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A UNIFIED GENERALIZATION OF ACZEL,
POPOVICIU AND BELLMAN’S INEQUALITIES

Shanhe Wu

Abstract. In this paper, we give a unified generalization of Acztl, Popoviciu
and Bellman’s inequalities. The result is then applied to deriving a refinement
of Aczél’s inequality and Bellman’s inequality. As consequences, several
interesting integral inequalities of Aczél-Popoviciu-Bellman type are obtained.

1. INTRODUCTION

Aczél [1] proved the following result:
n n n 2
(1) <a% — Za?) (b% - Zb?> < <a1b1 - Zaibi> 5
i=2 i=2 i=2

n
where a;, b; (i = 1,2,...,n) are real numbers such that a? — >>a? > 0 or
i=2

n
b3 — > b2 > 0. This inequality is known in the literature as Aczél’s inequality (see

i=2
Mitrinovi¢ and Vasi¢ [2]).
Popoviciu [3] generalized inequality (1) in the following form:

n n n p
(2 <0}17 - Zaf> <b]f - be> < <a1b1 - Zaibi> ;
i=2 =2 i—2

where p > 1, a;, b; (i = 1,2,...,n) are nonnegative real numbers such that
n n

al = > a? >0 o0r bf =S ¥ >0.
=2 =2
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However, there is an error in Popoviciu’s result. Bjelica [4], Losonczi and
Pales [5] showed via counterexamples that the inequality (2) is not true in general
for p > 2, and mdlcated that the mequallty (2) holds true under the condition that

0<p<2d - Za >0 and b} — be>0

=2
Bellman [6] presented an analogue of Aczél-Popoviciu inequality, as follows

@) <a1f—zn:af>p + <b]f—zn:bf>p < <(a1+bl)p—zn:(az‘+bz‘)p>p7
=2 i=2

i=2
n

wherep > 1, a;, b; (i =1,2,---,n) are positive numbers such that a} — >~ a? > 0
i=2

and v} — pr>0

Aczel Popovmlu and Bellman’s inequalities have important applications in the
theory of functional equations in non-Euclidean geometry. Due to the importance of
these inequalities, they have been given considerable attention by mathematicians.
A comprehensive survey on these inequalities can be found in the monograph [7,
p. 117]. During the past few years, numerous generalizations, improvements and
variants of Aczél’s inequality and Popoviciu’s inequality have appeared in the lit-
erature, see Mascioni [8], Mercer [9], Sun [10], Dragomir and Mond [11], Wu and
Debnath [12, 13], Wu [14-17] and Cho et al. [18].

The purpose of this paper is to establish a unified generalization of Aczél,
Popoviciu and Bellman’s inequalities. We next provide an application of the ob-
tained result to the refinements of Popoviciu’s inequality and Bellman’s inequal-
ity. Finally, in Section 4 we give several interesting integral inequalities of Aczél-
Popoviciu-Bellman type.

2. LEMMAS
In order to prove our main results, we need the following lemmas.

Lemma 1. (Generalized Minkowski’s inequality [19]). Let z;; >0 (=1, 2,
n,j=1,2,...,m)and 0 < p < 1. Then

n m % 8 m n 1 p
@ () | <3 (5)
j=1 \i=1

i=1 \j=1

with equallty holding if and only if p = 1, or 24 = 22 = ... = T (j =

Tnl

2,3,...,m) for 0 < p < 1. Furthermore, the mequallty (4) is reversed for p> 1
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Lemma2. (Holder’sinequality [19]). Let z;; >0, p; >0(i=1,2,...,n, j =
1,2,...,m) and p1+ps+---+pmn =1. Then

m n pj n m
®) 11 (Z %‘) > > ],
j=1 \i=1 i=1 j=1
with equality holding if and only if T2 = 22 = ... =22 (j=2,3,...,m).

Lemma 3. Let z; (i =1,2,...,n) be positive real numbers such that =, —
T9 — - —x, >0, and let p < 1. Then

n n p
(6) x’f—fog <$1—Z$z‘> ,
=2 i=2
with equality holding if and only if p = 1.

Proof. From the hypotheses: p — 1 <0, 21 > x5 + - - - + x,,, We deduce that
n p n n n p—1 n
<1‘1 — Z$Z> + Z xf = <1‘1 — sz> <1‘1 — Z$Z> + inxf_l
=2 =2 =2 =2 =2
n n
> <1‘1 — Z$Z> 1']17_1 + inxﬁ)_l
=2 =2

— P
= X7.

Lemma 3 is proved. ]

3. GENERALIZATIONS OF ACZzEL, PopPovICIU AND BELLMAN’S INEQUALITIES

As in [2], the power mean of order r for positive numbers =1, o, ..., T, IS
defined by
1
afFah+ -\
Mm(xhxg,...,xm) = < m for r#0,

1

(x120 -+ " Tpy)™ for r=0.

We start this section by establishing the following combined generalization of Aczél,
Popoviciu and Bellman’s inequalities:

n
Theorem 1. Letp>r>0,p#0, a;; >0, aﬁ’j—zgafj>0(i:1,2,...,n,

n 1/p
j=12,...,m), and let a; = (afl’j— 2afj> (j =1,2,...,m). Then the
1=
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following inequality holds

n

@) <MT[,’;](61,...,6m)>p§<Mr[g](a11,...,a1m)>p— (Mr[;l(aﬂ,...,aim))p.

i=2
Equality holds in (7) if and only if p = r # 0, or 22 = 22 = ... = 2

(1=2,3,...,m) forp>r.

Proof. We consider the following two cases.

Case (I). When r > 0. It is easy to see that the inequality (7) is equivalent to
the following inequality:

r y y y

o (Slo-Ta)]) «(Sa) S(Sa)
j=1 i=2 j=1 i=2 \j=1

Using the generalized Minkowski’s inequality with 0 < r/p < 1 gives

that is,

Thus, we have

<
i:
MR
N
S
<
|
1 3
[\
)
oS
~__—
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~
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+
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[\
<
-
MR
<
~
=

)

Now, using the generalized Minkowski’s inequality with p/r > 1, it follows
that

(10) (jf; <a§j§;a§’j>;)g+ (jf; (Zzn;aijy < (; (o)) ) .

s

SEb



Generalizations of Aczél Type Inequalities 1639

By combining inequalities (9) and (10), we obtain

o\ B
m n »\ "7 n m
p p T
> |2 D DI
=2

j=1 =2 \j=1

P
m r
.
< E ayy )
J=1

which is the required inequality (8). This proves the inequality (7) for the case of
r > 0.

RAS]

Case (I1). When r = 0. The inequality (7) can be rewritten as
1

m n m m P n.om P
(1) <a’117j - afj) <Ilai; = > 114
: =

i=2 j=1
Applying the Holder’s inequality gives

m p m n n % m n % n m p
oI (-3t )+ 30 ) =11 (-3 ) 31106,
j=1 j=1 i=2 i=2 j=1 i=2 i=2 j=1
which implies the desired inequality (11). This proves the inequality (7) for the case
of r=0.

From Lemmas 1 and 2 we can easily deduce that the equality holds in (7) if
and only if p =r # 0, or%:%:---:% (j=2,3,...,m)for p>r. The
proof of Theorem 1 is complete.

In the following we will not discuss the conditions for equality because they
can be obtained directly from Theorem 1.

Remark 1. Putting » = 1 in Theorem 1 gives the following generalization of
Bellman’s inequality:

n
Corollary 1. Let p > 1, a;; > 0, a’l’j - Zafj >0(0¢=12,....,n, j =
i=2

1,2,...,m). Then we have the inequality
1 P P\ ¥
m n P m n m p
w2 3 (a’fj - Za%) S E DT DD DI
j=1 i=2 j=1 i=2 \j=1

Putting » = 0 in Theorem 1 and making use of Lemma 3, a generalization of Aczél’s
inequality is derived as follows:

n
Corollary 2. Let m > p > 0, a;; > 0, alfj —igafj >00G=12,...,n,

j=1,2,...,m). Then we have the inequality
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p
(13) H <affj — Za%) S Halj — Z H Qi .
j=1 =2 j=1

j= j i=2 j=1
Remark 2. In a special case when m = 2, inequality (12) reduces to Bellman’s
inequality (3).

In Corollary 2, setting m = 2, a1 = a;, a;g =b; (i =1,2,...,n), we obtain
a modified version of Popoviciu’s inequality (2), i.e.,

Corollary 3. Let 2> p >0, and let a;, b; (i =1,2,...,n) be positive real
n n
numbers such that a} — >~ a? > 0and b7 — >~ 7 > 0. Then
i=2 i=2

n n n p
(14) <CL1!12 — Z af) <b]1) — be) S <a161 — Zazbz> .
=2 =2 =2

In the next result, we establish seveval refinements of the generalized Aczél’s
inequality and Bellman’s inequality.

n
Theorem 2. Letm > p > 0, a;; > 0, af; — Z:Qafj >0 =12,...,n,

1=
j=1,2,...,m). Then, for 1 < k < n we have the inequality

p
(15) H <a’112j — Z a%) < R(an, cuny anm) < H aij — Z H Qi .
Jj=1 i=2 j=1

i=2 j=1
where
1 p
m k P n m
p p
R(a11, ..., anm) = H alj_zaij - Z Haij
j=1 i=2 i=k+1 j=1

Proof. By applying Corollary 2, we have

[ ((4-3a)- 3 )

j=1 i=k+1

it (o) 35 g1

i=k+1 j=1

3
N
HQ“U

<.
|
\'M 3
)
o
~_
Il

(16)
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and

m k % m kK m
(17) H <affj — Za%) S Halj — ZHCLZ‘]‘.
j=1 i=1

i=2 j=1

Combining inequalities (16) and (17) leads to the desired inequality (15). The-
orem 2 is proved.

Theorem 3. Let p > 1, a;; > 0, af; — Zaw >00G=12,...,n j =

1,2,...,m). Then, for 1 < k < n we have the mequallty

(18)

where

Qatt,. . anm) = (Z <a1j Z))Z (i) N

7=1

Proof. By applying Corollary 1, we have

m k % P n m p %
= (Z (a%—Za%) ) - (Zaz‘j)
Jj=1 i=2 i=k+1 \j=1
and

@ (S

The proof of Theorem 3 is completed by combining the inequalities (19) and
(20).

<
I
I
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S
=3
<
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Remark 3. As a direct consequence of Theorem 2 and Theorem 3, setting
m=2, a1 =aj ag="0; (i=1,2,...,n)in (15) and (18), respectively, yields
Corollary 4. Let 2 > p > 0, and let a;, b; (i = 1,2,...,n) be positive real
n n
numbers such that af — >~ af > 0and o) — > b > 0. Then, for 1 < k& < n we
=2 =2

have the inequality

n n p

(21) < Za > < bf) <R(a1,bl,...,an,bn)§<albl—2aibi> s
=2 =2

where

1 p
— Z aibi

i=k+1

|
] =
~
D=
/
<%
|
] =
<
~
S
3

R(ay,b1,...,an,b,) = <a,1!12

Corollary 5. Letp>1 and let a;, bi (i=1,2,...,n) be positive real numbers
such that af — Z al >0and b} — Z b? > 0. Then, for 1 < k < n we have the
i=2

inequality

[(4-3 Hb’f— )
(22) =2 1
< Q(a1,b1,...,an,b,) < ((a1 +by)P — (a; + bi)p> ;

where

k % k 117 n
Q(a1,by, ... an,by)= <a§’—za§’> + <b7f—z bf) = > (ai+b)?
i=2 i=2 i=k+1

Remark 4. The inequality (21) was proved by Diaz-Barrero et al. in a recent
paper [20]. However, there is an error on the domain of the variable p. Namely, the
authors claimed that the inequality (20) holds for any p € Z* ( Z* denotes the set
of positive integers ). The assertion is clearly false because Popoviciu’s inequality
(2) is true only for 0 < p < 2 (see the introduction in Section 1).

4. INTEGRAL VERSION OF ACZEL-POPOVICIU-BELLMAN TYPE INEQUALITY

In this section we provide several interesting integral inequalities of Aczél-
Popoviciu-Bellman type.
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Theorem 4. Let p > r >0, p # 0, 4; >0 (j = 1,2,...,m), let f; be
positive Riemann integrable functions on [a,b] such that A% — f fi(x)dz >0

~ 1/
forall j =1,2,...,m, and let A; = <A§ — f;’ ff(m)dm) " Then the following
inequality holds

(A A)" < (MG A )

(23) b )
— [ (@) o))

a

Proof. For any positive integer n, we choose an equidistant partition of [a, b] as

b— b—
i --<a—|—Ta(n—1)<b,

b—a
a<at+——< -
n

b_
Az; = a’, i=1,2,--n.

Since the hypothesis A” — f fp Ydz >0 (5 =1,2,...,m) implies that

» ) ° » i(b—a)\b—a .
Aj—nh_)r&;fj <a+T>T>O (j=1,2,...,m),

there exists a positive integer N such that

- i(b—a)\b—
Af—fo<a+u>—a>0 forall n >N and j=1,2,...,m.
; n n

Applying Theorem 1, one obtains the following inequalities:
i(b—a)\b—a
p P
3 (-3 (o )
g e
LA Y i(b—a) "b-a
: ZAJ) P> (ij <a+ : n )) T

A
— s
o
N~ —
3t
|
N
~
—s
S
N
s}
_|_
S|
&
N——
N~ —
3t
S
3|
Q



1644 Shanhe Wu

forany n > N and » = 0.

In view of the hypotheses that f; (j = 1,2, ..., m) are positive Riemann inte-
grable functions on [a, b], we conclude that f, (37, f7)P/" and ([T7, f;)P/™
are also integrable on [a, b]. Passing to the limit n — oo on both sides of the above
inequalities, we obtain that

@ N :
m b m
< ZA;) _/ (Zf;f(x)) de (r>0)
i=1 @ \j=1
and
- " ) 1 %
H <A§ — 7 (2) dw)
j=1 a
(25) ) 3 P
m m b m m
< HAJ) —/ (H fj(w)) dz  (r=0)

Combining inequalities (24) and (25) leads to the inequality (23) asserted by
Theorem 4. This completes the proof of Theorem 4.

Remark 5. Putting » = 1 in Theorem 4, we get the following integral version
of Bellman’s inequality:

Corollary 6. Let p > 1, A; >0 (j = 1,2,...,m), and let f; be positive

Riemann integrable functions on [a, b] such that A% — f;’ f7(x)dz > 0 for all
j=1,2,...,m. Then

(26) f}(Aﬁ—/abff@)dw)% < ((fjAj)p/: (f}fﬂw))pdx)

Putting » = 0 and p = m in Theorem 4, the integral version of Aczél-Popoviciu
inequality is derived as follows:

P

Corollary 7. Let A; >0 (j =1,2,...,m), and let f; be positive Riemann in-
tegrable functions on [a, b] such thatA;”—f; fi"(x)dz > 0forall j =1,2,...,m.
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Then
(27) 11 (A;” — [ " (2) dx) <[4 - / 1) | d=.
j=1 @ j=1 a \j=1
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