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A LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTION
INVOLVING THE GAMMA FUNCTION

Feng Qi and Bai-Ni Guo

Abstract. In this paper, sufficient conditions are found for a function involving
the gamma function and its reciprocal to be logarithmically completely mono-
tonic. Consequently, a decreasing monotonicity of the function is generalized
and a known inequality is extended.

1. INTRODUCTION

A function f is said to be logarithmically completely monotonic on an interval
I ⊆ R if it has derivatives of all orders on I and its logarithm ln f satisfies

(1) 0 ≤ (−1)k[ln f(x)](k) <∞
for k ∈ N on I . This terminology was first proposed in [2], but it seems to have
been ignored until 2004 by the mathematical community. In early 2004, this no-
tion was recovered in [16], the original version of the paper [14]. It was pointed
out in [4] that the logarithmically completely monotonic functions on (0,∞) can
be characterized as the infinitely divisible completely monotonic functions studied
in [8]. Furthermore, it was discovered in [4] that every Stieltjes transform is a log-
arithmically completely monotonic function on (0,∞), where a function f defined
on (0,∞) is called a Stieltjes transform if it can be of the form

(2) f(x) = a+
∫ ∞

0

1
s+ x

d µ(s)

for some nonnegative number a and some nonnegative measure µ on [0,∞) sat-
isfying

∫ ∞
0

1
1+sd µ(s) < ∞. This demonstrates that the investigation of the loga-

rithmically completely monotonic property of functions are naturally significant and
meaningful.
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It is well-known that Euler gamma function Γ(x) is defined for x > 0 by

(3) Γ(x) =
∫ ∞

0

tx−1e−td t.

The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x)
Γ(x) , is called the psi or

digamma function, and ψ(k)(x) for k ∈ N are called the polygamma functions. It
is common knowledge that these functions are fundamental and important and that
they have much extensive applications in mathematical sciences.

In [6, Theorem 2] and its preprint [20], the following decreasingly monotonic
property was established: The function

(4)
[Γ(x+ y + 1)/Γ(y + 1)]1/x

x+ y + 1

is decreasing in x ≥ 1 for fixed y ≥ 0. Consequently, for positive real numbers
x ≥ 1 and y ≥ 0, we have

(5)
x+ y + 1
x+ y + 2

≤ [Γ(x+ y + 1)/Γ(y + 1)]1/x

[Γ(x+ y + 2)/Γ(y + 1)]1/(x+1)
.

For more information on the history, background, motivation and generalizations
of the function (4), please refer to [1, 3, 6, 7, 9, 10, 11, 17, 18, 19, 20, 21, 22] and
a lot of related references therein.

The aim of this paper is to extend and generalize the above monotonicity result.
Our main results can be stated as follows.

Theorem 1. The function (4) is logarithmically completely monotonic with re-
spect to x ∈ (0,∞) if y ≥ 0, so is its reciprocal if −1 < y ≤ − 1

2 . Conse-
quently, the inequality (5) is valid for (x, y) ∈ (0,∞) × [0,∞) and reversed for
(x, y) ∈ (0,∞)× (−1,−1

2

]
.

2. PROOF OF THEOREM 1

For all (x, y) ∈ (0,∞)× (−1,∞), let

(6) h(x, y) =
ln Γ(x+ y + 1)− lnΓ(y + 1)

x
− ln(x+ y + 1),

which is the logarithm of the function (4) clearly. Direct computation yields

(7)

∂kh(x, y)
∂xk

=
k!
xk+1

k∑
i=0

(−1)k−ixiψ(i−1)(x+ y + 1)
i!

− (−1)kk! lnΓ(y + 1)
xk+1

− (−1)k−1(k − 1)!
(x+ y + 1)k
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for k ∈ N, where ψ(−1)(x+ y + 1) and ψ(0)(x+ y + 1) stand for ln Γ(x+ y + 1)
and ψ(x+ y + 1) respectively. Furthermore, a simple calculation gives

(8)

∂

∂x

[
xk+1 ∂

kh(x, y)
∂xk

]
= (−1)k−1xk

[
(−1)k−1ψ(k)(x+ y + 1)

− (k − 1)!
(x+ y + 1)k

− k!(y + 1)
(x+ y + 1)k+1

]
.

In [12, Lemma 1.3] and [13, Lemma 3], the function ψ(x) − lnx + α
x was

proved to be completely monotonic on (0,∞), i.e.,

(9) (−1)i
[
ψ(x)− lnx+

α

x

](i) ≥ 0

for i ≥ 0, if and only if α ≥ 1, so is its negative, i.e., the inequality (9) is reversed,
if and only if α ≤ 1

2 . In [5], the function exΓ(x)
xx−α was proved to be logarithmically

completely monotonic on (0,∞), i.e.,

(10) (−1)k

[
ln
exΓ(x)
xx−α

](k)

≥ 0

for k ∈ N, if and only if α ≥ 1, so is its reciprocal, i.e., the inequality (10) is
reversed, if and only if α ≤ 1

2 . As straightforward consequences of any one of these
two conclusions (9) and (10), the following double inequalities are derived readily:

lnx− 1
x
≤ ψ(x) ≤ lnx− 1

2x

and

(11)
(k − 1)!
xk

+
k!

2xk+1
≤ (−1)k+1ψ(k)(x) ≤ (k − 1)!

xk
+

k!
xk+1

hold on (0,∞) for k ∈ N. See also [15, Lemma 3]. Utilization of (11) in (8) leads
to

− k!(y + 1/2)
(x + y + 1)k+1

≤ (−1)k−1

xk

∂

∂x

[
xk+1 ∂

kh(x, y)
∂xk

]
≤ − k!y

(x+ y + 1)k+1

for k ∈ N and (x, y) ∈ (0,∞)× (−1,∞). Therefore,

(−1)k−1

xk

∂

∂x

[
xk+1 ∂

kh(x, y)
∂xk

] 

≤ 0, y ≥ 0;

≥ 0, −1 < y ≤ −1
2
.
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This means that

∂

∂x

[
x2k ∂

2k−1h(x, y)
∂x2k−1

] 

≤ 0, y ≥ 0

≥ 0, −1 < y ≤ −1
2

and
∂

∂x

[
x2k+1 ∂

2kh(x, y)
∂x2k

] 

≥ 0, y ≥ 0

≤ 0, −1 < y ≤ −1
2

for k ∈ N and x ∈ (0,∞). In other words, the functions

x2k∂
2k−1h(x, y)
∂x2k−1

and − x2k+1 ∂
2kh(x, y)
∂x2k

are decreasing if y ≥ 0 or increasing if −1 < y ≤ −1
2 with respect to x ∈ (0,∞).

From (7), it is easy to see that

lim
x→0+

[
xk+1 ∂

kh(x, y)
∂xk

]
= 0

for k ∈ N and any given y > −1. Since xk+1 ∂kh(x,y)
∂xk is not constant for x near 0,

we must have

x2k ∂
2k−1h(x, y)
∂x2k−1



< 0, y ≥ 0

> 0, −1 < y ≤ −1
2

and

−x2k+1 ∂
2kh(x, y)
∂x2k



< 0, y ≥ 0

> 0, −1 < y ≤ −1
2

for k ∈ N and x ∈ (0,∞), which are equivalent to

∂2k−1h(x, y)
∂x2k−1



< 0, y ≥ 0

> 0, −1 < y ≤ −1
2

and
∂2kh(x, y)
∂x2k



> 0, y ≥ 0

< 0, −1 < y ≤ −1
2

for k ∈ N and x ∈ (0,∞). In conclusion,

(−1)k ∂
kh(x, y)
∂xk



> 0, y ≥ 0

< 0, −1 < y ≤ −1
2
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for k ∈ N and x ∈ (0,∞). Hence, the function (4) is logarithmically completely
monotonic with respect to x on (0,∞) if y ≥ 0, so is the reciprocal of the func-
tion (4) if −1 < y ≤ −1

2 . The proof of Theorem 1 is complete.
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