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ON PERIODIC CONTINUED FRACTIONS OVER Fq((X−1))

H. Ben Amar and M. Mkaouar*

Abstract. Let Fq be a field with q elements of characteristic p and Fq((X−1))
be the field of formal power series over Fq. Let f be a quadratic formal power
series of continued fraction expansion [b0; b1, . . . , bs, a1, . . . , at], we denote
by t = Per (f) the period length of the partial quotients of f. The aim of
this paper is to study the continued fraction expansion of Af where A is a
polynomial ∈ Fq[X]. In particular we study the asymptotic behavior of the
functions

S(N, n) = sup
deg A=N

sup
f∈Λn

Per (Af) and R(N) = sup
n≥1

S(N, n)
n

,

where Λn is the set of quadratic formal power series of period n in Fq((X−1)).

1. INTRODUCTION

In 1974, Cohen [1] studied the function S(N, n) = sup
Per (x)=n

Per (Nx) where

N is a positive integer, x is a quadratic irrational and Per (Nx) is the length of the
period of the continued fraction expansion of Nx. He made use of an algorithm for
computing the continued fraction expansion of Nx and defined a projective space

which permits to evaluate S(N, n) and to study the function R(N ) = sup
n≥1

S(N, n)
n

.

Later, Cusick [2] studied the length of the period of the product of a positive integer
with a quadratic irrational by using Raney’s algorithm (see [5]). The aim of this
paper is to give a similar result to the one of Cohen in the case of formal power
series over a finite fields Fq by using Cohen’s [1] and Mendès France’s [3, 4]
methods.
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Let p be a prime, and let Fq be a field with q elements of characteristic p.
Moreover, let Fq[X ] be the ring of polynomials over Fq and Fq(X) its field of
fractions. The field Fq((X−1)) of formal power series over Fq is defined by

Fq((X−1)) = {
∑
n≥n0

fnX
−n : fn ∈ Fq, n0 ∈ Z}.

Let f =
∑
n≥n0

fnX
−n where n0 ∈ Z. We denote by [f ] the polynomial part of f and

{f} its fractional part. We define a non archimedean absolute value on Fq((X−1))
by | f |= e−n0 , for any f ∈ Fq((X−1)). It is clear that, for any P ∈ Fq[X ],

| P |= edeg P and, for any Q ∈ Fq[X ], such that Q �= 0, | P
Q

|= edegP − degQ.

We can write the continued fraction expansion of an irrational f ∈ Fq((X−1))
in the form

f = a0 +
1

a1 + 1

a2 +
1
. . .

= [a0; a1, a2, . . .],

where ai is a polynomial of degree ≥ 1 for each i ≥ 1 and a0 ∈ Fq[X ]. The
sequence (ai)i≥0 is called the sequence of partial quotients of f.

We say that the formal power series f has a t-periodic continued fraction ex-
pansion or the continued fraction expansion of f is ultimately periodic of period t
if the sequence (ai)i≥0 is ultimately periodic of period t. We denote by Per (f) = t

and write f = [a0; a1, . . . , as, as+1, . . . , as+t] for the continued fraction expansion
of f. We say that the formal power series f has a pure periodic continued fraction
expansion of period t if the sequence (ai)i≥0 is purely periodic of period t and write
f = [a1; . . . , at]. Let f ∈ Fq((X−1)), then f is quadratic if and only if the con-
tinued fraction expansion of f is periodic. We define the sequence of polynomials
(Pn)n∈N

and (Qn)n∈N
by :

P−1 = 1, P0 = a0 and Pn+1 = an+1Pn + Pn−1,

and
Q−1 = 0, Q0 = 1 and Qn+1 = an+1Qn +Qn−1.

The fraction
Pn

Qn
is called n-th convergent of f . It is clear that

Pn

Qn
= [a0; a1, . . . , an].

Let (P ′
n)n∈N

and (Q′
n)n∈N

be the sequences associated to the periodic part of

f , i.e.
P ′

n

Q′
n

= [as+1, . . . , as+t], we call M =
(
P ′

t P ′
t−1

Q′
t Q′

t−1

)
the matrix associated

to the quadratic formal power series f.
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Let J, H be two polynomials in Fq[X ] and [b0; b1 , . . . , bs] the continued fraction

expansion of
J

H
, we denote by

[
J

H

]
= b0, b1 , . . . , bs and ψ

(
J

H

)
= s the length

of continued fraction expansion of
J

H
and

[
c0; . . . , ci ,

[
J

H

]
, ci+1, . . .

]
= [c0; . . . , ci , b0, b1 , . . . , bs , ci+1, . . .] ,

and
[
J

0

]
the empty word. Note that ψ

([ J
H

] )
= ψ

([ J
H

] )
+ 1.

The paper is organized as follows. In section 2, we give the continued fraction
expansion of Af where f ∈ Fq((X−1)) and A is a nonconstant polynomial in
Fq[X ]. Section 3 is devoted to the study of the length of the period of the continued
fraction expansion of Af given in section 2 where f is quadratic. In section 4, we
will construct a new space noted PA in order to study the functions S(N, n) and
R(N ) in section 5.

2. CONTINUED FRACTION OF THE PRODUCT OF A POLYNOMIAL WITH A

FORMAL POWER SERIES

We describe an algorithm which gives the continued fraction expansion of Af
where f ∈ Fq((X−1)) and A ∈ Fq[X ]\Fq in the following theorem.

Theorem 2.1. Let f ∈ Fq((X−1)) and A ∈ Fq[X ]\Fq, we write the continued
fraction expansion of f in the following form

(2.1) f = [Ab′0 + h0 ;Ab′1 + h1 , . . . , Ab
′
n + hn, . . .]

with b′i, hi ∈ Fq[X ] and deg (hi) < deg (A) for each i ≥ 0. Define the se-
quences (Hi)i≥−1, (b′′i )i≥0, (ji)i≥0, (Q(i))i≥−1, (ti)i≥−1, (ui)i≥−1 and (δi)i≥−1

by : Q(−1) = Q(0) = 0, t−1 = u−1 = 0, δ−1 = 1, δ0 = A and for each i ≥ 0

• Hi =
A

δi
,

• b′′i +
ji
Hi

=
(−1)ui−1δihi − δi−1Q

(i−1)

Hi
, where b′′i , ji ∈ Fq[X ], deg (ji) <

deg (Hi), for all i ≥ 1 and j0 = 0,

• ti + 1 = ψ

(
ji
Hi

)
and ui = ui−1 + ti,

• Q(i) is the denominator of the last but one convergent of the continued fraction
expansion of

ji
Hi

, for each i ≥ 1,
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• δi+1 = gcd(ji, Hi).

Then,

Af =
[
(−1)u−1δ20b

′
0 + b′′0 ,

[
H0

j0

]
, . . . , (−1)ui−1δ2i b

′
i + b′′i ,

[
Hi

ji

]
, . . .

]
.

Remark 2.2. We consider the expansion provided by Theorem 2.1 as a gen-
eralized continued fraction expansion of Af . However, we note that this algo-
rithm does not give the usual continued fraction expansion of Af. In fact, the term
λi = (−1)ui−1δ2i b

′
i + b′′i may be in Fq for some index i ≥ 1. However, the usual

continued fraction expansion of Af can be deduced from λi. We deduce the usual
continued fraction expansion of Af as follows:

If λi = 0 then [c0, . . . , ci−1 , 0 , ci+1, . . .] = [c0, . . . , ci−1 + ci+1, . . .].
If λi ∈ F

∗
q then

[c0, . . . , ci−1 , λi , ci+1, . . .] = [c0, . . . , ci−1 +
1
λi

,−λi
2ci+1 − λi ,−ci+2

λi
2
, . . .]

because

ci−1 +
1

λi +
1

βi+1

= ci−1 +
1
λi

− 1
λi

2βi+1 + λi

where βi+1 = [ci+1, . . .].

We notice that the length of usual continued fraction expansion of Af is less or equal
to the length of the generalized continued fraction expansion given by Theorem 2.1.

We need the following lemma in order to prove Theorem 2.1.

Lemma 2.3. Let J and H be two polynomials in Fq[X ] such that deg (J) <

deg (H), δ = gcd(J,H) and
J

H
= [0; c1, . . . , cs], then for all Z ∈ Fq((X−1)) we

have
J

H
+

1
H2Z

=
[
0; c1, . . . , cs, (−1)sδ2Z − δQs−1

H

]

=
[[
J

H

]
, (−1)sδ2Z − δQs−1

H

]
,

where Qs−1 is the denominator of the last but one convergent of the continued

fraction expansion of J

H
.

Proof. Let Ps be the numerator of the last convergent of the continued fraction

expansion of
J

H
, then
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Ps =
J

δ
and Qs =

H

δ
. Let γ = (−1)sδ2Z − δQs−1

H
, then

[0, c1, . . . , cs, γ] =
Psγ + Ps−1

Qsγ +Qs−1

=
Ps

Qs
+

(−1)s

Qs(Qsγ +Qs−1)

=
J

H
+

1
H2Z

.

Proof of Theorem 2.1. We first prove by induction that Hi ∈ Fq[X ]. We have
H0 = 1, then the claim is true for i = 0. Suppose that Hi ∈ Fq[X ], then Hi | A.
Since δi+1 | Hi, thus δi+1 | A, which implies Hi+1 ∈ Fq[X ]. Secondly, we prove
by induction that for i ≥ 2

Af =

[
(−1)u−1δ20b

′
0 + b′′0 ,

[
H0

j0

]
, . . . ,

[
Hi−1

ji−1

]
, (−1)ui−1δ2i xi − δi

Q(i−1)

Hi−1

]
.

Let xi be the continued fraction defined for all i ≥ 0 by

(2.2) Axi = [Ab′i + hi, . . . , Ab
′
s + hs, . . .].

The first step of the algorithm is to combine the equations (2.1) and (2.2) for i = 1.
We obtain

Af = A

(
Ab′0 + h0 +

1
Ax1

)
= A2b′0 +Ah0 +

1
x1
.

Using the induction formula, for b′′i given in the statement of Theorem 2.1, we
obtain b′′0 = Ah0. This implies that

Af = (−1)u−1δ20b
′
0 + b′′0 +

1
x1

=
[
(−1)u−1δ20b

′
0 + b′′0,

[
H0

j0

]
, x1

]
,

recall that
[
H0

j0

]
=
[
1
0

]
is the empty set. Moreover,

b′′1 +
j1
H1

=
(−1)u0δ1h1 − δ0Q

(0)

H1
=
h1

A
,

because Q(0) = 0, H1 = A, and t0 = u0 = 0, which yields

x1 = (−1)u0δ21b
′
1 + b′′1 +

j1
H1

+
1

H2
1x2

.
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Applying Lemma 2.3 to the polynomials j1 and H1, we obtain

j1
H1

+
1

H2
1x2

=

[[
j1
H1

]
, (−1)u1δ22x2 − δ2

Q(1)

H1

]
.

Since
H1

j1
= [b1; . . . , bt1], we have

Af =

[
(−1)u−1δ20b

′
0+b

′′
0 ,

[
H0

j0

]
, (−1)u0δ21b

′
1+b′′1,

[
H1

j1

]
, (−1)u1δ22x2−δ2Q

(1)

H1

]
,

then the claim is true for i = 2. Suppose that

Af =

[
(−1)u−1δ20b

′
0 + b′′0 ,

[
H0

j0

]
, . . . ,

[
Hi−1

ji−1

]
, (−1)ui−1δ2i xi − δi

Q(i−1)

Hi−1

]
,

for i > 2. Since xi = b′i+
hi

A
+

1
A2xi+1

and b′′i +
ji
Hi

= (−1)ui−1
δ2i hi

A
− δi−1Q

(i−1)

Hi
,

it is easy to verify that

(−1)ui−1δ2i xi − δi
Q(i−1)

Hi−1
= (−1)ui−1δ2i b

′
i + b′′i +

ji
Hi

+
(−1)ui−1

H2
i xi+1

.

Now, applying Lemma 2.3, we obtain

ji
Hi

+
(−1)ui−1

H2
i xi+1

=

[[
ji
Hi

]
, (−1)uiδ2i+1xi+1 − δi+1

Q(i)

Hi

]
.

Finally, we state that

Af =

[
(−1)u−1δ20b

′
0 + b′′0,

[
H0

j0

]
, . . . ,

[
Hi

ji

]
, (−1)uiδ2i+1xi+1 − δi+1

Q(i)

Hi

]
.

This process has to be stopped in the case where f is rational, in other words
the algorithm stops in the step s if f = [Ab ′0 + h0 , Ab′1 + h1 , . . . , Ab′s + hs].
Consequently,

Af =

[
(−1)u−1δ20b

′
0 + b′′0,

[
H0

j0

]
, . . . ,

[
Hs−1

js−1

]
, (−1)us−1δ2sxs − δs

Q(s−1)

Hs−1

]
.

As xs = b′s +
hs

A
, so

(−1)us−1δ2sxs − δs
Q(s−1)

Hs−1
= (−1)us−1δ2sb

′
s +

(−1)us−1δshs − δs−1Q
(s−1)

Hs

= (−1)us−1δ2sb
′
s + b′′s +

js
Hs

.
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Finally,

Af=
[
(−1)u−1δ20b

′
0 + b′′0,

[
H0

j0

]
, . . . ,

[
Hs−1

js−1

]
, (−1)us−1δ2sb

′
s + b′′s ,

[
Hs

js

]]
.

In the case where the continued fraction expansion of f is infinite i.e. f �∈ Fq(X),
the algorithm never stops and

Af=
[
(−1)u−1δ20b

′
0 + b′′0 ,

[
H0

j0

]
, . . . ,

[
Hi−1

ji−1

]
, (−1)ui−1δ2i b

′
i + b′′i ,

[
Hi

ji

]
, . . .

]
.

3. LENGTH OF THE PERIOD OF THE CONTINUED FRACTION OF Af

Let f be a quadratic formal power series. We prove that the continued fraction
expansion of Af given by Theorem 2.1 is periodic and we study the properties of
the period of the continued fraction expansion of Af .

Notation. Let f be a quadratic formal power series and A be a polynomial in
Fq[X ]. We denote by P ′(Af) the period of the continued fraction expansion of Af
given by Theorem 2.1.

Proposition 3.1. Let f be a quadratic formal power series, then the series Af
is periodic and the continued fraction expansion of Af given by Theorem 2.1 is
also periodic. We have

P ′(Af) ≥ Per(Af).

Proof. Throughout the proof, we will use the notations of Theorem 2.1. Since
f is quadratic, it follows that the continued fraction expansion of f is periodic.
Let [a0; a1, . . . , am, am+1, . . . , am+n] be the continued fraction expansion of f. Let
k be an integer greater than m and d = sup

1≤i≤n
deg am+i. We have degHk =

degA − deg δk ≤ degA = N, deg jk < degHk ≤ N and deg ((−1)uk−1δ2kb
′
k) =

2deg δk + deg b′k ≤ 2N + d. Moreover, as deg

(
δk−1Q

(k−1)

Hk

)
< 0,

deg (b′′k) ≤ deg
(
δkhk

Hk

)
= deg

(
δ2khk

A

)
< deg (δ2k) ≤ 2N.

Since there are only n different values of k (mod n), we conclude that the number
of possible values of ∆k = ((−1)uk−1δ2kb

′
k, b

′′
k, jk, Hk, k(mod n)) is finite. Thus

there exist two integers l and s such that ∆l = ∆s. Using the induction given in
Theorem 2.1, we obtain that

∆l+i = ∆s+i, ∀i ≥ 1.
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Therefore the continued fraction expansion of Af given by Theorem 2.1 is periodic.
We can write Af in the form :

Af = [a′0, . . . , a
′
m′, a′m′+1, . . . , a

′
m′+n′ ],

where deg a′i ≥ 0 for all i ∈ N and n′ = P ′(Af). According to Remark 2.2,
[a′0, . . . , a′m′ , a′m′+1, . . . , a

′
m′+n′ ] can be transformed to [a′′0 ; . . . , a′′m′′ , a′′m′′+1 , . . . , a

′′
m′′+n′′ ]

where n′′ ≤ n′, m′′ ≤ m′ and deg (a′′i ) > 0 for all i ∈ N
∗. We notice that this last

continued fraction expansion is the usual one and n′′ = Per(Af). Consequently

P ′(Af) ≥ Per(Af).

Applied with some conditions on the partial quotients of f , the algorithm given
by Theorem 2.1 provides the usual continued fraction expansion of Af .

Proposition 3.2. Let f ∈ Fq((X−1)) and let [a0; a1, . . . , as, . . .] be its continued
fraction expansion. If a0 �= 0 and deg (ai) > deg (A), for all i ≥ 1, then the
continued fraction expansion of Af given by Theorem 2.1 is the usual one.

Proof. It is sufficient to prove that deg ((−1)ui−1δ2i b
′
i + b′′i ) > 0, for all i ≥ 0

in order to show that the continued fraction expansion of Af given by Theorem 2.1
is usual. For i = 0, we have (−1)u−1δ20b

′
0 + b′′0 = A2b′0 + b′′0. It is clear that if

deg (a0) = 0, then deg ((−1)u−1δ20b
′
0 + b′′0) > 0. Otherwise, deg (a0A) > 0 and

the result follows by distinguishing two cases:

Case 1. deg (a0) < deg (A). It follows that h0 = a0 and b′0 = 0. Since

b′′0 +
j0
H0

= Ah0, we have deg (b′′0) = deg (Aa0) > 0 and thus

deg ((−1)u−1δ20b
′
0 + b′′0) = deg (b′′0) > 0.

Case 2. deg (a0) ≥ deg (A). We observe that deg (b′0) > 0 which yields

deg (b′′0) = deg (Ah0) < deg (A2b′0) and deg ((−1)u−1δ20b
′
0 + b′′0) = deg (A2b′0) > 0.

We remark that in all cases deg ((−1)u−1δ20b
′
0 + b′′0) > 0.

Let i ≥ 1. It is clear that deg (b′i) > 0. According to Proposition 3.1, we have

deg (b′′i ) ≤ deg (
δihi

Hi
) < deg (δ2i ) < deg (δ2i b

′
i).

Consequently,
deg ((−1)ui−1δ2i b

′
i + b′′i ) = deg (δ2i b

′
i) > 0.

Next we prove the following result.
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Proposition 3.3. Let N, n ∈ N, if S(N, n) exists then

S(N, n) = sup
deg A=N

sup
f∈Λn

Per (Af) = sup
degA=N

sup
f∈Λn

P ′(Af).

Proof. Let A be a polynomial of degree N , f ∈ Λn and [a0(f); a1(f), . . . , as

(f), as+1(f), . . . , as+n(f)] its continued fraction expansion. Proposition 3.1 implies
that Af is periodic and Per (Af) ≤ P ′(Af), therefore

sup
f∈Λn

Per (Af) ≤ sup
f∈Λn

P ′(Af).

On the other hand, suppose that deg (ak(f)) > N for all k ≥ 1 and a0(f) �= 0 then
Proposition 3.2 shows that for all k ∈ N

deg ((−1)uk−1δ2i b
′
k + b′′k) > 0,

and we state that the continued fraction expansion of Af given by Theorem 2.1 is
usual, therefore

Per (Af) = P ′(Af).

Hence,
sup

f ∈ Λn

Per (Af) ≥ sup
f ∈ Λn

(∀k)(deg ak > N )

Per (Af)

= sup
f ∈ Λn

(∀k)(deg ak > N )

P ′(Af)

= sup
f ∈ Λn

P ′(Af),

because the length of the period of the continued fraction expansion of Af given by
Theorem 2.1 depends only on the sequence (ak) having degree ≤ N. Summarizing
up, we get

S(N, n) = sup
degA=N

sup
f∈Λn

P ′(Af).

Remark 3.4. For N, n ∈ N, the calculation of S(N, n) is finite because the
period of the continued fraction expansion given by the Theorem 2.1 depends only
on the coefficients taken (mod A). But, for great values of N and n, the calculation
becomes difficult.

Example 3.5. In F2, for every value of S(N, n), we denote by (A, f) pairs
such that S(N, n) = Per (Af), A ∈ F2[X ] with degA = N and f ∈ Λn given by
its continued fraction expansion.
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Table 1.

N n S (N, n) (A, f )

1 1 2 (X + 1, [X])

1 2 4 (X, [X,X+ 1])

1 3 6 (X + 1, [X,X,X+ 1])
(X, [X,X+ 1, X])

2 1 4 (X2 +X + 1, [X2])
(X2 +X, [X2])

2 2 4

(X2 +X + 1, [X2, X2 + 1])
(X2, [X2, X + 1])

(X2 +X + 1, [X2 + 1, X])
(X2, [X,X + 1])

2 3 6

(X3, [X3, X3 +X2 + 1])
(X3 + 1, [X3, X3 +X2 + 1])

(X3 +X2, [X3, X3 +X2 + 1])
(X3 +X2 +X, [X3, X3 +X2 + 1])

3 1 6
(X3 +X2, [X])
(X3 + 1, [X])
(X3, [X + 1])

4. PROPERTIES OF AN EQUIVALENCE RELATION

Now, we use the Cohen [1] method’s, we construct a new space noted PA. We
prove some properties of the space PA which permits to evaluate S(N, n) in the
next section.

Let E = {(a, b) ∈ Fq[X ]× Fq[X ] such that (a, b) = 1} and RA be an equiva-
lence relation over E × E defined for all (a, b) ∈ E and (a′, b′) ∈ E by

(a, b)RA(a′, b′) ⇐⇒ ab′ ≡ a′b(mod A),

and
PA = E/RA.

We give some notations and properties concerning the space PA.
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• We note by (a, b) the value of (a, b) modulo RA.

• LetGL(2, Fq[X ])=
{
M=

(
α β
γ δ

)
: α, β, γ, δ∈Fq[X ] and αδ − βγ=±1

}
.

The elements of GL(2, Fq[X ]) operate on PA by quotient to RA as follows : for

all M =
(
α β
γ δ

)
∈ GL(2, Fq[X ]) and (a, b) ∈ PA we have

M(a, b) =
(
α β

γ δ

)(
a

b

)
= (αa+ βb, γa+ δb).

• Let a ∈ Fq[X ] and u ∈ PA, we note by a + u−1 or a+
1
u

the result of the

action of the matrix
(
a 1
1 0

)
to u in PA.

• Let Γ(A) =
{(

α β
γ δ

)
∈ GL(2, Fq[X ]) β ≡ γ ≡ α − δ ≡ 0 (mod A)

}
.

The following result gives the elementary properties of PA.

Proposition 4.1. An element (a, c) of PA verifies the following conditions :

• (a, c) ∈ Fq[X ]× Fq[X ] such that gcd(a, c) = 1,

• c | A,

• a take all values modulo
A

c
such that gcd(a, c) = 1.

We will need the following lemma to prove the above proposition.

Lemma 4.2. Let a, b and c ∈ Fq[X ] such that (a, b) = 1, then there is a
λ ∈ Fq[X ] such that

gcd(a+ λb, c) = 1.

Proof. We will treat two cases.

Case 1. All irreducible factors of c are factors of a.
It is sufficient to take λ = 1. In fact, if d = gcd(a+ b, c) and p is an irreducible
factor of d, then p | a+b and p | c. However p | c implies p | a, hence, p | gcd(a, b).

Case 2. There exists an irreducible factor of c which is not a factor of a.
Let
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λ =
∏

p irreducible
p | c and p �| a

p,

d = gcd(a+ λb, c) and p is an irreducible factor of d then p | a + λb and p | c. If
p | a, it gives p | λb and as p �| λ, so p | b and we are done. If p �| a, from p | c, we
deduce p | λ which yields p | a, a contradiction.

Proof of Proposition 4.1. Let (a ′, b′) be an element of PA and d = gcd(b′, A),

then there exist two polynomials P andQ such that P
A

d
+Q

b′

d
= 1. As gcd

(
Q,

A

d

)

= 1, Lemma 4.2 implies that there exists a polynomial λ such that gcd
(
Q + λ

A

d
, A

)

= 1. We can choose Q so that gcd(Q,A) = 1 and Q
b′

d
≡ 1(mod

A

d
). Since it is

easy to verify that gcd(a′Q, d) = 1, we get (a′, b′) = (a′Q, d) and d | A.
For the second part of the proposition, let (a, c) and (a′, c′) be two elements of

PA verifying
(a, c) = (a′, c′), c | A and c′ | A.

We see that
(a, c) = (a′, c′) ⇐⇒ (a, c)RA(a′, c′)

⇐⇒ ac′ ≡ a′c (mod A)
⇐⇒ ac′ = a′c+ αA,

where α is a not zero polynomial. As c′ | A and gcd(a′, c′) = 1, we get c′ | c and

in the same way we see that c | c′. Hence, c = c′ and a ≡ a′
(

mod
A

c

)
.

Next we prove that the space PA is finite.

Theorem 4.3. Let J = {P ∈ Fq[X ]; P is monic and irreducible}. Then

card PA ≤ (q − 1) | A |
∏
P | A
P ∈ J

(
1 +

1
| P |

)
.

Proof. Let f : Fq[X ] → N be the map defined for all A ∈ Fq[X ] by

f(A) =
∑
c|A

| A/c |
| gcd(c, A/c) |ϕ(gcd(c, A/c))

where ϕ is the Euler’s function defined for all α ∈ Fq[X ] by

ϕ(α) = card {r ∈ Fq[X ], monic : deg r < degα and gcd(r, α) = 1}.
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It is sufficient to prove that card PA ≤ (q − 1)f(A), f is multiplicative and
f(P l) = | P |l + | P |l−1, for all P ∈ J and l an integer, in order to prove this
theorem.

We will prove that card PA ≤ (q − 1)f(A). Let α = gcd
(
c,
A

c

)
and

Fc =
{
a ∈ Fq[X ], monic : deg a<deg

A

c
and gcd(a, c)=1

}
.

We can write a in the form r + Kα where deg r < deg α. It is clear that a ≡ r

(mod α), which implies that gcd(a, α) = gcd(r, α) = 1. Therefore

Fc =
⋃

degK≤deg (
A

αc
)

K monic

{Kα+r, monic : deg r<degα and gcd(Kα+r, c)=1}.

Let K be a monic polynomial satisfying degK ≤ deg
(
A

αc

)
and

GK = {Kα+ r : deg r < degα and gcd(Kα+ r, c) = 1}.
card (GK) = card {Kα+ r : deg r < deg α and gcd(Kα+ r, α) = 1}

≤ card {r ∈ Fq[X] : deg r < degα and gcd(r, α) = 1}
≤ (q − 1)ϕ(α)

≤ (q − 1) | α |
∏
P | α

(
1 − 1

| P |
)
.

As the sets GK form a partition of Fc, we have

card Fc =| A
αc

| card GK ≤ (q − 1) | A
αc

| ϕ(α)

and
card PA =

∑
c | A

card Fc

≤ (q − 1)
∑
c | A

| A/c |
| gcd(c, A/c) |ϕ(gcd(c, A/c))

≤ (q − 1)f(A).

We will now prove that f is a multiplicative map by using that

gcd
(
c1c2,

M

c1

N

c2

)
= gcd

(
c1,

M

c1

)
gcd

(
c2,

N

c2

)
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and ϕ
(

gcd
(
c1c2,

M

c1

N

c2

))
= ϕ

(
gcd

(
c1,

M

c1

))
ϕ

(
gcd

(
c2,

N

c2

))
.

It is obvious that β ∈ F
∗
q and A ∈ Fq[X ] implies f(βA) = f(A).

Let P ∈ J and l be an integer. Then

f(P l) =
∑
d | P l

| P l/d |
| gcd(d, P l/d) |ϕ(gcd(d, P l/d))

=
l∑

j=0

| P l−j |
| gcd(P j , P l−j) |ϕ(gcd(P j, P l−j))

= 1 +
l−1∑
j=1

| P l−j |
| Pmin(j,l−j) |ϕ(Pmin(j,l−j))+ | P |l

= 1+ | P |l +
l−1∑
j=1

(| P |l−j − | P |l−j−1)

= | P |l + | P |l−1.

Finally, if we write A in the form λPα1
1 . . . Pαs

s where Pi ∈ J for all i = 1, . . . , s
and λ ∈ Fq. We obtain

f(A) = f(
s∏

i=1

Pαi
i )

=
s∏

i=1

f(Pαi
i )

=
s∏

i=1

(| Pi |αi + | Pi |αi−1)

=| A |
s∏

i=1

(
1 +

1
| Pi |

)

=| A |
∏
P | A
P ∈ J

(
1 +

1
| P |

)
.

5. ON THE FUNCTIONS S(N, n) AND R(N )

We give an upper bound of Per (Af), which leads it to prove the existence of
the functions S(N, n) and R(N ).

Definition 5.1. Let α, β ∈ Fq((X−1)), we write α ≡ β (mod Fq[X ]) if
α− β ∈ Fq[X ]. Note that the relation ≡ is an equivalence relation.
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Proposition 5.2. Consider the mapping

φA : PA −→ Fq(X) \ Fq[X ]
(a, c) 
−→ φA((a, c)) ≡ ac

A
(mod Fq[X ]),

this mapping is well-defined and

ImφA =
{ a
A

(mod Fq[X ]) : deg a < degA
}
.

Proof. Let (a, c) and (a′, c′) be two elements of PA such that (a, c) = (a′, c′),
then the proof of Proposition 4.1 implies that c = c′ and a ≡ a′ (mod A/c), it

yields that
ac

A
≡ a′c

A
(mod Fq[X ]) and the map φA is well-defined. We write

ImφA = {φA((a, c)) : (a, c) ∈ PA}
=
{ac
A

(mod Fq[X ]) : a takes all the values(
mod

A

c

)
such that gcd(a, c) = 1

}
.

It is clear that
{ a
A

(mod Fq[X ]) : deg a < degA
}
⊂ ImφA.

Conversely, let φA((a, c)) ≡ ac

A
(mod Fq[X ]) be an element of ImφA. Then

deg a < deg
(
A

c

)
and deg (ac) < degA. Now, if we take a′ = ac, we obtain

φA((a, c)) ≡ a′

A
(mod Fq[X ]) and deg a′ < degA.

Finally, we conclude that

ImφA =
{ a
A

(mod Fq[X ]) : deg a < degA
}
.

Theorem 5.3. We use the same notations as in Theorem 2.1. Let (vk)k∈N be a
sequence of elements of PA defined by

(5.1) v0 = (1, A) and vk+1 = ak+1 + v−1
k .

Then for all k ≥ 0 we have

vk =
(
ek,

A

Hk

)
, where gcd

(
ek,

A

Hk

)
= 1, ek ≡ (−1)uk−1Jk(mod Hk)

and
φA(vk) ≡ (−1)uk−1

jk
Hk

(mod Fq[X ]).
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Remark 5.4. Using the inductions (5.1), we can write vk for all k ≥ 0 in the
following form

vk = ak +
1

ak−1 + 1

. . .+
1

a1(mod A)

,

in fact, we know that

vk = ak +
1

ak−1 + 1

. . .+
1

a1 +
1
v0

,

and a1 +
1
v0

= (a1 +A, 1) ≡ (a1, 1) (mod A) noted by a1(mod A).

Proof of Theorem 5.3. We prove this theorem by induction. We have H0 = 1
and j0 = 0. If we take e0 = 1, we obtain

v0 = (1, A) =
(
e0,

A

H0

)

and the claim holds for k = 0. Let k be a positive integer and suppose that

vk =
(
ek,

A

Hk

)
, gcd

(
ek,

A

Hk

)
= 1 and ek ≡ (−1)uk−1Jk (mod Hk). This

implies that
vk+1 = ak+1 + v−1

k

=
(
ak+1 1

1 0

)(
ek

A/Hk

)

=
(
ak+1ek +

A

Hk
, ek

)
.

Moreover, we notice that

gcd(ek, A) = gcd
(
ek,

A

Hk

)
gcd(ek, Hk) = gcd(ek, Hk) = δk+1.

Thus there exists a polynomial P ′ such that P ′
(

ek
δk+1

)
≡ 1

(
mod

A

δk+1

)
,

which gives gcd
(
P ′,

A

δk+1

)
= 1. Applying Lemma 4.2, we see that there exists
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a polynomial λ such that gcd
(
P ′ + λ

A

δk+1
, A

)
= 1. Therefore there exists a

polynomial P such that

gcd(A, P ) = 1 and P
(

ek
δk+1

)
≡ 1

(
mod

A

δk+1

)
.

We remark that Pek ≡ δk+1(mod A), which shows that

vk+1 =
(
P

(
ak+1ek+

A

Hk

)
, δk+1

)
and (−1)uk−1P

(
jk
δk+1

)
≡1

(
mod

Hk

δk+1

)
.

On the other hand,
P

(k)
tk
Q(k) −Q

(k)
tk
P (k) = (−1)tk−1,

where P (k)
tk

=
jk
δk+1

andQ(k)
tk

=
Hk

δk+1
, then (−1)tk−1Q(k)

(
jk
δk+1

)
≡1
(

mod
Hk

δk+1

)
.

Consequently

P ≡ (−1)uk−1Q(k)(mod
Hk

δk+1
).

Thus there exists T ∈ Fq[X ] such that P = (−1)uk−1Q(k) + T
Hk

δk+1
. Now,

P

(
ak+1ek +

A

Hk

)
≡ hk+1δk+1 +

(
(−1)uk−1Q(k) + T

Hk

δk+1

)
A

Hk
(mod A)

≡ hk+1δk+1 − (−1)ukQ(k)δk + T
A

δk+1
(mod A)

≡ hk+1δk+1 − (−1)ukQ(k)δk

(
mod

A

δk+1

)
= (−1)ukjk+1

≡ ek+1 (mod
A

δk+1
)

and

vk+1 = (ek+1, δk+1) =
(
ek+1,

A

Hk+1

)
.

Next we prove the upper bound of Per (Af).

Theorem 5.5. Consider the quadratic formal power series f = [a 0; a1, . . . , am,
am+1, . . . , am+n] and let M be the matrix associated to f. Let (v k)k∈N be the
sequence of elements of PA associated to f as in Theorem 5.3 (wk)k∈N be the
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sequence of elements of PA defined by wk = vm+k for all k ≥ 0 and λ0(M) =
λ0(A,M) the least positive integer satisfying M λ0(A,M ) ∈ Γ(A). Then

P ′(Af) |
∑

1≤k≤nλ0(A,M )

(ψ(ΦA(wk)) + 1),

particularly,
Per (Af) ≤

∑
1≤k≤nλ0(A,M )

(ψ(ΦA(wk)) + 1).

Proof. We first prove the existence of λ0(M). Let M =
(
a b
c d

)
the matrix

associated to f and M =
(
a b

c d

)
where a , b , c and d are the values of

a, b, c and d taken (mod A) respectively, M is an element of the finite group
GL(2, Fq[X ]/<A>), therefore the subgroup < M > generated by M is finite. Thus
there exists an integer λ such that M λ = Id and Mλ ∈ Γ(A). We conclude that
there exists an integer λ0(M) which is the least integer verifying Mλ0(M ) ∈ Γ(A).

Remark 5.6. Refereing to the later result, we remark that que

λ0(A,M) ≤| GL(2, Fq[X ]/<A>) |≤ (degA)4.

We will need the following lemma in order to complete the proof of this theorem.

Lemma 5.7. The following assertions are equivalent.
(i) k0 is the least positive integer satisfying w k0 = w0 and n | k0.

(ii) for all p ≥ 0, Hk0+m+p = Hm+p and ek0+m+p ≡ em+p (mod Hm+p).
(iii) The sequence (wk)k∈N is purely periodic with period k 0.

Proof. (i) =⇒ (ii) A simple induction on p gives the result.
(ii)=⇒ (iii) Let p ≥ 0 and α > 0, it is clear that wp+αk0 = w0 and (wk)k∈N is

periodic of period k0.

(iii)=⇒ (i) Suppose that (wk)k∈N is periodic with period k0. Thus wk0 = w0

and it remains to verify that n | k0. If wk = wk′ and k ≡ k′ (mod n) then
w|k−k′| = w0. As | k − k′ |≡ 0(mod n), let k0 be the least integer satisfying
k0 ≡ 0(mod n) and as wk0 = w0, it follows that n | k0.

Now, we will prove that there exists an integer k0 which is the least integer
satisfying wk0 = w0 and n | k0. Let k be a given integer and

Γ = {wk′ ∈ PA : k ≡ k′(mod n)} ⊂ PA.
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As Γ is finite, there exist two integers l and h such that w l = wh and l ≡ h(mod n),
it implies that w |l−h| = w0 and | l− h |≡ 0(mod n). Consequently, there exists an
integer t such that wt = w0 and n | t. Let k0 be the least positive integer satisfying
wk0 = w0 and n | k0. By using Lemma 5.7, we conclude that k0 is a period of the
sequences (wk)k∈N and (Hm+k)k∈N such that n | k0. Therefore

(5.2) P ′(Af) | k0.

Moreover, we can verify that wλ0(M )n = (tM)λ0(M )(w0). In fact,

wn = an +
1

wn−1

=
(
an 1
1 0

)
wn−1

=
(
an 1
1 0

)(
an−1 1

1 0

)(
a1 1
1 0

)
w0

= (an) . . . (a1)w0,

where (ai) is the matrix
(
ai 1
1 0

)
for all i ∈ {1, . . . , n}. Since tM = (an) . . . (a1)

and the sequence (an)n∈N is periodic of period n, we conclude that

wλ0(M )n = (an) . . . (a1) . . . (an) . . . (a1)w0 = (tM )λ0(M )(w0).

As λ0(M) is the least integer satisfying Mλ0(M ) ∈ Γ(A), (tM)λ0(M ) ∈ Γ(A),
implies that wλ0(M )n = w0 and k0 | λ0(M)n. Finally, by using (5.2), we conclude
that P ′(Af) | λ0(M)n and we can write Af in the form

Af =

[
(−1)u−1δ20b

′
0 + b′′0,

[
H0

j0

]
, . . . , (−1)umδ2m+1b

′
m+1 + b′′m+1 ,

[
Hm+1

jm+1

]
,

. . . , (−1)um+nλ0(M)−1δ2m+nλ0(M )b
′
m+nλ0(M ) + b′′m+nλ0(M ) ,

[
Hm+nλ0(M )

jm+nλ0(M )

]]
.

From the above, it is clear that for 1 ≤ i ≤ nλ0(M) the number of terms in
(−1)um+i−1δ2m+ib

′
m+i + b′′m+i ,

[
Hm+i

jm+i

]
is equal to

2 + ψ
(Hm+i

jm+i

)
= 1 + ψ

( jm+i

Hm+i

)
= ψ

([ jm+i

Hm+i

])
.
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We conclude that

P ′(Af) |
∑

1≤k≤nλ0(M )

ψ
([ jm+k

Hm+k

])
.

Finally, as ΦA(wk) ≡ (−1)um+k−1
jm+k

Hm+k
(mod Fq[X ]), for all k = 1, . . . , nλ0(M),

we arrive at
P ′(Af) |

∑
1≤k≤nλ0(M )

ψ([ΦA(wk)]).

Corollary 5.8.

S(N, n) = sup
M∈M

sup
deg (A)=N

∑
1≤k≤nλ0(A,M )

ψ([ΦA(wk)]),

where M is the family of the matrices associated to the formal power series be-
longing to Λn.

Proof. Let A be a polynomial of degree N and f ∈ Λn, then by applying
Theorem 5.5, we obtain

Per (Af) ≤
∑

1≤k≤nλ0(A,M )

ψ([ΦA(wk)]).

Therefore,
sup
f∈Λn

Per (Af) ≤ sup
M∈M

∑
1≤k≤nλ0(A,M )

ψ([ΦA(wk)]),

hence
S(N, n) ≤ sup

M∈M
sup

deg (A)=N

∑
1≤k≤nλ0(A,M )

ψ([ΦA(wk)]).

Remark 5.6 implies that if M ∈ M, then sup
deg (A)=N

∑
1≤k≤nλ0(A,M )

ψ([ΦA(wk)]) is

an integer less than sup
deg (A)=N

∑
1≤k≤nN4

ψ([ΦA(wk)]), which gives that the set

 sup

deg (A)=N

∑
1≤k≤nλ0(A,M )

ψ([ΦA(wk)]), M ∈ M

 is a bounded subset of N. Thus

there exists M0 ∈ M and A ∈ Fq[X ] of degree N such that

sup
M∈M

sup
deg (A)=N

∑
1≤k≤nλ0(A,M )

ψ([ΦA(wk)]) =
∑

1≤k≤nλ0(A,M0)

ψ([ΦA(wk)]),
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where M0 is the matrix associated to the quadratic and periodic formal power series
f0 of period n with continued fraction expansion [a0; . . . , am, am+1, . . . , am+n].
Let f0,A be the formal power series defined by

f0,A = [a0; a1(A+ 1), . . . , am(A+ 1), am+1(A+ 1), . . . , am+n(A+ 1)]

and let M0,A be the matrix associated to f0,A. As deg (ai(A + 1)) > deg A for
all i ≥ 1, Proposition 3.2 implies that the continued fraction expansion of Af0,A

given by Theorem 2.1 is the usual one. Therefore Per (Af0,A) = P ′(Af0,A). On
the other hand, it is easy to see that M 0,A = M0. In fact,

M
λ0(A,M0)
0 ∈ Γ(A) ⇐⇒ M

λ0(A,M0)
0 = aI ⇐⇒ M

λ0(A,M0)
0,A = aI

and thus λ0(A,M0) = λ0(A,M0,A). Hence∑
1≤k≤nλ0(A,M0)

ψ([ΦA(wk)]) =
∑

1≤k≤nλ0(A,M0,A)

ψ([ΦA(wk)])

= Per (Af0,A)

≤ S(N, n).

Theorem 5.9. let Ω(N ) = sup
deg (A)=N

∑
u∈PA

ψ([ΦA(u)]). The functions S(N, n)

and R(N ) exist and satisfy

S(N, n) ≤ nΩ(N ), R(N ) ≤ Ω(N ).

Proof. Corollary 5.8 implies that

S(N, n) = sup
M∈M

sup
deg (A)=N

∑
1≤k≤nλ0(A,M )

ψ([ΦA(wk)])

= sup
M∈M

sup
deg (A)=N

∑
1≤k≤n

∑
0≤λ<λ0(A,M )

ψ([ΦA(wλn+k)]).

If wk = wk′ and k ≡ k′ (mod n), then w|k−k′| = w0, which yields that for a given
integer k, the wλn+k are a different elements of PA for all 0 ≤ λ < λ0(N,M).
Therefore

S(N, n) ≤ sup
M∈M

sup
deg (A)=N

∑
1≤k≤n

∑
u∈PA

ψ([ΦA(u)])

≤ nΩ(N ).

Finally,
R(N ) ≤ Ω(N ).
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Example 5.10. Let now q = 2, we give some values of Ω(N ).

Table 2.

N n S(N, n) Ω(N )
1 1 2 2
1 2 4 2
1 3 6 2
2 1 4 10
2 2 4 10
2 3 6 10
3 1 6 29

We conclude from Table 2 and Theorem 5.9 that R(1) = 2.
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