TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 4, pp. 1537-1542, August 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

CHARACTERIZATION OF GRAPHS WITH EQUAL DOMINATION NUMBERS AND INDEPENDENCE NUMBERS

Min-Jen Jou

Abstract. The domination number $\gamma(G)$ of a graph G is the minimum cardinality among all dominating sets of G, and the independence number $\alpha(G)$ of G is the maximum cardinality among all independent sets of G. For any graph G, it is easy to see that $\gamma(G) \leq \alpha(G)$. Jou [6] has characterized trees with equal domination numbers and independence numbers. In this paper, we extend the result and present a characterization of connected unicyclic graphs with equal domination numbers and independence numbers.

1. INTRODUCTION

All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, we refer to V(G) and E(G) as the vertex set and the edge set, respectively. The cardinality of V(G) is called the *order* of G, denoted by |G|. The (open) neighborhood $N_G(x)$ of a vertex x is the set of vertices adjacent to x in G, and the close neighborhood $N_G[x]$ is $N_G(x) \cup \{x\}$. For any subset $A \subseteq V(G)$, denote $N_G(A) = \bigcup_{x \in A} N_G(x)$ and $N_G[A] = \bigcup_{x \in A} N_G[x]$. The degree $deg_G(x)$ of a vertex x is the cardinality of $N_G(x)$. A vertex x is said to be a leaf if $deg_G(x) = 1$. Two distinct vertices u and v are called *duplicated* if $N_G(u) = N_G(v)$. The *n*-path is the graph P_n with vertex set $\{v_1, v_2, \cdots, v_n\}$ and edge set $\{v_1v_2, v_2v_3, \dots, v_{n-1}v_n\}$. The *n*-cycle is the graph C_n with vertex set $\{v_1, v_2, \dots, v_n\}$ and edge set $\{v_1v_2, v_2v_3, \dots, v_{n-1}v_n, v_nv_1\}$. The *induced* subgraph $\langle A \rangle_G$ induced by $A \subseteq V(G)$ is the graph with vertex set A and the edge set $E(\langle A \rangle_G) = \{uv \in E(G) : u \in A \text{ and } v \in A\}$. For a subset $A \subseteq V(G)$, the deletion of A from G is the graph G - A by removing all vertices in A and all edges incident to these vertices. A *forest* is a graph with no cycles, and a *tree* is a connected forest. Suppose that u and v are duplicated vertices in a tree, then they are both leaves. For notation and terminology in graphs we follow [1] in general.

Received May 15, 2008, accepted November 4, 2008.

Communicated by Hung-Lin Fu.

²⁰⁰⁰ Mathematics Subject Classification: 05C69.

Key words and phrases: Dominating set, Domination number, γ -set, Independent set, Independence number, α -set, Leaf, Support vertex, Tree.

Min-Jen Jou

If S and A are vertex subsets of a graph G, then the set S is said to dominate the set A if $A \subseteq N_G[S]$. A set $S \subseteq V(G)$ is a *dominating set* of G if $N_G[S] = V(G)$. The *domination number* $\gamma(G)$ of G is the minimum cardinality among all dominating sets of G. If S is a dominating set of G with cardinality $\gamma(G)$, we call S a γ -set of G. A set I of vertices in a graph G is an *independent set* of G if no two vertices of I are adjacent in G. The *independence number* $\alpha(G)$ of G is the maximum cardinality among all independent sets of G. If I is an independent set of G with cardinality $\alpha(G)$, we call I an α -set of G. For any graph G, it is easy to see that $\gamma(G) \leq \alpha(G)$.

For a graph G, let \widehat{G} be the graph with vertex set $V(\widehat{G}) = V(G) \cup \{\hat{v} : v \in V(G)\}$ and the edge set $E(\widehat{G}) = E(G) \cup \{v\hat{v} : v \in V(G)\}$. A unicyclic graph is a graph containing exactly one cycle. For two vertices u and v in a connected graph G, the distance $d_G(u, v)$ between u and v is the length of a shortest u-v path in G. Suppose that G is a connected unicyclic graph containing cycle C. If v is a vertex of G, then the distance between v and C is denoted by $d_G(v, C) = \min\{d_G(v, w) : w \in V(C)\}$. The tail of G is denoted by $tail(G) = \max\{d_G(x, C) : x \in V(G)\}$.

Over the past few years, several studies have been made on domination or independence [2-8]. Jou [6] has characterized trees with equal domination numbers and independence numbers.

Theorem 1. ([6]). If T is a tree of order $n \ge 2$, then $\gamma(T) = \alpha(T)$ if and only if $T = \hat{H}$ for some tree H of order n/2.

In this paper, our aim is to extend the result and present a characterization of connected unicyclic graphs with equal domination numbers and independence numbers.

2. PRELIMINARY

A vertex v of G is a support vertex if it is adjacent to a leaf in G. Let L(G) and U(G) denote the set of leaves and support vertices, respectively, of G. Let $A(G) = U(G) \cup L(G)$. If G is a connected unicyclic graph containing cycle C, we denote M(G) the set of the vertices lying on C with degree 2.

We first make some straightforward lemmas.

Lemma 1. ([7]). Let G be a connected graph of order $n \ge 3$. Then there exist an α -set I of G with $L(G) \subseteq I$ and a γ -set S of G with $U(G) \subseteq S$.

Lemma 2. Let G be a graph with components H_1, H_2, \dots, H_k . Then the following all hold.

- (1) $\alpha(G) = \sum_{i=1}^{k} \alpha(H_i)$ and $\gamma(G) = \sum_{i=1}^{k} \gamma(H_i)$.
- (2) $\alpha(G) = \gamma(G)$ if and only if $\alpha(H_i) = \gamma(H_i)$ for every *i*.

1538

Characterization of Graphs with Equal Domination Numbers and Independence Numbers 1539

(3) If G is a forest satisfying $\alpha(G) = \gamma(G)$, then $G = \widehat{H}$ for some forest H of order |G|/2.

Suppose that the leaves x_1, x_2, \dots, x_k are adjacent to y in G, where $k \ge 2$. Let $G' = G - \{y, x_1, x_2, \dots, x_k\}$. By Lemma 1, we have that $\alpha(G) \ge k + \alpha(G')$ and $\gamma(G) \le 1 + \gamma(G')$. Thus, $\gamma(G) \le 1 + \gamma(G') \le (k-1) + \alpha(G') \le \alpha(G) - 1$.

Lemma 3. If G is a connected graph of order $n \ge 3$ satisfying $\gamma(G) = \alpha(G)$, then G has no duplicated leaves and |L(G)| = |U(G)|.

Lemma 4. Suppose that G is a connected graph of order $n \ge 3$ satisfying $\alpha(G) = \gamma(G)$. Let $x \in L(G)$, and let $G' = G - N_G[x]$. Then we have that $\alpha(G') = \gamma(G')$ and $\alpha(G - A(G)) = \gamma(G - A(G))$.

Proof. By Lemma 1, we have that $\alpha(G) \ge 1 + \alpha(G')$ and $\gamma(G) \le 1 + \gamma(G')$. Hence, $\gamma(G) = \alpha(G) \ge 1 + \alpha(G') \ge 1 + \gamma(G') \ge \gamma(G)$, so all inequalities are equalities. Thus we obtain that $\alpha(G') = \gamma(G')$. Moreover, $\alpha(G - A(G)) = \gamma(G - A(G))$ by repeatedly using the result above.

Lemma 5. For $n \geq 3$, $\alpha(C_n) = \lfloor \frac{n}{2} \rfloor$ and $\gamma(C_n) = \lfloor \frac{n}{3} \rfloor$.

3. CHARACTERIZATION

Our aim in this section is to give a constructive characterization for the connected unicyclic graphs G satisfying $\alpha(G) = \gamma(G)$.

Theorem 2. If C_n is a cycle of order $n \ge 3$ satisfying $\alpha(C_n) = \gamma(C_n)$, then n = 3, 4, 5 or 7.

Theorem 3. Suppose that G is a connected unicyclic graph containing cycle C such that $\alpha(G) = \gamma(G)$. If there exists a leaf x having $d_G(x, C) = 1$, then $G = \hat{H}$ for some connected unicyclic graph H of order |G|/2.

Proof. Let $y \in N_G(x)$. So y is lying on C. By Lemma 4, the deletion $G' = G - N_G[x]$ is a forest of order n - 2 satisfying $\alpha(G') = \gamma(G')$, where n = |G|. By Lemma 2(3), the deletion $G' = \widehat{F}$ for some forest F of order $\frac{n}{2} - 1$. By Lemma 1, we have that $\alpha(G) = |L(G')| + 1 = |F| + 1$.

Suppose to the contrary that there exists a vertex $\hat{z} \in N_G(y)$, where $z \in V(F)$ and $z \notin L(G)$. Then z is a neighbor of some vertex $w \in V(F) \cup \{y\}$. Thus the set $\{y, w\}$ dominates the set $\{x, y, \hat{z}, z\}$, and $S = (V(F) - \{z\}) \cup \{y\}$ is a dominating set of G with cardinality |S| = |F|. Hence we have that $\alpha(G) = \gamma(G) \leq |S| =$ $|F| = \alpha(G) - 1$, this is a contradiction. So we obtain that $N_G(y) \subseteq V(F) \cup \{x\}$. Let $H = \langle V(F) \cup \{y\} \rangle_G$. Then we can see that $G = \hat{H}$ for some connected unicyclic graph H of order |G|/2. Min-Jen Jou

Fig. 1. The families g_1 , g_2 , g_3 and g_4 .

In order to characterization the connected unicyclic graphs G satisfying $\alpha(G) = \gamma(G)$, we introduce four families g_1, g_2, g_3 or g_4 of graphs (see Figure 1).

Theorem 4. Suppose G is a connected unicyclic graph containing cycle C such that $d_G(x, C) = 2$ for every leaf x of G. Then $\alpha(G) = \gamma(G)$ implies that $G \in g_1, g_2, g_3$ or g_4 .

Proof. By Lemma 3, we got that |L(G)| = |U(G)|. Let $W \subseteq V(C)$ dominate the set M(G) such that |W| is as small as possible. By Lemma 1, we have that $\alpha(G) = \alpha(C) + |L(G)|$ and $\gamma(G) = |W| + |U(G)|$. Thus we obtain that $\alpha(G) = \gamma(G) = |W| + |U(G)| \leq \gamma(C) + |U(G)| \leq \alpha(C) + |L(G)| = \alpha(G)$, so all inequalities are equalities. Thus we have that $|W| = \gamma(C) = \alpha(C)$. By Theorem 2, we got that $G_1 = G - A(G) = C_3, C_4, C_5$ or C_7 . Suppose that $G_1 = C_4$. Then we have that $\alpha(C_4) = \gamma(C_4) = 2$ and |W| = 1, this is a contradiction. Suppose that $G_1 = C_7$. Then we have that $\alpha(C_7) = \gamma(C_7) = 3$ and $|W| \leq 2$, this is a contradiction. Consequently, we obtain that $G_1 = C_3$.

Case 1. $G_1 = C_3$. Then $|W| = \gamma(C_3) = \alpha(C_3) = 1$. This implies that $G \in g_1$ or g_2 .

Case 2. $G_1 = C_5$. Then $|W| = \gamma(C_5) = \alpha(C_5) = 2$. By the hypothesis of W, we got that $|M(G)| \ge 3$, $\langle M(G) \rangle_G \ne 3P_1$ and $\langle M(G) \rangle_G \ne P_3$. So we obtain that $\langle M(G) \rangle_G = P_4$ or $P_2 \cup P_1$, it implies that $G \in g_3$ or g_4 . Let F be a forest, and let C be a cycle of order 3 or 5. For i = 1, 2, 3

Let F be a forest, and let C be a cycle of order 3 or 5. For i = 1, 2, 3and 4, $\tilde{g}(i, \hat{F})$ is the collection of the connected unicyclic graphs with vertex set $V(C) \cup V(\hat{F})$, which are obtained from C by attaching some vertices of F to the vertices of $M(g_i) = V(C) - M(g_i)$ (see Figure 2).

Theorem 5. Suppose G is a connected unicyclic graph of order n containing cycle C such that $d_G(x, C) \ge 2$ for every leaf $x \in L(G)$. Then $\alpha(G) = \gamma(G)$ if and only if $G \in \tilde{g}(i, \hat{F})$ for some forest F, where i = 1, 2, 3 or 4.

Fig. 2. The families $\tilde{g}(1, \hat{F})$, $\tilde{g}(2, \hat{F})$, $\tilde{g}(3, \hat{F})$, and $\tilde{g}(4, \hat{F})$.

Proof. First of all, we will prove the sufficiency. Suppose that $G \in \tilde{g}(i, \hat{F})$ for some forest F, where i = 1, 2, 3 or 4. Let $W \subseteq V(C)$ dominate the set M(G) such that |W| is as small as possible. Note that $|W| = \gamma(C) = \alpha(C)$. By Lemma 1, we have that $\alpha(G) = |F| + \alpha(C)$ and $\gamma(G) = |F| + |W| = |F| + \gamma(C)$. So we obtain that $\alpha(G) = |F| + \alpha(C) = |F| + \gamma(C) = \gamma(G)$.

We shall prove by induction on n that $\alpha(G) = \gamma(G)$ implies $G \in \widetilde{g}(i, \widehat{F})$ for some forest F, where i = 1, 2, 3 or 4. By Theorem 4, it's true if $d_G(x, C) = 2$ for every leaf x of G. So we assume that it's true for all n' < n. Suppose now $tail(G) \ge 3$. Let x_0 be a leaf adjacent to y in G such that $d_G(x_0, C) =$ $tail(G) \ge 3$. Note that |L(G)| = |U(G)|. Then we can see that $deg_G(y) = 2$, say $N_G(y) = \{x_0, z\}$. By Lemmas 4 and 3, the deletion $G' = G - N_G[x_0]$ is a connected unicyclic graph satisfying $\alpha(G') = \gamma(G')$ such that |L(G')| = |U(G')|. Suppose to the contrary that there exists a leaf $x_1 \in L(G')$ having $d_{G'}(x_1, C) = 1$. By Theorem 3, $G' = \widehat{H}$ for some connected unicyclic graph H of order $\frac{n}{2} - 1$. Let $w \in V(C)$ be a vertex such that $\hat{w} \neq z$. Then we can see that $\hat{w} \in L(G)$ and $d_G(\hat{w}, C) = d_G(\hat{w}, w) = 1$, contradicting our assumption that $d_G(x, C) \ge 2$ for every leaf $x \in L(G)$. Hence, we obtain that $d_{G'}(x', C) \ge 2$ for every leaf $x' \in L(G')$. By induction hypothesis, $G' \in \widetilde{g}(i, \widehat{F_1})$ for some forest F_1 , where i = 1, 2, 3 or 4.

Suppose to the contrary that $z \in L(\widehat{F}_1)$, say $z = \hat{v}$ for some $v \in V(F_1)$. Let u be another neighbor of v in G', where $u \in V(F_1) \cup \overline{M(g_i)}$. Then there exists a γ -set S' of G' containing both vertices v and u. Then $S = (S' - \{v\}) \cup \{y\}$ is a dominating set of G with cardinality $|S| = |S'| = \gamma(G') = \alpha(G') = \alpha(G) - 1 = \gamma(G) - 1$, this is a contradiction. So $N_G(y) \cap L(\widehat{F}_1) = \emptyset$, this implies that $z \in V(F_1) \cup \overline{M(g_i)}$ or

 $z \in M(g_i)$. Let $F = \langle F_1 \cup \{y\} \rangle$. We consider two cases.

Case 1. $z \in V(F_1) \cup \overline{M(g_i)}$. Then $G \in \widetilde{g}(i, \widehat{F})$ for some forest F, where i = 1, 2, 3 or 4.

Case 2. $z \in M(g_i)$. Since $\gamma(G') = \alpha(G') = \alpha(G) - 1 = \gamma(G) - 1$, we can see that $\gamma(M(G')) = \gamma(M(G))$. This implies that $G' \in \tilde{g}(1, \widehat{F_1})$ or $\tilde{g}(3, \widehat{F_1})$. Hence, $G \in \tilde{g}(2, \widehat{F})$ or $\tilde{g}(4, \widehat{F})$ for some forest F.

Theorem 6. Let G be a connected unicyclic graph of order $n \ge 3$. Then $\alpha(G) = \gamma(G)$ if and only if one of the following holds.

- (1) $G = C_n$ for n = 3, 4, 5 or 7.
- (2) $G = \hat{H}$ for some connected unicyclic graph H of order |G|/2.
- (3) $G \in \tilde{g}(i, \hat{F})$ for some forest F, where i = 1, 2, 3 or 4.

REFERENCES

- 1. J. A. Bondy, USR Murty, Graph Theory with Application, New York, 1976.
- 2. G. J. Chang and M. J. Jou, The number of maximal independent sets in connected triangle-free graphs, *Discrete Math.*, **197/198** (1999), 169-178.
- 3. O. Favaron, Least domination in a graph, Discrete Math., 150 (1996), 115-122.
- 4. M. J. Jou and G. J. Chang, The number of maximal independent sets in graphs, *Taiwanese J. Math.*, **4** (2000), 685-695.
- 5. M. J. Jou and G. J. Chang, Maximal independent sets in graphs with at most one cycle, *Discrete Appl. Math.*, **79** (1997), 67-73.
- 6. M. J. Jou, Dominating sets and independent sets in a tree, Ars Combinatoria, to appear.
- 7. M. J. Jou, Upper Domination Number and Domination Number in a tree, Ars Combinatoria, to appear.
- 8. X. Lv and J. Mao, Total domination and least domination in a tree, *Discrete Math.*, **265** (2003), 401-404.

Min-Jen Jou Department of Insurance, Ling Tung University, Taichung 40852, Taiwan E-mail: mjjou@mail.ltu.edu.tw