∞ αn(t) = 0.

Proof. Let t > 0. Suppose that limn→∞ ψ−n(t) = η for some positive real
number η. Then

η = lim
n→∞α−n(t) = α−1( lim

n→∞α−n+1(t)) = α−1(η) > η,

which is a contradiction.

Definition 7. Let (X, C) be an abstract convex space. A mapping T : X → 2X

is said to be a generalized Ψ-set contraction mapping with respect to C, if, there
exists an ψ ∈ Ψ such that for each A ⊂ X with A bounded, T (A) is bounded and
α(T (A)) ≤ ψ(α(A)).

2. MAIN RESULTS

The following theorem that due to Amini et al. [1], will help us to get two fixed
point theorems for the generalized Ψ-set contraction mapping.
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Theorem 1. [1]. Let (X, C) be a Φ-space and s : X → X be a surjective
function. Suppose that T ∈ s−KKMC(X,X,X) is compact and closed. Then T
has a fixed point.

We now establish the main fixed point theorem for this paper, as follows:

Theorem 2. Let (X, C) be a bounded abstract convex space. If T : X → 2X

is a generalized Ψ-set contraction mapping with respect to C, then there exists a
nonempty precompact C-subadmissible subset K of X such that T (K) ⊂ K.

Proof. Since T is a generalized Ψ-set contraction mapping, there exists an
ψ ∈ Ψ such that α(T (A)) ≤ ψ(α(A)) for each A ⊂ X . Take x0 ∈ X , and we let

X0 = X, X1 = adC(T (X0) ∪ {x0}), and

Xn+1 = adC(T (Xn) ∪ {x0}), for each n ∈ N.

Then

(1) Xn+1 ⊂ Xn, for each n ∈ N ,
(2) T (Xn) ⊂ Xn+1, for each n ∈ N , and
(3) Xn is C-subadmissible, for each n ∈ N .

We claim that α(Xn+1) ≤ ψn+1(α(X0))
Since

α(Xn+1) ≤ α(adC(T (Xn) ∪ {x0}) ≤ α(T (Xn)), and

α(T (Xn)) ≤ ψ(α(Xn)), for each n ∈ N,

we have
α(Xn+1) ≤ ψn+1(α(X0)).

Thus α(Xn) → 0, as n → ∞. Let X∞ = ∩n≥1Xn. Then X∞ is a nonempty
precompact C-subadmissible subset of X . Moreover, by (i) and (ii), we also have
that T (X∞) = T (∩n≥1Xn) ⊂ X∞.This completes the proof.

Remark 8. In the process of the proof of Theorem 2 , we call the set X∞ the
precompact-inducing C-subadmissible subset of X , and in the sequel, we always
denote X∞ be this set.

By Theorem 1 and Theorem 2, we can conclude the following fixed point
theorem.
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Theorem 3. Let (X, C) be a bounded Φ-space and let s : X → X be a single-
valued function with s(X∞) = X∞. If T ∈ s −KKMC(X,X,X) is generalized
Ψ-set contraction with respect to C and closed , then T has a fixed point in X .

Proof. By Theorem 2, we get a precompact-inducing C-subadmissible subset
X∞ of X with T (X∞) ⊂ X∞, and we can conclude that α(T (Xn)) → 0, as
n → ∞, hence T (X∞) is a precompact subset of X∞. By the definition of the
function s, we have that s(X∞) = X∞ and T |X∞ ∈ s −KKMC(X∞, X∞, X∞),
since T ∈ s−KKMC(X,X,X) and s(X∞) = X∞.

By Remark 5, we let C1 = {C ∩ X∞ : C ∈ C}, then (X∞, C1) is also a
Φ-space. Let N be a basis of the uniform structure of X∞, and let V ∈ N .
Then there exists a Φ-mapping F : X∞ → 2X∞ such that GF ⊂ V . Since F
is a Φ-mapping, there exists a companion mapping G : X∞ → 2X∞ such that
X∞ = ∪x∈X∞intG

−1(x). Let K = T (X∞). Then there exists a finite subset
A of X∞ such that K ⊂ ∪x∈AintG

−1(x). Since s(X∞) = X∞, there exists
a finite subset B of X∞ such that K ⊂ ∪z∈BintG

−1(s(z)). Now, we define
P : X∞ → 2X∞ by

P (z) = K\intG−1(s(z)), for each z ∈ X∞.

By the definition of P , we obtain that P is not a C-s-KKM mapping with respect
to T |X∞ . Hence, there exists N = {z1, z2, ..., zk} ⊂ X∞ such that T (adCs(N )) �
∪k

i=1P (zi). So, there exist x ∈ adCs(N ) and y ∈ T (x) such that y /∈ ∪k
i=1P (zi).

Consequently, y ∈ ∩k
i=1intG

−1(zi), and so s(zi) ∈ G(y) for all i = 1, 2, .., k.
Since F is a Φ-mapping, we have adCs(N ) ⊂ F (y), and so x ∈ F (y), ie (x, y) ∈
GF ⊂ V . Therefore, y ∈ V [x] ∩ T (x), and we are easy to prove that T has a fixed
point in X .

Corollary 1. Let (X, C) be a bounded Φ-space, and let T ∈ KKMC(X,X)
be generalized Ψ-set contraction with respect to C and closed. Then T has a fixed
point in X .

Lemma 1. Let (X, C) be an abstract convex space, and Y a topological
space. Then T |D ∈ KKMC(D, Y ) whenever T ∈ KKMC(X, Y ) and D is a
C-subadmissible subset of X .

Proof. The proof is similar to one given by Chang and Yen [4].

Lemma 2. Let Z be a nonempty set, (X, C) an abstract convex space, and
Y,W a topological space. If T ∈ S − KKMC(Z,X, Y ), then fT ∈ S −
KKMC(Z,X,W ) for each f ∈ C(Y,W ).
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Proof. The proof is similar to one given by Chang et al.[3].

Theorem 4. Let X be a nonempty C-subadmissible subset of a locally abstract
convex space (E, C), and let s : X → X be a single-valued mapping. If T ∈
s − KKMC(X,X,X) is compact and closed with T (X) ⊂ s(X), then T has a
fixed point in X .

Proof. SinceE is a locally abstract convex space, there exists a uniform structure
U . Let N be an open symmetric base family for the uniform structure U such that
for any U ∈ N , the set U [x] = {y ∈ X : (x, y) ∈ U} is an open C-subadmissible
subset of E for each x ∈ X .

We now claim that for any V ∈ N , there exists xV ∈ X such that V [xV ] ∩
T (xV ) �= φ. Suppose it is not the case, then there is an V ∈ N such that V [xV ] ∩
T (xV ) = φ, for all xV ∈ X . Since T is compact, hence K = T (X) is a compact
subset of X . Define F : X → 2X by

F (x) = K\V [s(x)] for each x ∈ X.

We will show that

(i) F (x) is nonempty and closed for each x ∈ X , and
(ii) F is a C-s-KKM generalized mapping with respect to T .

(1) is obviuos. To prove (2), we use the contradiction. Suppose, there exists A =
{x1, x2, ..., xn} ∈ 〈X〉 such that T (adC(s(A))) � F (A). Then there exists y ∈
adC(s(A)), z ∈ T (y), and z /∈ F (A). Since z /∈ F (A), z /∈ ∪n

i=1(K\V [s(xi)]),
and so z ∈ V [s(xi)] for each i ∈ {1, 2, ..., n}, that is; (s(xi), z) ∈ V for each
i ∈ {1, 2, ..., n}. Since V is symmetric, we conclude that (z, s(xi)) ∈ V and s(xi) ∈
V [z] for each i ∈ {1, 2, ..., n}. Furthermore, adC({s(x1), s(x2, ..., s(xn))}) ⊂ V [z],
since V [z] is C-subadmissible. Hence, y ∈ V [z], z ∈ V [y], and so we have
z ∈ T (y) ∩ V [y]. This contradicts with T (y) ∩ V [y] = φ for each y ∈ X .

Since T ∈ s − KKMC(X,X,X) and K is compact, so ∩x∈XF (x) �= φ. Let
η ∈ ∩x∈XF (x) ⊂ K = T (X) ⊂ s(X), then there exists ξ ∈ X such that s(ξ) = η.
So we have η ∈ F (ξ) = K\V [s(ξ)] = K\V [η], that is; (η, η) /∈ V . So we get a
contradiction. Therefore, we have proved that for each Vi ∈ N , there exists xVi ∈ X

such that Vi[xVi ] ∩ T (xVi) �= φ. Let yVi ∈ Vi[xVi] ∩ T (xVi). Then (xVi, yVi) ∈ V
and (xVi , yVi) ∈ GT . Since T is compact, we may assume that {yVi}i∈I converges
to y0 in X . Now, for W ∈ N , take U ∈ N such that U ◦ U ⊂ W . Since
yVi → y0, there exists U0 ∈ N with U0 ⊂ U such that yVi ∈ U [y0] for Vi ∈ N
with Vi ⊂ U0, that is; (yVi , y0) ∈ U for Vi ∈ N with Vi ⊂ U0. So we have
(xVi , y0) = (xVi, yVi) ◦ (yVi , y0) ∈ U ◦ U ⊂ W , that is; xVi ∈ W [y0] for Vi ∈ N
with Vi ⊂ U0. This shows that xVi → y0. Since T is closed, we have (y0, y0) ∈ GT ,
so y0 ∈ T (y0). We complete the proof.
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By Theorem 4, we also conclude the following fixed point theorem for the
generalized Ψ-set contraction mapping.

Theorem 5. Let X be a nonempty bounded C-subadmissible subset of a locally
abstract convex space (E, C), and let s : X → X be a single-valued mapping with
s(X∞) = X∞. If T ∈ s−KKMC(X,X,X) is generalized Ψ-set contraction with
respect to C and closed with T (X∞) ⊂ s(X∞), then T has a fixed point in X .

Proof. By Theorem 2, we get T (X∞) ⊂ X∞, and we can conclude that
α(T (Xn)) → 0, as n → ∞, hence T (X∞) is a precompact subset of X∞. By
the definition of the function s, we have that s(X∞) = X∞ and T |X∞ ∈ s −
KKMC(X∞, X∞, X∞), since T ∈ s −KKMC(X,X,X) and s(X∞) = X∞.

Let K = T (X∞), and we define F : X∞ → 2X∞ by

F (x) = K\V [s(x)] for each x ∈ X∞.

The remainder proof is similar to Theorem 4, we omit it.

Next, we use the other proof’s skill to get a precompact-inducing C-almost
subadmissible subset X∞ of an abstract convex space X , and then, we establish
the fixed point theorems for the generalized Ψ-set contraction mapping having the
C-KKM∗

C (X, Y ) property on this C-almost subadmissible set.

Theorem 6. Let X be a nonempty C-almost subadmissible subset of a locally
abstract convex space (E, C). If T ∈ KKM ∗

C (X,X) is compact and closed, then
T has a fixed point in X .

Proof. The proof is analogous to the proof of Theorem 2.5 of Chen et al.[5],
we omit it.

By Theorem 6, we also conclude the following fixed point theorem.

Theorem 7. Let X be a nonempty bounded C-almost subadmissible subset of a
locally abstract convex space (E, C). If T ∈ KKM ∗

C (X,X) is generalized Ψ-set
contraction with respect to C and closed with T (X) ⊂ X and intT (x) �= φ for
each x ∈ X , then T has a fixed point in X .

Proof. Since T is a generalized Ψ-set contraction mapping, there exists an
ψ ∈ Ψ such that α(T (A)) ≤ ψ(α(A)) for each A ⊂ X . Take x0 ∈ X , and we let

X0 = X, X1 = intadC(T (X0 ∪ {x0})) ∩X, and

Xn+1 = intadC(T (Xn ∪ {x0})) ∩X, for each n ∈ N.
Then
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(i) Xn+1 ⊂ Xn, for each n ∈ N , and
(ii) by Proposition 1, Xn is C-almost subadmissible, for each n ∈ N .

We now claim that α(Xn+1) ≤ ψn+1(α(X0)). Since

α(T (Xn)) ≤ ψ(α(Xn)), for each n ∈ N, and

α(Xn+1) ≤ α(intadC(T (Xn ∪ {x0})) ≤ α(adC(T (Xn ∪ {x0})) ≤ α(T (Xn)),

we have
α(Xn+1) ≤ ψn+1(α(X0)).

Thus α(Xn) → 0, as n → ∞. Let X∞ = ∩n≥1Xn. Then X∞ is a nonempty
precompact C-almost subadmissible subset of X . Moreover, we also conclude that
α(T (Xn)) → 0, as n → ∞, and so T (X∞) is a compact subset of X . The
remainder conclusion follows from Theorem 6.

Corollary 2. Let X be a nonempty bounded C-subadmissible subset of a lo-
cally abstract convex space (E, C). If T ∈ KKMC(X,X) is generalized Ψ-set
contraction with respect to C and closed with T (X) ⊂ X , then T has a fixed point
in X .
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