TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 4, pp. 1623-1628, August 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

A LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTION INVOLVING THE GAMMA FUNCTION

Feng Qi and Bai-Ni Guo

Abstract. In this paper, sufficient conditions are found for a function involving the gamma function and its reciprocal to be logarithmically completely monotonic. Consequently, a decreasing monotonicity of the function is generalized and a known inequality is extended.

1. INTRODUCTION

A function f is said to be logarithmically completely monotonic on an interval $I \subseteq \mathbb{R}$ if it has derivatives of all orders on I and its logarithm $\ln f$ satisfies

(1)
$$0 \le (-1)^k [\ln f(x)]^{(k)} < \infty$$

for $k \in \mathbb{N}$ on I. This terminology was first proposed in [2], but it seems to have been ignored until 2004 by the mathematical community. In early 2004, this notion was recovered in [16], the original version of the paper [14]. It was pointed out in [4] that the logarithmically completely monotonic functions on $(0, \infty)$ can be characterized as the infinitely divisible completely monotonic functions studied in [8]. Furthermore, it was discovered in [4] that every Stieltjes transform is a logarithmically completely monotonic function on $(0, \infty)$, where a function f defined on $(0, \infty)$ is called a Stieltjes transform if it can be of the form

(2)
$$f(x) = a + \int_0^\infty \frac{1}{s+x} d\mu(s)$$

for some nonnegative number a and some nonnegative measure μ on $[0, \infty)$ satisfying $\int_0^\infty \frac{1}{1+s} d\mu(s) < \infty$. This demonstrates that the investigation of the logarithmically completely monotonic property of functions are naturally significant and meaningful.

Communicated by Sen-Yen Shaw.

2000 Mathematics Subject Classification: Primary 26A48, 33B15; Secondary 26A51, 26D07.

Key words and phrases: Logarithmically completely monotonic function, Gamma function, Inequality. The first author was partially supported by the China Scholarship Council.

Received September 25, 2008, accepted December 31, 2008.

Feng Qi and Bai-Ni Guo

It is well-known that Euler gamma function $\Gamma(x)$ is defined for x > 0 by

(3)
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

The logarithmic derivative of $\Gamma(x)$, denoted by $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$, is called the psi or digamma function, and $\psi^{(k)}(x)$ for $k \in \mathbb{N}$ are called the polygamma functions. It is common knowledge that these functions are fundamental and important and that they have much extensive applications in mathematical sciences.

In [6, Theorem 2] and its preprint [20], the following decreasingly monotonic property was established: The function

(4)
$$\frac{[\Gamma(x+y+1)/\Gamma(y+1)]^{1/x}}{x+y+1}$$

is decreasing in $x \ge 1$ for fixed $y \ge 0$. Consequently, for positive real numbers $x \ge 1$ and $y \ge 0$, we have

(5)
$$\frac{x+y+1}{x+y+2} \le \frac{[\Gamma(x+y+1)/\Gamma(y+1)]^{1/x}}{[\Gamma(x+y+2)/\Gamma(y+1)]^{1/(x+1)}}.$$

For more information on the history, background, motivation and generalizations of the function (4), please refer to [1, 3, 6, 7, 9, 10, 11, 17, 18, 19, 20, 21, 22] and a lot of related references therein.

The aim of this paper is to extend and generalize the above monotonicity result. Our main results can be stated as follows.

Theorem 1. The function (4) is logarithmically completely monotonic with respect to $x \in (0,\infty)$ if $y \ge 0$, so is its reciprocal if $-1 < y \le -\frac{1}{2}$. Consequently, the inequality (5) is valid for $(x,y) \in (0,\infty) \times [0,\infty)$ and reversed for $(x,y) \in (0,\infty) \times (-1,-\frac{1}{2}]$.

2. Proof of Theorem 1

For all $(x, y) \in (0, \infty) \times (-1, \infty)$, let

(6)
$$h(x,y) = \frac{\ln \Gamma(x+y+1) - \ln \Gamma(y+1)}{x} - \ln(x+y+1)$$

which is the logarithm of the function (4) clearly. Direct computation yields

(7)
$$\frac{\partial^k h(x,y)}{\partial x^k} = \frac{k!}{x^{k+1}} \sum_{i=0}^k \frac{(-1)^{k-i} x^i \psi^{(i-1)}(x+y+1)}{i!} - \frac{(-1)^k k! \ln \Gamma(y+1)}{x^{k+1}} - \frac{(-1)^{k-1} (k-1)!}{(x+y+1)^k}$$

1624

for $k \in \mathbb{N}$, where $\psi^{(-1)}(x+y+1)$ and $\psi^{(0)}(x+y+1)$ stand for $\ln \Gamma(x+y+1)$ and $\psi(x+y+1)$ respectively. Furthermore, a simple calculation gives

(8)
$$\frac{\partial}{\partial x} \left[x^{k+1} \frac{\partial^k h(x,y)}{\partial x^k} \right] = (-1)^{k-1} x^k \left[(-1)^{k-1} \psi^{(k)}(x+y+1) - \frac{(k-1)!}{(x+y+1)^k} - \frac{k!(y+1)}{(x+y+1)^{k+1}} \right].$$

In [12, Lemma 1.3] and [13, Lemma 3], the function $\psi(x) - \ln x + \frac{\alpha}{x}$ was proved to be completely monotonic on $(0, \infty)$, i.e.,

(9)
$$(-1)^i \left[\psi(x) - \ln x + \frac{\alpha}{x} \right]^{(i)} \ge 0$$

for $i \ge 0$, if and only if $\alpha \ge 1$, so is its negative, i.e., the inequality (9) is reversed, if and only if $\alpha \le \frac{1}{2}$. In [5], the function $\frac{e^x \Gamma(x)}{x^{x-\alpha}}$ was proved to be logarithmically completely monotonic on $(0, \infty)$, i.e.,

(10)
$$(-1)^k \left[\ln \frac{e^x \Gamma(x)}{x^{x-\alpha}} \right]^{(k)} \ge 0$$

for $k \in \mathbb{N}$, if and only if $\alpha \ge 1$, so is its reciprocal, i.e., the inequality (10) is reversed, if and only if $\alpha \le \frac{1}{2}$. As straightforward consequences of any one of these two conclusions (9) and (10), the following double inequalities are derived readily:

$$\ln x - \frac{1}{x} \le \psi(x) \le \ln x - \frac{1}{2x}$$

and

(11)
$$\frac{(k-1)!}{x^k} + \frac{k!}{2x^{k+1}} \le (-1)^{k+1} \psi^{(k)}(x) \le \frac{(k-1)!}{x^k} + \frac{k!}{x^{k+1}}$$

hold on $(0, \infty)$ for $k \in \mathbb{N}$. See also [15, Lemma 3]. Utilization of (11) in (8) leads to

$$\frac{k!(y+1/2)}{(x+y+1)^{k+1}} \le \frac{(-1)^{k-1}}{x^k} \frac{\partial}{\partial x} \left[x^{k+1} \frac{\partial^k h(x,y)}{\partial x^k} \right] \le -\frac{k!y}{(x+y+1)^{k+1}}$$

for $k \in \mathbb{N}$ and $(x, y) \in (0, \infty) \times (-1, \infty)$. Therefore,

$$\frac{(-1)^{k-1}}{x^k} \frac{\partial}{\partial x} \left[x^{k+1} \frac{\partial^k h(x,y)}{\partial x^k} \right] \begin{cases} \leq 0, & y \geq 0; \\ \geq 0, & -1 < y \leq -\frac{1}{2}. \end{cases}$$

1625

This means that

$$\frac{\partial}{\partial x} \left[x^{2k} \frac{\partial^{2k-1} h(x,y)}{\partial x^{2k-1}} \right] \begin{cases} \leq 0, & y \geq 0\\ \geq 0, & -1 < y \leq -\frac{1}{2} \end{cases}$$

and

$$\frac{\partial}{\partial x} \left[x^{2k+1} \frac{\partial^{2k} h(x,y)}{\partial x^{2k}} \right] \begin{cases} \ge 0, & y \ge 0\\ \le 0, & -1 < y \le -\frac{1}{2} \end{cases}$$

for $k \in \mathbb{N}$ and $x \in (0, \infty)$. In other words, the functions

$$x^{2k}\frac{\partial^{2k-1}h(x,y)}{\partial x^{2k-1}} \quad \text{and} \quad -x^{2k+1}\frac{\partial^{2k}h(x,y)}{\partial x^{2k}}$$

are decreasing if $y \ge 0$ or increasing if $-1 < y \le -\frac{1}{2}$ with respect to $x \in (0, \infty)$. From (7), it is easy to see that

$$\lim_{x \to 0^+} \left[x^{k+1} \frac{\partial^k h(x,y)}{\partial x^k} \right] = 0$$

for $k \in \mathbb{N}$ and any given y > -1. Since $x^{k+1} \frac{\partial^k h(x,y)}{\partial x^k}$ is not constant for x near 0, we must have

$$x^{2k} \frac{\partial^{2k-1} h(x,y)}{\partial x^{2k-1}} \begin{cases} < 0, & y \ge 0\\ > 0, & -1 < y \le -\frac{1}{2} \end{cases}$$

and

$$-x^{2k+1} \frac{\partial^{2k} h(x,y)}{\partial x^{2k}} \begin{cases} < 0, & y \ge 0\\ > 0, & -1 < y \le -\frac{1}{2} \end{cases}$$

for $k \in \mathbb{N}$ and $x \in (0, \infty)$, which are equivalent to

$$\frac{\partial^{2k-1}h(x,y)}{\partial x^{2k-1}} \begin{cases} < 0, & y \ge 0\\ > 0, & -1 < y \le -\frac{1}{2} \end{cases}$$

and

$$\frac{\partial^{2k}h(x,y)}{\partial x^{2k}} \begin{cases} > 0, \quad y \ge 0\\ < 0, \quad -1 < y \le -\frac{1}{2} \end{cases}$$

for $k \in \mathbb{N}$ and $x \in (0, \infty)$. In conclusion,

$$(-1)^k \frac{\partial^k h(x,y)}{\partial x^k} \begin{cases} > 0, \quad y \ge 0\\ < 0, \quad -1 < y \le -\frac{1}{2} \end{cases}$$

1626

for $k \in \mathbb{N}$ and $x \in (0, \infty)$. Hence, the function (4) is logarithmically completely monotonic with respect to x on $(0, \infty)$ if $y \ge 0$, so is the reciprocal of the function (4) if $-1 < y \le -\frac{1}{2}$. The proof of Theorem 1 is complete.

ACKNOWLEDGMENTS

The authors would like to express many thanks to the editor and the anonymous referees for their valuable comments and corrections.

References

- 1. S. Abramovich, J. Barić, M. Matić and J. Pecarić, On van de Lune-Alzer's inequality, *J. Math. Inequal.*, **1**(4) (2007), 563-587.
- R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci., 41(2) (1988), 21-23.
- 3. G. Bennett, Meaningful inequalities, J. Math. Inequal., 1(4) (2007), 449-471.
- 4. C. Berg, Integral representation of some functions related to the gamma function, *Mediterr. J. Math.*, **1(4)** (2004), 433-439.
- 5. Ch.-P. Chen and F. Qi, Logarithmically completely monotonic functions relating to the gamma function, *J. Math. Anal. Appl.*, **321(1)** (2006), 405-411.
- 6. B.-N. Guo and F. Qi, Inequalities and monotonicity for the ratio of gamma functions, *Taiwanese J. Math.*, **7(2)** (2003), 239-247.
- B.-N. Guo and F. Qi, Monotonicity of sequences involving geometric means of positive sequences with monotonicity and logarithmical convexity, *Math. Inequal. Appl.*, 9(1) (2006), 1-9.
- 8. R. A. Horn, On infinitely divisible matrices, kernels and functions, Z. Wahrscheinlichkeitstheorie und Verw. Geb, 8 (1967), 219-230.
- F. Qi, Inequalities and monotonicity of sequences involving ⁿ√(n + k)!/k!, RGMIA Res. Rep. Coll., 2(5) (1999), Art. 8, 685-692; Available online at http://rgmia.org/v2n5.php.
- 10. F. Qi, Inequalities and monotonicity of sequences involving $\sqrt[n]{(n+k)!/k!}$, Soochow J. Math., **29(4)** (2003), 353-361.
- 11. F. Qi, On a new generalization of Martins' inequality, *RGMIA Res. Rep. Coll.*, **5**(3) (2002), Art. 13, 527-538; Available online at *http://rgmia.org/v5n3.php*.
- 12. F. Qi, Three classes of logarithmically completely monotonic functions involving gamma and psi functions, *Integral Transforms Spec. Funct.*, **18**(7) (2007), 503-509.
- 13. F. Qi, Three classes of logarithmically completely monotonic functions involving gamma and psi functions, *RGMIA Res. Rep. Coll.*, **9** (2006), Suppl., Art. 6; Available online at *http://rgmia.org/v9(E).php*.

- 14. F. Qi and Ch.-P. Chen, A complete monotonicity property of the gamma function, J. *Math. Anal. Appl.*, **296(2)** (2004), 603-607.
- B.-N. Guo and F. Qi, Two new proofs of the complete monotonicity of a function involving the psi function, *Bull. Korean Math. Soc.*, 47(1) (2010), 103–111; Available online at *http://dx.doi.org/10.4134/BKMS.2010.47.1.103*.
- F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, *RGMIA Res. Rep. Coll.*, 7(1) (2004), Art. 8, 63-72; Available online at *http://rgmia.org/v7n1.php*.
- 17. F. Qi and B.-N. Guo, Monotonicity of sequences involving convex function and sequence, *Math. Inequal. Appl.*, **9(2)** (2006), 247-254.
- F. Qi and B.-N. Guo, Monotonicity of sequences involving convex function and sequence, *RGMIA Res. Rep. Coll.*, 3(2) (2000), Art. 14, 321-329; Available online at *http://rgmia.org/v3n2.php*.
- F. Qi and B.-N. Guo, Monotonicity of sequences involving geometric means of positive sequences with logarithmical convexity, *RGMIA Res. Rep. Coll.*, 5(3) (2002), Art. 10, 497-507; Available online at *http://rgmia.org/v5n3.php*.
- 20. F. Qi and B.-N. Guo, Some inequalities involving the geometric mean of natural numbers and the ratio of gamma functions, *RGMIA Res. Rep. Coll.*, **4(1)** (2001), Art. 6, 41-48; Available online at *http://rgmia.org/v4n1.php*.
- F. Qi and S. Guo, On a new generalization of Martins' inequality, J. Math. Inequal., 1(4) (2007), 503-514.
- 22. F. Qi and J.-Sh. Sun, A monotonicity result of a function involving the gamma function, *Anal. Math.*, **32(4)** (2006), 279-282.

Feng Qi

College of Mathematics and Information Science, Henan Normal University, Xinxiang City, Henan Province 453007, P. R. China E-mail: qifeng618@gmail.com qifeng618@hotmail.com qifeng618@qq.com

Bai-Ni Guo School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province 454010, P. R. China E-mail: bai.ni.guo@gmail.com