CHARACTERIZATION OF GRAPHS WITH EQUAL DOMINATION NUMBERS AND INDEPENDENCE NUMBERS

Min-Jen Jou

Abstract

The domination number $\gamma(G)$ of a graph G is the minimum cardinality among all dominating sets of G, and the independence number $\alpha(G)$ of G is the maximum cardinality among all independent sets of G. For any graph G, it is easy to see that $\gamma(G) \leq \alpha(G)$. Jou [6] has characterized trees with equal domination numbers and independence numbers. In this paper, we extend the result and present a characterization of connected unicyclic graphs with equal domination numbers and independence numbers.

1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, we refer to $V(G)$ and $E(G)$ as the vertex set and the edge set, respectively. The cardinality of $V(G)$ is called the order of G, denoted by $|G|$. The (open) neighborhood $N_{G}(x)$ of a vertex x is the set of vertices adjacent to x in G, and the close neighborhood $N_{G}[x]$ is $N_{G}(x) \cup\{x\}$. For any subset $A \subseteq V(G)$, denote $N_{G}(A)=\cup_{x \in A} N_{G}(x)$ and $N_{G}[A]=\cup_{x \in A} N_{G}[x]$. The degree $\operatorname{deg}_{G}(x)$ of a vertex x is the cardinality of $N_{G}(x)$. A vertex x is said to be a leaf if $\operatorname{deg}_{G}(x)=1$. Two distinct vertices u and v are called duplicated if $N_{G}(u)=N_{G}(v)$. The n-path is the graph P_{n} with vertex set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, \cdots, v_{n-1} v_{n}\right\}$. The n-cycle is the graph C_{n} with vertex set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, \cdots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$. The induced subgraph $\langle A\rangle_{G}$ induced by $A \subseteq V(G)$ is the graph with vertex set A and the edge set $E\left(\langle A\rangle_{G}\right)=\{u v \in E(G): u \in A$ and $v \in A\}$. For a subset $A \subseteq V(G)$, the deletion of A from G is the graph $G-A$ by removing all vertices in A and all edges incident to these vertices. A forest is a graph with no cycles, and a tree is a connected forest. Suppose that u and v are duplicated vertices in a tree, then they are both leaves. For notation and terminology in graphs we follow [1] in general.

[^0]If S and A are vertex subsets of a graph G, then the set S is said to dominate the set A if $A \subseteq N_{G}[S]$. A set $S \subseteq V(G)$ is a dominating set of G if $N_{G}[S]=V(G)$. The domination number $\gamma(G)$ of G is the minimum cardinality among all dominating sets of G. If S is a dominating set of G with cardinality $\gamma(G)$, we call S a γ-set of G. A set I of vertices in a graph G is an independent set of G if no two vertices of I are adjacent in G. The independence number $\alpha(G)$ of G is the maximum cardinality among all independent sets of G. If I is an independent set of G with cardinality $\alpha(G)$, we call I an α-set of G. For any graph G, it is easy to see that $\gamma(G) \leq \alpha(G)$.

For a graph G, let \widehat{G} be the graph with vertex set $V(\widehat{G})=V(G) \cup\{\hat{v}: v \in$ $V(G)\}$ and the edge set $E(\widehat{G})=E(G) \cup\{v \hat{v}: v \in V(G)\}$. A unicyclic graph is a graph containing exactly one cycle. For two vertices u and v in a connected graph G, the distance $d_{G}(u, v)$ between u and v is the length of a shortest $u-v$ path in G. Suppose that G is a connected unicyclic graph containing cycle C. If v is a vertex of G, then the distance between v and C is denoted by $d_{G}(v, C)=\min \left\{d_{G}(v, w)\right.$: $w \in V(C)\}$. The tail of G is denoted by $\operatorname{tail}(G)=\max \left\{d_{G}(x, C): x \in V(G)\right\}$.

Over the past few years, several studies have been made on domination or independence [2-8]. Jou [6] has characterized trees with equal domination numbers and independence numbers.

Theorem 1. ([6]). If T is a tree of order $n \geq 2$, then $\gamma(T)=\alpha(T)$ if and only if $T=\widehat{H}$ for some tree H of order $n / 2$.

In this paper, our aim is to extend the result and present a characterization of connected unicyclic graphs with equal domination numbers and independence numbers.

2. Preliminary

A vertex v of G is a support vertex if it is adjacent to a leaf in G. Let $L(G)$ and $U(G)$ denote the set of leaves and support vertices, respectively, of G. Let $A(G)=U(G) \cup L(G)$. If G is a connected unicyclic graph containing cycle C, we denote $M(G)$ the set of the vertices lying on C with degree 2 .

We first make some straightforward lemmas.
Lemma 1. ([7]). Let G be a connected graph of order $n \geq 3$. Then there exist an α-set I of G with $L(G) \subseteq I$ and a γ-set S of G with $U(G) \subseteq S$.

Lemma 2. Let G be a graph with components $H_{1}, H_{2}, \cdots, H_{k}$. Then the following all hold.
(1) $\alpha(G)=\sum_{i=1}^{k} \alpha\left(H_{i}\right)$ and $\gamma(G)=\sum_{i=1}^{k} \gamma\left(H_{i}\right)$.
(2) $\alpha(G)=\gamma(G)$ if and only if $\alpha\left(H_{i}\right)=\gamma\left(H_{i}\right)$ for every i.
(3) If G is a forest satisfying $\alpha(G)=\gamma(G)$, then $G=\widehat{H}$ for some forest H of order $|G| / 2$.
Suppose that the leaves $x_{1}, x_{2}, \cdots, x_{k}$ are adjacent to y in G, where $k \geq 2$. Let $G^{\prime}=G-\left\{y, x_{1}, x_{2}, \cdots, x_{k}\right\}$. By Lemma 1, we have that $\alpha(G) \geq k+\alpha\left(G^{\prime}\right)$ and $\gamma(G) \leq 1+\gamma\left(G^{\prime}\right)$. Thus, $\gamma(G) \leq 1+\gamma\left(G^{\prime}\right) \leq(k-1)+\alpha\left(G^{\prime}\right) \leq \alpha(G)-1$.

Lemma 3. If G is a connected graph of order $n \geq 3$ satisfying $\gamma(G)=\alpha(G)$, then G has no duplicated leaves and $|L(G)|=|U(G)|$.

Lemma 4. Suppose that G is a connected graph of order $n \geq 3$ satisfying $\alpha(G)=\gamma(G)$. Let $x \in L(G)$, and let $G^{\prime}=G-N_{G}[x]$. Then we have that $\alpha\left(G^{\prime}\right)=\gamma\left(G^{\prime}\right)$ and $\alpha(G-A(G))=\gamma(G-A(G))$.

Proof. By Lemma 1, we have that $\alpha(G) \geq 1+\alpha\left(G^{\prime}\right)$ and $\gamma(G) \leq 1+\gamma\left(G^{\prime}\right)$. Hence, $\gamma(G)=\alpha(G) \geq 1+\alpha\left(G^{\prime}\right) \geq 1+\gamma\left(G^{\prime}\right) \geq \gamma(G)$, so all inequalities are equalities. Thus we obtain that $\alpha\left(G^{\prime}\right)=\gamma\left(G^{\prime}\right)$. Moreover, $\alpha(G-A(G))=$ $\gamma(G-A(G))$ by repeatedly using the result above.

Lemma 5. For $n \geq 3, \alpha\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and $\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.

3. Characterization

Our aim in this section is to give a constructive characterization for the connected unicyclic graphs G satisfying $\alpha(G)=\gamma(G)$.

Theorem 2. If C_{n} is a cycle of order $n \geq 3$ satisfying $\alpha\left(C_{n}\right)=\gamma\left(C_{n}\right)$, then $n=3,4,5$ or 7 .

Theorem 3. Suppose that G is a connected unicyclic graph containing cycle C such that $\alpha(G)=\gamma(G)$. If there exists a leaf x having $d_{G}(x, C)=1$, then $G=\widehat{H}$ for some connected unicyclic graph H of order $|G| / 2$.

Proof. Let $y \in N_{G}(x)$. So y is lying on C. By Lemma 4, the deletion $G^{\prime}=G-N_{G}[x]$ is a forest of order $n-2$ satisfying $\alpha\left(G^{\prime}\right)=\gamma\left(G^{\prime}\right)$, where $n=|G|$. By Lemma 2(3), the deletion $G^{\prime}=\widehat{F}$ for some forest F of order $\frac{n}{2}-1$. By Lemma 1, we have that $\alpha(G)=\left|L\left(G^{\prime}\right)\right|+1=|F|+1$.

Suppose to the contrary that there exists a vertex $\hat{z} \in N_{G}(y)$, where $z \in V(F)$ and $z \notin L(G)$. Then z is a neighbor of some vertex $w \in V(F) \cup\{y\}$. Thus the set $\{y, w\}$ dominates the set $\{x, y, \hat{z}, z\}$, and $S=(V(F)-\{z\}) \cup\{y\}$ is a dominating set of G with cardinality $|S|=|F|$. Hence we have that $\alpha(G)=\gamma(G) \leq|S|=$ $|F|=\alpha(G)-1$, this is a contradiction. So we obtain that $N_{G}(y) \subseteq V(F) \cup\{x\}$. Let $H=\langle V(F) \cup\{y\}\rangle_{G}$. Then we can see that $G=\widehat{H}$ for some connected unicyclic graph H of order $|G| / 2$.

Fig. 1. The families g_{1}, g_{2}, g_{3} and g_{4}.

In order to characterization the connected unicyclic graphs G satisfying $\alpha(G)=$ $\gamma(G)$, we introduce four families g_{1}, g_{2}, g_{3} or g_{4} of graphs (see Figure 1).

Theorem 4. Suppose G is a connected unicyclic graph containing cycle C such that $d_{G}(x, C)=2$ for every leaf x of G. Then $\alpha(G)=\gamma(G)$ implies that $G \in g_{1}, g_{2}, g_{3}$ or g_{4}.

Proof. By Lemma 3, we got that $|L(G)|=|U(G)|$. Let $W \subseteq V(C)$ dominate the set $M(G)$ such that $|W|$ is as small as possible. By Lemma 1, we have that $\alpha(G)=\alpha(C)+|L(G)|$ and $\gamma(G)=|W|+|U(G)|$. Thus we obtain that $\alpha(G)=\gamma(G)=|W|+|U(G)| \leq \gamma(C)+|U(G)| \leq \alpha(C)+|L(G)|=\alpha(G)$, so all inequalities are equalities. Thus we have that $|W|=\gamma(C)=\alpha(C)$. By Theorem 2, we got that $G_{1}=G-A(G)=C_{3}, C_{4}, C_{5}$ or C_{7}. Suppose that $G_{1}=C_{4}$. Then we have that $\alpha\left(C_{4}\right)=\gamma\left(C_{4}\right)=2$ and $|W|=1$, this is a contradiction. Suppose that $G_{1}=C_{7}$. Then we have that $\alpha\left(C_{7}\right)=\gamma\left(C_{7}\right)=3$ and $|W| \leq 2$, this is a contradiction. Consequently, we obtain that $G_{1}=C_{3}$ or C_{5}.

Case 1. $G_{1}=C_{3}$. Then $|W|=\gamma\left(C_{3}\right)=\alpha\left(C_{3}\right)=1$. This implies that $G \in g_{1}$ or g_{2}.

Case 2. $\quad G_{1}=C_{5}$. Then $|W|=\gamma\left(C_{5}\right)=\alpha\left(C_{5}\right)=2$. By the hypothesis of W, we got that $|M(G)| \geq 3,\langle M(G)\rangle_{G} \neq 3 P_{1}$ and $\langle M(G)\rangle_{G} \neq P_{3}$. So we obtain that $\langle M(G)\rangle_{G}=P_{4}$ or $P_{2} \cup P_{1}$, it implies that $G \in g_{3}$ or g_{4}.

Let F be a forest, and let C be a cycle of order 3 or 5 . For $i=1,2,3$ and $4, \widetilde{g}(i, \widehat{F})$ is the collection of the connected unicyclic graphs with vertex set $V(C) \cup V(\widehat{F})$, which are obtained from C by attaching some vertices of F to the vertices of $\overline{M\left(g_{i}\right)}=V(C)-M\left(g_{i}\right)$ (see Figure 2).

Theorem 5. Suppose G is a connected unicyclic graph of order n containing cycle C such that $d_{G}(x, C) \geq 2$ for every leaf $x \in L(G)$. Then $\alpha(G)=\gamma(G)$ if and only if $G \in \widetilde{g}(i, \widehat{F})$ for some forest F, where $i=1,2,3$ or 4 .

Fig. 2. The families $\widetilde{g}(1, \widehat{F}), \widetilde{g}(2, \widehat{F}), \widetilde{g}(3, \widehat{F})$, and $\widetilde{g}(4, \widehat{F})$.
Proof. First of all, we will prove the sufficiency. Suppose that $G \in \widetilde{g}(i, \widehat{F})$ for some forest F, where $i=1,2,3$ or 4 . Let $W \subseteq V(C)$ dominate the set $M(G)$ such that $|W|$ is as small as possible. Note that $|W|=\gamma(C)=\alpha(C)$. By Lemma 1, we have that $\alpha(G)=|F|+\alpha(C)$ and $\gamma(G)=|F|+|W|=|F|+\gamma(C)$. So we obtain that $\alpha(G)=|F|+\alpha(C)=|F|+\gamma(C)=\gamma(G)$.

We shall prove by induction on n that $\alpha(G)=\gamma(G)$ implies $G \in \widetilde{g}(i, \widehat{F})$ for some forest F, where $i=1,2,3$ or 4 . By Theorem 4 , it's true if $d_{G}(x, C)=2$ for every leaf x of G. So we assume that it's true for all $n^{\prime}<n$. Suppose now $\operatorname{tail}(G) \geq 3$. Let x_{0} be a leaf adjacent to y in G such that $d_{G}\left(x_{0}, C\right)=$ $\operatorname{tail}(G) \geq 3$. Note that $|L(G)|=|U(G)|$. Then we can see that $\operatorname{deg}_{G}(y)=2$, say $N_{G}(y)=\left\{x_{0}, z\right\}$. By Lemmas 4 and 3, the deletion $G^{\prime}=G-N_{G}\left[x_{0}\right]$ is a connected unicyclic graph satisfying $\alpha\left(G^{\prime}\right)=\gamma\left(G^{\prime}\right)$ such that $\left|L\left(G^{\prime}\right)\right|=\left|U\left(G^{\prime}\right)\right|$. Suppose to the contrary that there exists a leaf $x_{1} \in L\left(G^{\prime}\right)$ having $d_{G^{\prime}}\left(x_{1}, C\right)=1$. By Theorem 3, $G^{\prime}=\widehat{H}$ for some connected unicyclic graph H of order $\frac{n}{2}-1$. Let $w \in V(C)$ be a vertex such that $\hat{w} \neq z$. Then we can see that $\hat{w} \in L(G)$ and $d_{G}(\hat{w}, C)=d_{G}(\hat{w}, w)=1$, contradicting our assumption that $d_{G}(x, C) \geq 2$ for every leaf $x \in L(G)$. Hence, we obtain that $d_{G^{\prime}}\left(x^{\prime}, C\right) \geq 2$ for every leaf $x^{\prime} \in L\left(G^{\prime}\right)$. By induction hypothesis, $G^{\prime} \in \widetilde{g}\left(i, \widehat{F_{1}}\right)$ for some forest F_{1}, where $i=1,2,3$ or 4 .

Suppose to the contrary that $z \in L\left(\widehat{F}_{1}\right)$, say $z=\hat{v}$ for some $v \in V\left(F_{1}\right)$. Let u be another neighbor of v in G^{\prime}, where $u \in V\left(F_{1}\right) \cup \overline{M\left(g_{i}\right)}$. Then there exists a γ-set S^{\prime} of G^{\prime} containing both vertices v and u. Then $S=\left(S^{\prime}-\{v\}\right) \cup\{y\}$ is a dominating set of G with cardinality $|S|=\left|S^{\prime}\right|=\gamma\left(G^{\prime}\right)=\alpha\left(G^{\prime}\right)=\alpha(G)-1=\gamma(G)-1$, this is a contradiction. So $N_{G}(y) \cap L\left(\widehat{F}_{1}\right)=\emptyset$, this implies that $z \in V\left(F_{1}\right) \cup \overline{M\left(g_{i}\right)}$ or
$z \in M\left(g_{i}\right)$. Let $F=\left\langle F_{1} \cup\{y\}\right\rangle$. We consider two cases.
Case 1. $z \in V\left(F_{1}\right) \cup \overline{M\left(g_{i}\right)}$. Then $G \in \widetilde{g}(i, \widehat{F})$ for some forest F, where $i=1,2,3$ or 4 .

Case 2. $z \in M\left(g_{i}\right)$. Since $\gamma\left(G^{\prime}\right)=\alpha\left(G^{\prime}\right)=\alpha(G)-1=\gamma(G)-1$, we can see that $\gamma\left(M\left(G^{\prime}\right)\right)=\gamma(M(G))$. This implies that $G^{\prime} \in \widetilde{g}\left(1, \widehat{F_{1}}\right)$ or $\widetilde{g}\left(3, \widehat{F_{1}}\right)$. Hence, $G \in \widetilde{g}(2, \widehat{F})$ or $\widetilde{g}(4, \widehat{F})$ for some forest F.

Theorem 6. Let G be a connected unicyclic graph of order $n \geq 3$. Then $\alpha(G)=\gamma(G)$ if and only if one of the following holds.
(1) $G=C_{n}$ for $n=3,4,5$ or 7 .
(2) $G=\widehat{H}$ for some connected unicyclic graph H of order $|G| / 2$.
(3) $G \in \widetilde{g}(i, \widehat{F})$ for some forest F, where $i=1,2,3$ or 4 .

References

1. J. A. Bondy, USR Murty, Graph Theory with Application, New York, 1976.
2. G. J. Chang and M. J. Jou, The number of maximal independent sets in connected triangle-free graphs, Discrete Math., 197/198 (1999), 169-178.
3. O. Favaron, Least domination in a graph, Discrete Math., 150 (1996), 115-122.
4. M. J. Jou and G. J. Chang, The number of maximal independent sets in graphs, Taiwanese J. Math., 4 (2000), 685-695.
5. M. J. Jou and G. J. Chang, Maximal independent sets in graphs with at most one cycle, Discrete Appl. Math., 79 (1997), 67-73.
6. M. J. Jou, Dominating sets and independent sets in a tree, Ars Combinatoria, to appear.
7. M. J. Jou, Upper Domination Number and Domination Number in a tree, Ars Combinatoria, to appear.
8. X. Lv and J. Mao, Total domination and least domination in a tree, Discrete Math., 265 (2003), 401-404.

Min-Jen Jou
Department of Insurance,
Ling Tung University,
Taichung 40852,
Taiwan
E-mail: mjjou@mail.ltu.edu.tw

[^0]: Received May 15, 2008, accepted November 4, 2008.
 Communicated by Hung-Lin Fu.
 2000 Mathematics Subject Classification: 05C69.
 Key words and phrases: Dominating set, Domination number, γ-set, Independent set, Independence number, α-set, Leaf, Support vertex, Tree.

