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APPROXIMATE CONTROLLABILITY OF NONLINEAR
DETERMINISTIC AND STOCHASTIC SYSTEMS

WITH UNBOUNDED DELAY

R. Sakthivel, Juan J. Nieto and N. I. Mahmudov

Abstract. In this paper, we consider approximate controllability for nonlinear
deterministic and stochastic systems with resolvent operators and unbounded
delay. We study the problem of approximate controllability of deterministic
nonlinear differential equations with impulsive terms, resolvent operators and
unbounded delay. Next, approximate controllability results are being estab-
lished for a class of nonlinear stochastic differential equations with resolvent
operators in a real separable Hilbert spaces. By using the resolvent oper-
ators and fixed point technique, sufficient conditions have been formulated
and proved. In this paper, we prove the approximate controllability of non-
linear deterministic and stochastic control systems under the assumption that
the corresponding linear system is approximately controllable. Examples are
presented to illustrate the utility and applicability of the proposed method.

1. INTRODUCTION

Controllability of the deterministic systems in infinite dimensional spaces has
been extensively studied. Several authors [3, 4, 5, 6, 8, 9, 14, 15] have studied
the concept of exact controllability for systems represented by nonlinear evolutions
equations, in which the authors have effectively used fixed point technique. From
the mathematical point of view, the problems of exact and approximate controlla-
bility are to be distinguished. In infinite-dimensional spaces the concept of exact
controllability is usually too strong and, indeed has limited applicability (see [29]
and references therein). Approximate controllable systems are more prevalent and
very often approximate controllability is completely adequate in applications (see
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[10, 29] and references therein). Therefore, it is important, in fact, necessary to
study the weaker concept of controllability, namely approximate controllability for
nonlinear integrodifferential systems.

The theory of impulsive differential equations is emerging as an important area
of investigation since it is richer than the theory of classical differential equations.
In recent years, existence of solutions of impulsive differential equations have been
investigated in several works [24, 25, 28, 41]. The applications of the impul-
sive differential equations emerge in epidemiology [17, 18, 40], pharmacokinetics,
fed-batch culture in fermentative production [16], population dynamics [37] etc.
Impulsive control problems can also arise in investment decisions in economics
and the injection of a medical drug into a patient in mathematical models in phar-
macology. Yang has derived impulsive control for a class of nonlinear systems
and interesting applications of impulsive control in chaotic systems and chaotic
spread spectrum communications can be found in [39]. Impulsive control prob-
lems for systems governed by ordinary differential equations have been studied in
[32]. Wang et al.[38] have studied the dynamics complexity of a preypredator
system with Beddington-type functional response and impulsive control strategy by
using theories and methods of ecology and ordinary differential equations. Recently,
Chang and Chalishajar [7] have established sufficient conditions for the controllabil-
ity of semilinear mixed Volterra-Fredholm-type integrodifferential inclusions using
Bohnenblust-Karlin’s fixed point theorem. Exact controllability of various types of
nonlinear impulsive differential systems has been studied by several authors [2, 5].
However, the approximate control theory of impulsive differential equations is not
yet sufficiently elaborated, compared to that of ordinary differential equations.

Recently many works report approximate controllability results for first order
nonlinear systems [11, 29, 31, 36]. Approximate controllability of first order func-
tional differential equations with finite delay was considered in [11] with the aid of
Schauder’s fixed point theorem. Approximate controllability for semilinear deter-
ministic and stochastic control systems can be found in Mahmudov [29]. Mahmudov
[31] have studied the approximate controllability for the abstract evolution equations
with nonlocal conditions. More recently Sakthivel et al [36] have established approx-
imate controllability for the nonlinear differential and neutral functional differential
equations with impulses but the result obtained in [36] is only in connection with
finite delay. Since many systems arising from realistic models can be described
as functional differential systems with unbounded delay (see [24] and references
therein), it is natural to discuss approximate controllability of this kind of problems.
On the other hand, the resolvent operator is similar to the evolution operator for
autonomous differential equations but a number of results comes directly from the
definition of the resolvent operator [19, 20, 21]. However, up to now approximate
controllability problems for nonlinear integrodifferential systems with resolvent op-
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erators and unbounded delay have not been considered in the literature. In order
to fill this gap, this paper studies the approximate controllability of the following
nonlinear integrodifferential equation of the form

(1)
x′(t) = Ax(t) +

∫ t

0
G(t− s)x(s)ds+ Bu(t)+f(t, xt), t ∈ J =[0, b]

x0 = φ ∈ P,

�x(tk) = Ik(xtk), k = 1, · · · , m

where A : D(A) ⊂ X → X and G : D(G(t)) ⊂ X → X, t ≥ 0, are closed linear
operators. X is a Hilbert space; B is a bounded linear operator from a Hilbert
space U into X ; the control u(·) ∈ L2(J, U), a Hilbert space of admissible control
functions. The functions xt : (−∞, 0] → X, xt(θ) = x(t + θ), belong to some
abstract phase space P defined axiomatically. Here 0 < t1 <, · · · < tk < b are
prefixed numbers, f : J × P → X, Ik : P → X are appropriate functions and
the symbol �ξ(t) represent the jump of the function ξ at t, which is defined by
�ξ(t) = ξ(t+) − ξ(t−).

On the other hand, stochastic differential equations are well known to model
problems from many areas of science and engineering. The qualitative properties
of solutions of stochastic differential equations in infinite dimensions have been in-
vestigated by many authors because of its importance in applications. In particular,
recently approximate controllability results for various types of first order stochastic
nonlinear equations have been established [10, 12, 30]. There are only few works on
approximate controllability of stochastic nonlinear systems. The work on existence
of solutions of abstract stochastic differential equations with the help of resolvent
operators was initiated by Kech and McKibben [27]. The stochastic systems with
resolvent operator arises in various applications such as viscoelasticity, heat equa-
tions and many other physical phenomena (see [27] and references therein). The
study of approximate controllability result for stochastic nonlinear equations with
resolvent operators is an untreated topic and it is also the motivation of this paper.
Henry [26] has discussed the approximate controllability for a nonlinear parabolic
equation. He pointed out that if the range BU of the operator B in (1) is dense in
L2(J;X) then under some hypotheses on the nonlinear function f(.), the nonlinear
parabolic system (1) is approximately controllable. Later Zhou [42] has obtained
a set sufficient conditions for the approximate controllability of nonlinear parabolic
control system which improves the results in [26] with some more restrictions.
Based on the work in [42], in this paper, we prove the approximate controllability
of nonlinear deterministic and stochastic control systems under the assumption that
the corresponding linear system is approximately controllable.



1780 R. Sakthivel, Juan J. Nieto and N. I. Mahmudov

2. PRELIMINARIES

To consider the impulsive condition, it is convenient to introduce some addi-
tional concepts and notations. We say that a function x : [µ, η] → X is a normalized
piecewise continuous function on [µ, η] if x is piecewise continuous, and left contin-
uous on (µ, η]. Let PC([µ, η];X) be the space formed by the normalized piecewise
continuous functions from [µ, η] to X . The notation PC stands for the space formed
by all functions x : [0, b] → X such that x(·) is continuous at t �= tk, x(t−k ) = x(tk)
and x(t+k ) exists for all k = 1, ..., m. In this section (PC, ‖ · ‖PC) is a Banach
space endowed with the norm ‖x‖PC = sups∈J ‖x(s)‖.

In this work, we employ an axiomatic definition for the phase space P introduced
in [22], specifically P will be a linear space of functions mapping (−∞, 0] to X
endowed with a seminorm ‖ · ‖P and verifying the following axioms:

(A1) If x : (−∞, µ + σ] → X, σ > 0 is such that xµ ∈ P and x |[µ,µ+σ]∈
PC([µ, µ + σ] : X) then for every t ∈ [µ, µ+ σ] the following conditions
hold:
(i) xt is in P,
(ii) ‖x(t)‖ ≤ H̃‖xt‖P,
(iii) ‖xt‖P ≤ K̃(t− µ) sup{‖x(s)‖ : µ ≤ s ≤ t}+ M̃(t− µ)‖xµ‖P, where

H̃ > 0 is a constant; K̃, M̃ : [0,∞) → [1,∞), K̃ is continuous, M̃ is
locally bounded and H̃, K̃, M̃ are independent of x(·).

(A2) For the function x(·) in (A1), the function t→ xt is continuous from [µ, µ+σ]
into P.

(A3) The space P is complete.

Let A and G(t), t ≥ 0, be closed linear operators defined on a common domain
D which is dense in X . To obtain our results, we assume that the integro-differential
abstract Cauchy problem

(2) x′(t) = Ax(t) +
∫ t

0
G(t− s)x(s)ds

x(0) = x0 ∈ X,

has an associated resolvent operator of bounded linear operators (R(t))t≥0 on X .

Definition 2.1. A family of bounded linear operators (R(t)t≥0 is a resolvent
operator family for (2) if the following conditions are verified.

(i) R(0) = I and R(·)x ∈ C([0,∞) : X) for every x ∈ X .
(ii) For x ∈ D(A), AR(·)x ∈ C([0,∞) : X) and R(·)x ∈ C1([0,∞) : X)
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(iii) For all x ∈ D(A) and every t ≥ 0, the following resolvent equations are
verified.

R′(t)x = AR(t)x+
∫ t

0

G(t− s)R(s)xds

R′(t)x = R(t)Ax+
∫ t

0

R(t− s)G(s)xds

For additions details related to resolvent of operator associated to integro-differential
equations, see [19, 20].

Let xb(x0; u) be the state value of (1) at terminal time b corresponding to the
control u and the initial value x0 = φ ∈ P. Introduce the set


(b, x0) = {xb(x0; u)(0) : u(·) ∈ L2(J, U)},

which is called the reachable set of system (1) at terminal time b, its closure in X
is denoted by 
(b, x0).

Definition 2.2. The system (1) is said to be approximately controllable on the
interval J if 
(b, x0) = X .

It is convenient at this point to define operators

Γb
0 =

∫ b

0
R(b− s)BB∗R∗(b− s)ds

R̃(α,Γb
0) = (αI + Γb

0)
−1.

(S1) αR̃(α,Γb
0) → 0 as α→ 0+ in the strong operator topology.

The assumption (S1) holds iff the linear integro-differential Cauchy problem
corresponding to (1) is approximately controllable on J .

3. APPROXIMATE CONTROLLABILITY OF DETERMINISTIC SYSTEMS

In this section, we prove the result on approximate controllability of nonlinear
deterministic systems. To do this, we first prove the existence of solutions using
Schauder’s fixed point theorem. Second, we show that under certain assumptions,
the approximate controllability of (1) is implied by the approximate controllability
of the corresponding linear system.

To establish our results, we introduce the following assumptions:

(I) R(t), t > 0 is compact.
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(II) The function f : J × P → X satisfies the following conditions:

(i) For every x : (−∞, b] → X be such that x0 = φ and x|J ∈ PC, the
function t→ f(t, xt) is strongly measurable.

(ii) For each t ∈ J , the function f(t, .) : P → X is continuous.
(iii) For each q > 0, there exists a function λq ∈ L1(J, R+) such that

sup
‖ξ‖≤q

‖f(t, ξ)‖ ≤ λq(t), for a.e. t ∈ J,

and

lim
q→∞ inf

∫ b

0

λq(t)
q

dt = δ <∞.

(III) The maps Ik are continuous and there exists a positive constant dk such that
‖Ik(ψ)‖ ≤ dk for every ψ ∈ P.

(IV ) The function f : J ×P → X is continuous and uniformly bounded and there
exists N > 0 such that ‖f(t, φ)‖ ≤ N for all (t, φ) ∈ J × P

Let Z = {x : (−∞, b] → X : x0 = 0, x|J ∈ PC} endowed with the norm of
the uniform convergence topology.

In this section, it will be shown that the system (1) is approximately controllable
if for all α > 0 there exists a continuous function x(·) ∈ Z such that

u(t)=B∗R∗(b− t)R̃(α,Γb
0)p(x(·))(3)

x(t)=R(t)φ(0)+
∫ t

0
R(t−s)[Bu(s)+f(s, xs)]ds+

∑
0<tk<t

R(t−tk)Ik(xtk)(4)

where

p(x(·)) = xb −R(b)φ(0)−
∫ b

0
R(b− s)f(s, xs)ds−

m∑
k=1

R(b− tk)Ik(xtk)

The following notations are introduced for convenience

M = max{‖R(t)‖ : 0 ≤ t ≤ b}.
MB = ‖B‖.
K1 = ‖xb‖ +MH̃‖φ‖P +M

∑m
k=1 dk.

K2 = MH̃‖φ‖P + 1
αbM

2M2
BK1 +M

∑m
k=1 dk.

Theorem 3.1. Assume that conditions (I)-(III) are satisfied. Further, suppose
that for all α > 0

(1 +
1
α
bM2MB)MK̃bδ < 1,

then the system (1) has a solution on J.
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Proof. Along this theorem, let y : (−∞, b] → X be the function defined by
y0 = φ and y(t) = R(t)φ(0) for t ∈ [0, b].

The main aim in this section is to find conditions for solvability of system (3)
and (4) for α > 0. On the Banach space Z consider a set

Q = {x(·) ∈ Z, ‖x‖ ≤ r}.
where r is a positive constant.

For α > 0, define the operator Fα : Z → Z by

Fαx(t) = 0, t ∈ (−∞, 0]

= z(t), t ∈ J

where

z(t) = R(t)φ(0) +
∫ t

0
R(t− s)[Bv(s) + f(s, xs + ys)]ds

+
∑

0<tk<t

R(t− tk)Ik(xtk + ytk)

v(t) = B∗R∗(b− t)R̃(α,Γb
0)p(x(·)),

p(x(·)) = xb −R(b)φ(0)−
∫ b

0
R(b− s)f(s, xs + ys)ds

−
m∑

k=1

R(b− tk)Ik(xtk + ytk).

It will be shown that for all α > 0 the operator Fα from Z into itself has a fixed
point.

Step 1. For α > 0, there exists r > 0 such that Fα(Q) ⊂ Q. In fact, if we
assume that the assertion is false, then there exists α > 0 such that for every r > 0,
there exists x′ ∈ Q and t′ ∈ J such that r < ‖Fαx

′(t′)‖.
For such α > 0, we find that

r < ‖Fαx
′(t′)‖

≤ MH̃‖φ‖P +MMB

∫ t

0

‖v(s)‖ds+M

∫ t

0

‖f(s, xs + ys)‖ds+M
m∑

k=1

dk.

We observe that for every x ∈ Q and t ∈ J
‖xt + yt‖ ≤ (M̃b + K̃bMH̃)‖φ‖P + K̃br = r∗,

where M̃b and K̃b are constants defined by M̃b = supt∈J M̃(t), K̃b = supt∈J K̃(t).
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We denote by r∗ the right hand side of the above expression, we have

‖xt + yt‖ ≤ (M̃b + K̃bMH̃)‖φ‖P + K̃br = r∗,

where r∗ is a positive constant. Hence we obtain

r ≤ MH̃‖φ‖P + bMMB[
1
α
MMB(K1 +M

∫ b

0
λr∗(s)ds)]

+M

∫ b

0
λr∗(s)ds+M

m∑
k=1

dk

≤ (1 +
1
α
bM2MB)M

∫ b

0
λr∗(s)ds+K2.

We note that K2 is independent of r and r∗ → ∞ as r → ∞. Now

lim
r→∞ inf

∫ b

0

λr∗(s)
r

ds = lim
r→∞ inf

∫ b

0

λr∗(s)
r∗

· r
∗

r
)ds = δK̃b.

Hence we have for α > 0,

(1 +
1
α
bM2MB)MK̃bδ ≥ 1,

which is a contradiction to our assumption. Thus α > 0, there exists r > 0 such
that Fα maps Q into itself.

Step 2. For each α > 0, the operator Fα maps Q into a relatively compact
subset of Q.

First we prove that (i) for arbitrary t ∈ J the set V (t) = {(Fαx)(t) : x(·) ∈ Q}
is relatively compact.

The case t = 0 is obvious, since V (0) = {φ(0)}. For 0 < τ < t ≤ b, define

(F τ
αx)(t) = R(τ)z(t− τ).

since R(t) is compact and z(t− τ) is bounded on Q, the set

Vτ (t) = {(F τ
αx)(t) : x(·) ∈ Q}

is relatively compact set in X . That is, a finite set {ỹi, 1 ≤ i ≤ n} in X exists such
that

Vτ (t) ⊂
m⋃

i=1

N̂ (ỹi, ε/2),
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where N̂ (ỹi, ε/2) is an open ball in X with center at ỹi and radius ε/2. On the
other hand,

‖(Fαx)(t) − (F τ
αx)(t)‖ = ‖

∫ t

t−τ
R(t− s)[Bv(s) + f(s, xs + ys)]ds‖

≤ 1
α
MMB

(
‖xb‖ +MH̃‖φ‖P +M

∫ b

0
λr∗(s)ds

+ M

m∑
k=1

dk

)
τ +M

∫ t

t−τ
λr∗(s)ds ≤ ε

2
.

Consequently

V (t) ⊂
n⋃

i=1

N̂(ỹi, ε)

Hence for each t ∈ J , V (t) is relatively compact in X .
Second to prove (ii) for arbitrary ε > 0, there exists δ̂ > 0 such that ‖(Fαx)(t1)−

(Fαx)(t2)‖ < ε if ‖x‖ ≤ r, |t1 − t2| ≤ δ̂, t1, t2 ∈ J.

To prove (ii), we have to show that V = {(Fαx)(.) | x(·) ∈ Q} is equicontinu-
ous on [0, b]. For 0 < t1 < t2 ≤ b, we have

(5)

‖z(t1) − z(t2)‖
≤ ‖R(t1) −R(t2)‖H̃‖φ‖P +MMB

∫ t2

t1

‖v(s)‖ds

+MB

∫ t1

0
‖R(t2 − s) − R(t1 − s)‖‖v(s)‖ds

+
∑

0<tk<t1

‖R(t2 − tk) −R(t1 − tk)‖‖Ik(xtk + ytk)‖

+
∑

t1≤tk<t2

‖R(t2 − tk)‖‖Ik(xtk + ytk)‖ +M

∫ t2

t1

λr∗(s)ds

+
∫ t1

0
‖R(t2 − s) −R(t1 − s)‖λr∗(s)ds

≤ ‖R(t1) −R(t2)‖H̃‖φ‖P

+
1
α
M2MB

2

∫ t2

t1

(‖xb‖+MH̃‖φ‖P+M
m∑

k=1

dk+M
∫ b

0
λr∗(s)ds)dη

+
∑

0<tk<t1

‖R(t2 − tk) −R(t1 − tk)‖dk +
∑

t1≤tk<t2

‖R(t2 − tk)‖dk

+
1
α
MMB

2

∫ t1

0
‖R(t1 − s) − R(t2 − s)‖(‖xb‖ +MH̃‖φ‖P



1786 R. Sakthivel, Juan J. Nieto and N. I. Mahmudov

+M
m∑

k=1

dk +M

∫ b

0

λr∗(s)ds)dη+M

∫ t2

t1

λr∗(s)ds

+
q∑

i=1

∫ t1

0
‖R(t1 − s) −R(t2 − s)‖λr∗(s)ds

Thus the right hand side of (5) does not depend on particular choices of x(·) and
tends to zero as t1 − t2 → 0, since the compactness of R(t) for t > 0 implies the
continuity in the uniform operator topology. So we obtain the equicontinuity of V .
We have considered here only the case 0 < t1 < t2, since other cases t1 < t2 < 0
or t1 < 0 < t2 are very simple. Thus Fα(Q) is equicontinuous and also bounded.
By the Ascoli-Arzela theorem Fα(Q) is relatively compact in Z. It is easy to show
that for all α > 0, Fα is continuous on Z. Hence from the Schauder’s fixed point
theorem Fα has a fixed point. Thus the problem (1) has a solution on J .

Theorem 3.2. Assume assumptions (I), (S1) and (IV ) are satisfied. Then the
system (1) is approximately controllable on J .

Proof. Let x̂α(·) be a fixed point of Fα in Q. Any fixed point of Fα is a mild
solution of (1) under the control

ûα(t) = B∗R∗(b− t)R̃(α,Γb
0)p(x̂α)

and satisfies the inequality

x̂α(b) = xb + αR̃(α,Γb
0)p(x̂α)

By the condition (IV) ∫ b

0
‖f(s, x̂α(s))‖2ds ≤ N 2b

and consequently the sequence {f(s, x̂α(s))} is bounded in L2(J,X). Then there
is a subsequence denoted by {f(s, x̂α(s))}, that weakly converges to say f(s) in
L2(J,X). Now, thanks to the compactness of an operator l(·) → ∫ ·

0 R(·−s)l(s)ds :
L2(J,X) → C(J,X) we obtain

‖p(x̂α) − ŵ‖ = ‖
∫ b

0
R(b− s)[‖f(s, x̂α(s))− f(s)]ds‖

≤ sup
0≤t≤b

‖
∫ t

0
R(b− s)[f(s, x̂α(s))− f(s)]ds‖ → 0

as α→ 0+, where

ŵ = R(b)φ(0) +
∫ b

0
R(b− s)f(s)ds− xb
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Then from

‖x̂α(b)− xb‖ ≤ ‖αR̃(α,Γb
0)(ŵ)‖ + ‖αR̃(α,Γb

0)‖‖p(x̂α) − ŵ‖
≤ ‖αR̃(α,Γb

0)(ŵ)‖ + ‖p(x̂α) − ŵ‖ → 0

as α→ 0+. This proves the approximate controllability of (1).

Remark 3.3. Neutral integro-differential equations with unbounded delay arises
in the description of heat conduction in materials with fading memory [34]. Now,
we consider the approximate controllability of neutral differential equations with
impulses and unbounded delay of the form

(6)

dD̃(t, xt)
dt

= AD̃(t, xt) +
∫ t

0
G(t− s)D̃(s, xs)ds

+Bu(t)+f(t, xt), t ∈ J =[0, b]

x0 = φ ∈ P,

�x(tk) = Ik(xtk), k = 1, · · · , m
where D̃(t, φ) = φ(0) + g(t, φ) and g : J × P → X is an appropriate function.
Recently few works reporting exact controllability results for impulsive neutral dif-
ferential systems (see [36]) and references therein. However, in these works the
authors impose compactness assumptions on the operator generated by A, which
imply that the underlying space X has finite dimension. With the proceeding rea-
son, in this remark, we discuss the approximate controllability of integrodifferential
equations of the form (6). A function x : (−∞, b] → X is a mild solution of (6)
on J if x ∈ C([0, b], X);x0 = φ and satisfies

x(t) = R(t)(φ(0) + g(0, φ))− g(t, xt) +
∫ t

0

R(t− s)[Bu(s) + f(s, xs)]ds

+
∑

0<tk<t

T (t− tk)Ik(xtk)

By suitably applying the above Theorems, one can easily prove that the system (6)
is approximately controllable.

Remark 3.4. Differential inclusions play an important role in characterizing
many social, physical, biological and engineering problems. In particular, the prob-
lems in physics, especially in solid mechanics, where non-monotone and multi-
valued constitutive laws lead to differential inclusions. The above result can be
extended to study the controllability of nonlinear impulsive differential inclusions
by suitably introducing the multivalued map defined in [14, 15].
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Example 3.5. Consider the following control partial differential equations with
impulses

(7)

∂D(t, zt)(y)
∂t

=
∂2D(t, zt)(y)

∂y2
+ µ̄(t, y)

+
∫ t

0

(t−s)β−1e−p(t−s) ∂
2D(s, zs)(y)

∂y2
ds+

∫ t

∞
c(t−s)z(s, y)ds

z(τ, y) = φ(τ, y), τ ≤ 0, y ∈ [0, π]

z(t, 0) = z(t, π) = 0, t ∈ [0, b]

∆z(tk)(y) =
∫ tk

−∞
νk(tk − s)z(s, y)ds, k = 1, · · · , m,

where 0 < t1 < ... < tm < b are pre-fixed numbers, β ∈ (0, 1), p > 0 and φ ∈ P.
Here D(t, zt)(y) = z(t, y)− ∫ 0

−∞ c0(t)c1(s)z(t+ s, y)ds and ci(·) are continuous
functions.

Let X = L2[0, π] and P = PC0 × L2(g̃, X) (g̃ : (−∞,−r] → R be a positive
function) be the phase space introduced in [24, 25]. We define the operator A by
Az = z′′ with domain D(A) = {w ∈ X : w and w′ are absolutely continuous,
w′′ ∈ X,w(0) = w(π) = 0}. It is well known that A is the infinitesimal generator
of an analytic semigroup (T (t))t≥0 on X and from Grimmer [19] we assert that the
integrodifferential system

x′(t) = Ax(t) +
∫ t

0
G(t− s)Ax(s)ds

x(0) = x0 ∈ X,

where G(t) = tβ−1e−pt has an associated resolvent of operator (R(t))t≥0 on X .
To study the above system, by assuming the function c0(·) is bounded and that

L1 =
(∫ 0

−∞

(c1(s)2)
g̃(s)

ds

)1/2

,

Lh =
(∫ 0

−∞

(c(−s))2
g̃(s)

ds

)1/2

and

Lk =
(∫ 0

−∞

(νk(−s))2
g̃(s)

ds

)1/2

are finite.
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Choosing suitably the functions D, f, g, Ik : P → X by

D(t, ψ)(y) = ψ(0, y)−
∫ 0

−∞
c0(t)c1(s)ψ(s, y)ds,

g(t, ψ)(y) =
∫ 0

−∞
c0(t)c1(s)ψ(s)(y)ds,

f(t, ψ)(y) =
∫ 0

−∞
c(−s)ψ(s)(y)ds,

Ik(ψ)(y) =
∫ 0

−∞
νk(−s)ψ(s, y)ds, k = 1, · · · , m

and
Bu(t)(y) = µ̄(t, y),

the partial differential equation (7) can be written in the abstract form (6). Further
the maps f, g, Ik are bounded linear operators such that ‖f‖ ≤ L1, ‖g‖ ≤ Lh and
‖Ik‖ ≤ Lk. Because of the compactness of R(t), the associated linear system of (7)
is not exactly controllable but it is approximately controllable. Hence by Theorem
3.1 and 3.2, system (7) is approximately controllable on [0, b].

Remark 3.6. Now we briefly comment on the non-autonomous versions of
systems (1) and (6), where the operator A is replaced by {A(t) : 0 ≤ t ≤ b}. In
order to proceed to prove the approximate controllability results in a similar manner
employed in the above theorem, a resolvent family {R(t, s), 0 ≤ t ≤ s < ∞} is
guaranteed to exist. Conditions guaranteeing existence of R(t, s) can be found in
[20] and hence the above theorems can be extended to the time-dependent case by
making suitable modifications involving the use of properties of the time-dependent
resolvent family in the above arguments.

4. APPROXIMATE CONTROLLABILITY OF STOCHASTIC SYSTEMS

In this section, we study the approximate controllability of stochastic nonlinear
differential equation using resolvent opertators, together with the natural assumption
that associated linear system is approximately controllable.

Let (Ω,Γ, P ) be a complete probability space equipped with a normal filtration
(Γt), t ∈ J = [0, b]. Let X,U and E are the separable Hilbert spaces and w is a
Q-Weiner process on (Ω,Γ, P ) with the linear bounded covariance operator Q such
that trQ <∞. We assume that there exists a complete orthonormal system {en} in
E , a bounded sequence of nonnegative real numbers {λn} such that Qen = λnen,
n=1,2,..., and a sequence {βn} of independent Brownian motions such that

< w(t), e >=
∞∑

k=1

√
λn < en, e > βn(t), e ∈ E, t ∈ J
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and Γt = Γw
t , where Γw

t is the σ- algebra generated by {w(s) : 0 ≤ s ≤ t}. Let
L0

2 = L2(Q1/2E;X) be the space of all Hilbert-Schmidt operators from Q1/2E to
X with the inner product< ψ, π >L0

2
= tr[ψQπ∗]. Let L2(Γb, X) be a Hilbert space

of all Γb-measurable square integrable random variables with values in the Hilbert
space X , LΓ

2 ([0, b], X) is the Hilber space of all square integrable Γt- adapted
process with values in X .

Let C([0, b];L2(Γ, X)) be the Banach space of continuous maps from [0, b] into
L2(Γ, X) satisfying the condition supt∈J E‖x(t)‖2 < ∞. Let H2([0, b];X) is the
closed subspace of C([0, b];L2(Γ, X)) consisting of measurable and Γt- adapted
process x(t). Then H2 is a Banach space with norm topology given by ‖x||H2 =
(supt∈[0,b]E‖x(t)‖2)1/2.

The focus of this section is to investigate the approximate controllability problem
for the class of nonlinear stochastic differential equations of the form

(8)

dx(t) =
[
A

{
x(t) +

∫ t

0
a(t− s)x(s)ds

}

+Bu(t) + f(t, x(t))
]
dt+ g(t, x(t))dw(t)

x(0) = x0

in a Hilbert space X , where A : D(A) ⊂ X → X is a linear, closed, densely-
defined (possible unbounded) operator; B is a bounded linear operator from the
Hilber space U into X ; the control u ∈ LΓ

2 ([0, b], U); w is a E-valued Wiener
process; a : [0, b]×Ω → R is a stochastic kernel; f : J×X → X , g : J×X → L0

2

are appropriate functions.
The following are the main assumptions in this section:

(i) R(t), t > 0 is compact.
(ii) The functions f : J ×X → X and g : J ×X → L0

2 are continuous and there
exists a constant Ñ > 0 such that

‖f(t, x)− f(t, y)‖+ ‖g(t, x)− g(t, y)‖ ≤ Ñ‖x− y‖
‖f(t, x)‖+ ‖g(t, x)‖ ≤ Ñ

(iii) For each 0 ≤ t < b , the operator α(αI + Ψb
t)

−1 → 0 in the strong operator
topology as α→ 0, where

Ψb
t =

∫ b

t

R(b− s)BB∗R∗(b− s)ds

i.e., the linear deterministic system corresponds to (8) is approximately con-
trollable on every [t, b].
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Definition 4.1. A stochastic process x ∈ H2([0, b], X) is a mild solution of (8)
if for each u ∈ LΓ

2 ([0, b], U), it satisfies the following integral equation

x(t)=R(t)x0+
∫ t

0
R(t−s)[Bu(s)+f(s, x(s))]ds+

∫ t

0
R(t−s)g(s, x(s))dw(s),

where R(t) is a resolvent family for stochastic systems which is defined in [27].

For details related to resolvent of operator associated to stochastic integro-
differential equations and additional background, we refer the reader to [27] and the
references therein.

Definition 4.2. System (8) is approximately controllable on [0, b] if 
(b) =
L2(Γb, H), where


(b) = {x(b; u) : u ∈ LΓ
2 ([0, b], U)}.

Theorem 4.3. Assume hypotheses (i)-(iii) are satisfied. Then the system (8)
is approximately controllable.

Proof. For any α > 0 define the operator F̃α on H2([0, b], X) by F̃α(x) = z
where

z(t) = R(t)x0+
∫ t

0
R(t−s)[Bu(s)+f(s, x(s))]ds+

∫ t

0
R(t−s)g(s, x(s))dw(s),

u(t) = B∗R∗(b−t)
[
(αI+Ψb

0)
−1(Ex̃b−R(b)x0)+

∫ t

0
(αI + Ψb

s)
−1φ̃(s)dw(s)

]

−B∗R∗(b− t)
∫ t

0
(αI + Ψb

s)
−1R(b− s)f(s, x(s))ds

−B∗R∗(b− t)
∫ t

0

(αI + Ψb
s)

−1R(b− s)g(s, x(s))dw(s)

and φ̃(·) ∈ LΓ
2 (J, L0

2) from the representation x̃b = Ex̃b +
∫ b
0 φ̃(s)dw(s) of x̃b ∈

L2(Γb, X), see [29]. It will be shown that the system (8) is approximately control-
lable, if for all α > 0 there exists a fixed point of the operator F̃α. One can easily
prove that for all α > 0, F̃α has a fixed point in H2, by employing the contraction
mapping principle, see [29],[30].

Let xα be a fixed point of F̃α in H2. By using the stochastic Fubini theorem it
is easy to see that

xα(b) = x̃b − α(αI + Ψb
0)

−1( Ex̃b −R(b)x0)

+ α

∫ b

0
(αI + Ψb

s)
−1R(b− s)f(s, xα(s))ds

+ α

∫ b

0
(αI + Ψb

s)
−1[R(b− s)g(s, xα(s)) − φ̃(s)]dw(s)
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By the condition (ii)

‖f(s, xα(s))‖2 + ‖g(s, xα(s))‖2 ≤ Ñ

in [0, b] × Ω. Then there is a subsequence denoted by {f(s, xα(s)), g(s, xα(s))}
weakly converging to say (f(s, w), g(s,w)) in X × L0

2. Now, the compactness of
R(t) implies that R(t − s)f(s, xα(s)) → R(t − s)f(s), R(t − s)g(s, xα(s)) →
R(t− s)g(s) in J × Ω. On the other hand by assumption (iii) , for all 0 ≤ s < b
the operator

α(αI + Ψb
s)

−1 → 0 strongly as α→ 0+

and moreover
‖α(αI + Ψb

s)
−1‖ ≤ 1

Thus by the Lebesgue dominated convergence theorem, we obtain

E‖xα(b)− x̃b‖2 ≤ ‖α(αI + Ψb
0)

−1(Ex̃b −R(b)x0)‖2

+ E
(∫ b

0
‖α(αI + Ψb

s)
−1‖‖φ̃(s)‖2ds

)1/2

+ E
(∫ b

0

‖α(αI+Ψb
s)

−1‖‖R(b−s)[f(s, xα(s))−f(s)]‖ds
)1/2

+ E
(∫ b

0
‖α(αI+Ψb

s)
−1‖‖R(b−s)[g(s, xα(s))−g(s)]‖ds

)1/2

→ 0 as α→ 0+.

This gives the approximate controllability.

Example 4.4. Consider the stochastic version of the heat equation with control

(9)

∂z(t, y) =
(
− ∂

∂y
q(t, y) + f(t, z(t, y)) + µ̂(t, y)

)
∂t+ g(t, z(t, y))∂w(t),

q(t, y) = −
(
zy(t, y) +

∫ t

0
ã(t− s)zy(s, y)ds

)
, t ∈ [0, b], 0 ≤ y ≤ π

z(0, y) = z0(y)

where z : [0, b] → R, ã : [0, b] → R, ã ∈ L1((0, b);R) is Γt -adapted, positive,
nonincreasing and convex kernel. w(t) is standard one dimensional Weiner process.
Let X = E = L2[0, π] and define A : D(A) ⊂ X → X by A(z(t, ·) = − ∂

∂2yz(t, ·).
It is well known that A is a positive definite, self adjoint operator in X . Moreover
using the properties ofA and a, it follows from [33], the resolvent operator ‖R(t)‖ ≤
1. The functions f : [0, b] × X → X, g : [0, b] × X → L2(E,X) satisfy the



Nonlinear Deterministic and Stochastic Systems with Unbounded Delay 1793

conditions of Theorem 4.3. The equation (9) can be written in the abstract form
of (8). One can invoke Theorem 4.3, to prove that system (9) is approximately
controllable.

Remark 4.5. The technique used here can be extended to investigate the ap-
proximate controllability of nonlinear stochastic functional differential equations
with unbounded delay by suitably introducing the phase space defined in [1].

Remark 4.6. Consider the following perturbed infinite dimensional stochastic
equation

dx(t) =
[
A

{
x(t) +

∫ t

0
a(t− s)x(s)ds

}
+ Bu(t)

+ f(t, x(t)) + F (t, x(t))] dt+ g(t, x(t))dw(t)+G(t, x(t))dw(t)(10)
x(0) = x0

where f, F : J × X → X , g, G : J × X → L0
2 are measurable, locally bounded

mappings.
It is important to note that mathematically the above equation (10) is more

general than (8). On the other hand, from a practical applications point of view, (10)
allows some long-range dependence of the noise in the models under consideration.

Mild solution of the above equation is

x(t) = R(t)x0 +
∫ t

0
R(t− s)[Bu(s) + f(s, x(s) + F (s, x(s))]ds

+
∫ t

0

R(t− s)g(s, x(s))dw(s)+
∫ t

0

R(t− s)G(s, x(s))dw(s)

One can easily prove that by adopting and employing the method used in the previous
Theorem 4.3, the system (10) is approximately controllable.

Remark 4.7. We can consider the nonlinear stochastic control systems (8) and
(10) with wH̃ , where wH̃ is the fractional Brownian motion with 0 < H̃ < 1.
Fractional Brownian motion denotes a family of Gaussian processes with continuous
sample paths that are indexed by the Hurst parameter H̃ ∈ (0, 1) and that have
properties that appear empirically in a wide variety of physical phenomena, such
as hydrology, economic data, telecommunications, and medicine [13, 23]. Since
some physical phenomena are naturally modeled by stochastic partial differential
equations and the randomness can be described by a fractional Gaussian noise.
More recently, complete controllability of stochastic differential equations in finite
dimensions driven by fractional Brownian motion have been considered in [35].
Existence and uniqueness of mild solutions for stochastic semilinear differential
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equations in Hilbert spaces are obtained with fractional Brownian motion in [13].
Instead of using the Ito isometry, using the fractional Ito isometry discussed in
[13, 35], One can establish the approximate controllability of systems (8) and (10)
with the fractional Brownian motion.
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