CLASSIFICATION OF RULED SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

Miekyung Choi, Young Ho Kim* and Dae Won Yoon
Dedicated to Professor Bang-yen Chen on the occasion of his $65^{\text {th }}$ birthday.

Abstract

Ruled surfaces with the Gauss map satisfying a partial differential equation which is similar to an eigenvalue problem in a 3-dimensional Euclidean space are studied. Such a Gauss map is said to be of pointwise 1-type, namely, the Gauss map G satisfies $\Delta G=f(G+C)$, where Δ is the Laplacian operator, f is a non-zero function and C is a constant vector. As a result, such ruled surfaces are completely determined by the function f and the vector C when their Gauss map is of pointwise 1-type. New examples of ruled surfaces called cylinders of an infinite type and rotational ruled surfaces are introduced in this regard.

1. Introduction

In the late 1970's B.-Y. Chen introduced the notion of finite type immersion. Essentially submanifolds of finite type immersed into an m-dimensional Euclidean space \mathbb{E}^{m} are constructed in terms of finitely many \mathbb{E}^{m}-valued eigenfunctions of their Laplacian. Minimal submanifolds of a Euclidean space or minimal submanifolds of a sphere are of the simplest finite type, i.e. 1-type, which are akin to eigenvalue problems with regard to the immersion. Many results on this subject have been collected in the book ([3]) and the motivations and problems were introduced in a survey paper [4]. The notion of finite type immersion is naturally extended to smooth functions on submanifolds of Euclidean space or pseudo-Euclidean space. The most natural one of them is the Gauss map of the submanifold. In particular, if the submanifold is a hypersurface, the Gauss map can be identified with the unit normal vector field to it.

[^0]In this area, B.-Y. Chen and P. Piccini ([7]) studied submanifolds of Euclidean space with finite type Gauss map and classified compact surfaces with 1-type Gauss map, that is, $\Delta G=\lambda(G+C)$, where Δ is the Laplacian of M, G the Gauss map, C a constant vector and $\lambda \in \mathbb{R}$. Several geometers also studied submanifolds of Euclidean spaces or pseudo-Euclidean spaces with finite type Gauss map ([1, 5, 8, 9-11], etc.).

However, there are some submanifolds satisfying $\Delta G=f(G+C)$ for some smooth function f and a constant vector C. For example, an ordinary helicoid is, up to rigid motion, parameterized by

$$
x(t, \theta)=(t \cos \theta, t \sin \theta, h \theta), \quad h \neq 0
$$

with respect to a surface patch (t, θ). Then the Gauss map is given by

$$
G=\frac{1}{\sqrt{h^{2}+t^{2}}}(h \sin \theta,-h \cos \theta, t)
$$

and the Laplacian ΔG of the Gauss map G is obtained as

$$
\Delta G=\frac{2 h^{2}}{\left(h^{2}+t^{2}\right)^{2}} G
$$

The right cone C_{a} which is parameterized by

$$
x(u, v)=(v \cos u, v \sin u, a v), \quad a \geq 0
$$

has the Gauss map G equal to

$$
G=\frac{1}{\sqrt{1+a^{2}}}(a \cos u, a \sin u,-1)
$$

Then, its Laplacian ΔG satisfies

$$
\Delta G=\frac{1}{v^{2}}\left(G+\left(0,0, \frac{1}{\sqrt{1+a^{2}}}\right)\right)
$$

Based on this view, we raise the following question:
Problem. Classify all submanifolds M in an m-dimensional Euclidean space \mathbb{E}^{m} satisfying the condition

$$
\begin{equation*}
\Delta G=f(G+C) \tag{1.1}
\end{equation*}
$$

for some non-zero smooth function f and some constant vector C. In this case, we have to determine the submanifold M of \mathbb{E}^{m}, the function f and the constant vector C as well.

A submanifold M in \mathbb{E}^{m} is said to have pointwise l-type Gauss map if it satisfies (1.1). In particular, if C is zero, it is said to be of the first kind. Otherwise, it is said to be of the second kind ([5]).

In the present paper, we completely classify ruled surfaces in a 3-dimensional Euclidean space with pointwise 1-type Gauss map of the first kind and the second kind. If f is not constant, it is said to be proper. So, a non-proper pointwise 1-type Gauss map is of just an ordinary 1-type.

Throughout this paper, we assume that all the geometric objects are smooth and all surfaces are connected unless otherwise mentioned.
bigskip

2. Preliminaries

Let M be a surface of a 3-dimensional Euclidean space \mathbb{E}^{3}. The map $G: M \rightarrow$ $S^{2} \subset \mathbb{E}^{3}$ which sends each point of M to the unit normal vector to M at the point is called the Gauss map of the surface M, where S^{2} is the unit sphere in \mathbb{E}^{3} centered at the origin. For the matrix $\tilde{g}=\left(\tilde{g}_{i j}\right)$ consisting of the components of the metric on M, we denote by $\tilde{g}^{-1}=\left(\tilde{g}^{i j}\right)$ (resp. \mathcal{G}) the inverse matrix (resp. the determinant) of the matrix $\left(\tilde{g}_{i j}\right)$. The Laplacian Δ on M is, in turn, given by

$$
\begin{equation*}
\Delta=-\frac{1}{\sqrt{\mathcal{G}}} \sum_{i, j} \frac{\partial}{\partial x^{i}}\left(\sqrt{\mathcal{G}} \tilde{g}^{i j} \frac{\partial}{\partial x^{j}}\right) \tag{2.1}
\end{equation*}
$$

Considering the results of [5], [8], [11] concerning mean curvature, we have
Lemma 2.1. Let M be a surface in a 3-dimensional Euclidean space \mathbb{E}^{3}. Then, the mean curvature H is constant if and only if the Gauss map G is of pointwise 1-type of the first kind.

In particular, if the surface M is a ruled surface, the first and the second named author ([8]) proved the following theorem :

Theorem 2.2. ([8]). A ruled surface in \mathbb{E}^{3} with pointwise 1-type Gauss map of the first kind is an open portion of either a circular cylinder or a helicoid.

Thus, we have immediately
Corollary 2.3. The helicoid is the only ruled surface in \mathbb{E}^{3} with proper pointwise 1-type Gauss map of the first kind.

3. Main Theorems

In this section, we will classify the ruled surfaces in terms of pointwise 1-type Gauss map. More precisely, we focus on the ruled surfaces in \mathbb{E}^{3} with proper pointwise 1-type Gauss map of the second kind.

Let M be a cylindrical ruled surface in a 3-dimensional Euclidean space \mathbb{E}^{3}. Then, M is expressed by

$$
x(s, t)=\alpha(s)+t \beta
$$

where $\alpha(s)=\left(\alpha_{1}(s), \alpha_{2}(s), 0\right)$ is a plane curve parameterized by arc-length s and β is a constant vector, namely $\beta=(0,0,1)$. In this case, the Gauss map G of M is given by $G=\alpha^{\prime} \times \beta=\left(\alpha_{2}^{\prime},-\alpha_{1}^{\prime}, 0\right)$ and the Laplacian ΔG of G by $\Delta G=\left(-\alpha_{2}^{\prime \prime \prime}, \alpha_{1}^{\prime \prime \prime}, 0\right)$, where the prime denotes the derivative with respect to s.

Suppose that the surface M has pointwise 1-type Gauss map of the second kind. Then, from the equation (1.1) we have the following system of differential equations

$$
\begin{align*}
-\alpha_{2}^{\prime \prime \prime} & =f \alpha_{2}^{\prime}+f c_{1} \\
\alpha_{1}^{\prime \prime \prime} & =-f \alpha_{1}^{\prime}+f c_{2} \tag{3.1}
\end{align*}
$$

where $C=\left(c_{1}, c_{2}, 0\right)$. On the other hand, the curve $\alpha(s)$ is of unit speed, that is, $\left(\alpha_{1}^{\prime}\right)^{2}+\left(\alpha_{2}^{\prime}\right)^{2}=1$. So we may put

$$
\alpha_{1}^{\prime}(s)=\cos \theta(s), \quad \alpha_{2}^{\prime}(s)=\sin \theta(s)
$$

for a smooth function $\theta=\theta(s)$. So, it enables equation (3.1) to be rewritten in the form

$$
\begin{align*}
& \left(\theta^{\prime}\right)^{2} \sin \theta-\theta^{\prime \prime} \cos \theta=f \sin \theta+f c_{1} \\
& \left(\theta^{\prime}\right)^{2} \cos \theta+\theta^{\prime \prime} \sin \theta=f \cos \theta-f c_{2} \tag{3.2}
\end{align*}
$$

which give

$$
\begin{equation*}
\left(\theta^{\prime}\right)^{2}=f\left(1+c_{1} \sin \theta-c_{2} \cos \theta\right) \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\theta^{\prime \prime}=-f\left(c_{1} \cos \theta+c_{2} \sin \theta\right) \tag{3.4}
\end{equation*}
$$

If $\theta^{\prime} \equiv 0$, the Gauss map G is a constant vector. In this case, M is a part of a plane and $\Delta G=0$. Therefore, if we choose $C=-G$, we can take an arbitrary non-zero smooth function f making (1.1) hold.

Suppose $\theta^{\prime} \neq 0$. Taking the derivative of (3.3) and using (3.3) and (3.4) we obtain

$$
\begin{equation*}
\theta^{\prime}=c \sqrt[3]{f} \tag{3.5}
\end{equation*}
$$

for some non-zero constant c. By the composition of trigonometric function, (3.3) and (3.4) we find the differential equation

$$
\begin{equation*}
\left(\frac{1}{f}\left(\theta^{\prime}\right)^{2}-1\right)^{2}+\left(\frac{1}{f} \theta^{\prime \prime}\right)^{2}=c_{1}^{2}+c_{2}^{2} \tag{3.6}
\end{equation*}
$$

which implies with the help of (3.5)

$$
\begin{equation*}
\left(c^{2} f^{-\frac{1}{3}}-1\right)^{2}+\left(-\frac{1}{2} c\left(f^{-\frac{2}{3}}\right)^{\prime}\right)^{2}=c_{1}^{2}+c_{2}^{2} \tag{3.7}
\end{equation*}
$$

Putting $y=f^{-\frac{1}{3}}$, the equation (3.7) becomes

$$
\begin{equation*}
\left(c^{2} y-1\right)^{2}+\frac{1}{4} c^{2}\left(\left(y^{2}\right)^{\prime}\right)^{2}=c_{1}^{2}+c_{2}^{2} \tag{3.8}
\end{equation*}
$$

The solution of the differential equation is given by

$$
\begin{equation*}
\sin ^{-1}\left(\frac{c^{2} f^{-\frac{1}{3}}-1}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\right)-\sqrt{c_{1}^{2}+c_{2}^{2}-\left(c^{2} f^{-\frac{1}{3}}-1\right)^{2}}= \pm c^{3}(s+k), \tag{3.9}
\end{equation*}
$$

where k is the constant of integration.

Definition 3.1. A cylindrical ruled surface M over an infinite type base curve α is called a cylinder of an infinite type.

Thus, we have
Proposition 3.1. Let M be a cylindrical ruled surface in a 3-dimensional Euclidean space \mathbb{E}^{3}. If the Gauss map G is of pointwise 1-type of the second kind, the non-zero smooth function f satisfies the equation (3.9).

Combining (3.4) and the result of [8], we obtain
Theorem 3.2. Let M be a cylindrical ruled surface in a 3-dimensional Euclidean space \mathbb{E}^{3}. If the Gauss map G is of pointwise l-type of the first kind, then θ^{\prime} is a constant, that is, the curvature of the base curve is a constant. Furthermore, the surface M is an open part of a circular cylinder.

On the other hand, it is well-known that the plane curves of finite type are of 1-type, that is, they are part of straight lines or circles (See [6]). Viewing this fact, we have

Theorem 3.3. Let M be a cylindrical ruled surface in a 3-dimensional Euclidean space \mathbb{E}^{3}. Then, the Gauss map G is of pointwise 1-type of the second kind if and only if M is an open part of a plane or a cylinder of an infinite type satisfying (3.9).

Now, we consider a reparametrization of a given non-cylindrical ruled surface for our convenience of consideration.

Proposition 3.4. Let M be a non-cylindrical ruled surface with parametrization

$$
x_{1}(s, t)=\alpha_{1}(s)+t \beta(s)
$$

where α_{1} is a base curve and β a director vector field satisfying $\left\langle\alpha_{1}^{\prime}, \beta\right\rangle=$ $0,\langle\beta, \beta\rangle=1$ and $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=1$. Then, there exists a reparametrization

$$
x(s, t)=\alpha(s)+t \beta(s)
$$

for M with the base curve α and the director vector β satisfying $\left\langle\alpha^{\prime}, \beta\right\rangle=$ $0,\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle=0,\langle\beta, \beta\rangle=1$ and $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=1$. Proof. For a base curve α_{1} which is a regular curve and a director vector field β parameterized by arc-length s, suppose a parametrization $x_{1}(s, t)=\alpha_{1}(s)+t \beta(s)$ of M with $\left\langle\alpha_{1}^{\prime}, \beta\right\rangle=0,\langle\beta, \beta\rangle=1$ and $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=1$ is given. For such a base curve α_{1} and a director vector β, define a curve α by $\alpha(s)=y_{1}(s) \alpha_{1}(s)+y_{2}(s) \beta(s)$, where y_{1} and y_{2} are the solutions satisfying a system of ordinary differential equations

$$
\begin{aligned}
& f_{1}(s) y_{1}^{\prime}(s)+y_{2}^{\prime}(s)=0 \\
& f_{2}(s) y_{1}(s)+f_{3}(s) y_{1}^{\prime}(s)+y_{2}(s)=0
\end{aligned}
$$

with a proper initial condition $y_{1}(0)=\left(y_{1}\right)_{0}, y_{2}(0)=\left(y_{2}\right)_{0}$, where $f_{1}(s)=$ $\left\langle\alpha_{1}(s), \beta(s)\right\rangle, f_{2}(s)=\left\langle\alpha_{1}^{\prime}(s), \beta^{\prime}(s)\right\rangle$ and $f_{3}(s)=\left\langle\alpha_{1}(s), \beta^{\prime}(s)\right\rangle$. Then, we easily see α and β satisfy $\left\langle\alpha^{\prime}, \beta\right\rangle=0,\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle=0,\langle\beta, \beta\rangle=1$ and $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=1$.

Next, we consider a non-cylindrical ruled surface in a 3-dimensional Euclidean space \mathbb{E}^{3} with pointwise 1-type Gauss map.

Let M be a non-cylindrical ruled surface in \mathbb{E}^{3}. As is given by Proposition 3.4, M is parameterized by a base curve α and a director vector field β, up to rigid motion,

$$
x(s, t)=\alpha(s)+t \beta(s)
$$

such that $\left\langle\alpha^{\prime}, \beta\right\rangle=0,\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle=0,\langle\beta, \beta\rangle=1$ and $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=1$. Then, we have the natural frame $\left\{x_{s}, x_{t}\right\}$ given by $x_{s}=\alpha^{\prime}+t \beta^{\prime}$ and $x_{t}=\beta$. From this setting, we have an orthonormal frame $\left\{\beta, \beta^{\prime}, \beta \times \beta^{\prime}\right\}$. For later use, we define the smooth functions q, Q and R as follows :

$$
q=\left\langle x_{s}, x_{s}\right\rangle, \quad Q=\left\langle\alpha^{\prime}, \beta \times \beta^{\prime}\right\rangle, \quad R=\left\langle\beta^{\prime \prime}, \beta \times \beta^{\prime}\right\rangle .
$$

In terms of the orthonormal frame $\left\{\beta, \beta^{\prime}, \beta \times \beta^{\prime}\right\}$ we obtain

$$
\begin{align*}
& \alpha^{\prime}=Q \beta \times \beta^{\prime}, \\
& \beta^{\prime \prime}=-\beta+R \beta \times \beta^{\prime}, \tag{3.10}\\
& \alpha^{\prime} \times \beta=Q \beta^{\prime} \\
& \beta \times \beta^{\prime \prime}=-R \beta^{\prime},
\end{align*}
$$

from which, the Gauss map G of M is obtained by

$$
G=\left(\frac{1}{\left\|x_{s} \times x_{t}\right\|}\right) x_{s} \times x_{t}=q^{-1 / 2}\left(Q \beta^{\prime}-t \beta \times \beta^{\prime}\right)
$$

and the smooth function q is given by

$$
q=t^{2}+Q^{2} .
$$

Denote by H the mean curvature of M. Using (2.1) for the Laplacian operator Δ and the well known equation $\Delta x=-2 H$, the mean curvature H of M is obtained as follows:

$$
\begin{equation*}
H=\frac{1}{2} q^{-3 / 2}\left(-R t^{2}-Q^{\prime} t-Q^{2} R\right) . \tag{3.11}
\end{equation*}
$$

Furthermore, the following formula for the Laplacian of the Gauss map of M in \mathbb{E}^{3} is easily obtained by applying the Gauss formula and the Weingarten formula:

$$
\begin{equation*}
\Delta G=2 \operatorname{grad} H+\left(\operatorname{tr} A^{2}\right) G \tag{3.12}
\end{equation*}
$$

where A denotes the shape operator of the surface M. From (3.11)

$$
\begin{align*}
2 \operatorname{grad} H & =2 e_{1}(H) e_{1}+2 e_{2}(H) e_{2} \\
& =\frac{1}{2} q^{-3} A_{1} e_{1}+q^{-5 / 2} B_{1} e_{2} \tag{3.13}\\
& =\frac{1}{2} q^{-7 / 2}\left(2 q B_{1} \beta+t A_{1} \beta^{\prime}+Q A_{1} \beta \times \beta^{\prime}\right),
\end{align*}
$$

where $e_{1}=\frac{x_{s}}{\left\|x_{s}\right\|}, e_{2}=\frac{x_{t}}{\left\|x_{t}\right\|}$,

$$
\begin{aligned}
A_{1}= & -2 R^{\prime} t^{4}-2 Q^{\prime \prime} t^{3}+\left(2 Q Q^{\prime} R-4 Q^{2} R^{\prime}\right) t^{2} \\
& +\left(6 Q\left(Q^{\prime}\right)^{2}-2 Q^{2} Q^{\prime \prime}\right) t+\left(2 Q^{3} Q^{\prime} R-2 Q^{4} R^{\prime}\right) \quad \text { and } \\
B_{1}= & R t^{3}+2 Q^{\prime} t^{2}+Q^{2} R t-Q^{2} Q^{\prime}
\end{aligned}
$$

Furthermore, we have

$$
\operatorname{tr} A^{2}=q^{-3} D_{1}
$$

where

$$
D_{1}=R^{2} t^{4}+2 Q^{\prime} R t^{3}+\left(2 Q^{2} R^{2}+{Q^{\prime 2}}^{2}+2 Q^{2}\right) t^{2}+2 Q^{2} Q^{\prime} R t+Q^{4} R^{2}+2 Q^{4} .
$$

Thus, from (1.1) and (3.12) we have

$$
\begin{align*}
& \frac{1}{2} q^{-7 / 2}\left(2 q B_{1} \beta+t A_{1} \beta^{\prime}+Q A_{1} \beta \times \beta^{\prime}\right)+q^{-7 / 2} D_{1}\left(Q \beta^{\prime}-t \beta \times \beta^{\prime}\right) \tag{3.14}\\
= & q^{-1 / 2} f\left(Q \beta^{\prime}-t \beta \times \beta^{\prime}\right)+f C .
\end{align*}
$$

If we take the inner products on the equation (3.14) with β, β^{\prime} and $\beta \times \beta^{\prime}$, respectively, then we have

$$
\begin{equation*}
\langle C, \beta\rangle f=q^{-5 / 2} B_{1} \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\left(\left\langle C, \beta^{\prime}\right\rangle+q^{-1 / 2} Q\right) f=\frac{1}{2} q^{-7 / 2} t A_{1}+q^{-7 / 2} Q D_{1} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\left\langle C, \beta \times \beta^{\prime}\right\rangle-q^{-1 / 2} t\right) f=\frac{1}{2} q^{-7 / 2} Q A_{1}-q^{-7 / 2} t D_{1} \tag{3.17}
\end{equation*}
$$

respectively. From (3.15) and (3.16) we have

$$
\begin{equation*}
4 q Q^{2} B_{1}^{2}=\left(2 q B_{1} \mu-\lambda t A_{1}-2 \lambda D_{1} Q\right)^{2} \tag{3.18}
\end{equation*}
$$

and from (3.15) and (3.17)

$$
\begin{equation*}
4 q t^{2} B_{1}^{2}=\left(\lambda Q A_{1}-2 \lambda t D_{1}-2 \nu q B_{1}\right)^{2} \tag{3.19}
\end{equation*}
$$

where we put $\lambda=\langle C, \beta\rangle, \mu=\left\langle C, \beta^{\prime}\right\rangle$ and $\nu=\left\langle C, \beta \times \beta^{\prime}\right\rangle$. Also, combining (3.16) and (3.17), we obtain

$$
\begin{equation*}
\left(Q^{2} A_{1}+t^{2} A_{1}\right)^{2}=q\left(\nu t A_{1}+2 \nu D_{1} Q-\mu Q A_{1}+2 \mu t D_{1}\right)^{2} \tag{3.20}
\end{equation*}
$$

Differentiating the constant vector $C=\lambda \beta+\mu \beta^{\prime}+\nu \beta \times \beta^{\prime}$ with respect to the parameter s, we have

$$
\left(\nu^{\prime}+\mu R\right) \beta \times \beta^{\prime}=0
$$

because of the last equation of (3.10), from which,

$$
\begin{equation*}
\nu^{\prime}+\mu R=0 \tag{3.21}
\end{equation*}
$$

From the definition of μ, we have

$$
\begin{equation*}
\mu^{\prime}=-\lambda+R \nu \tag{3.22}
\end{equation*}
$$

If we look at (3.18), it is a polynomial in t with functions of s as the coefficients. Thus, the leading coefficient must be zero, i.e.,

$$
\begin{equation*}
\mu R+\lambda R^{\prime}=0 \tag{3.23}
\end{equation*}
$$

from which,

$$
\begin{equation*}
R \lambda=k \tag{3.24}
\end{equation*}
$$

for some constant k. Consider an open subset $\mathbf{U}=\{p \in M \mid R(p) \neq 0\}$. Suppose $\mathbf{U} \neq \phi$. From (3.19), we have

$$
\begin{equation*}
R^{2}=\left(\lambda R^{2}+\nu R\right)^{2} . \tag{3.25}
\end{equation*}
$$

On \mathbf{U}, (3.25) gives ν is constant on a component \mathbf{U}_{o} of \mathbf{U}. From (3.21), we see that $\mu=0$ on \mathbf{U}_{o}. Thus, (3.22) and (3.24) imply that λ is constant on \mathbf{U}_{o} and so is R on \mathbf{U}_{o}. By continuity and connectedness of M, R is a non-zero constant on M. Using (3.25), we see that ν is constant on M. By means of (3.24), λ is also a constant on M. (3.21) with the help of $\nu=$ constant implies $\mu=0$ and $\lambda=R \nu$.

In this case, if we consider the coefficients of polynomials in t of (3.18) and (3.20), we have

$$
\begin{align*}
Q^{2} R^{2} & =\lambda^{2}\left(R^{2} Q-Q^{\prime \prime}\right)^{2}, \tag{3.26}\\
Q^{\prime \prime 2} & =\nu^{2}\left(R^{2} Q-Q^{\prime \prime}\right)^{2}, \tag{3.27}
\end{align*}
$$

which are respectively derived from the coefficients of t^{8} in(3.18) and t^{10} in (3.20). From these two equations, we have

$$
Q^{\prime \prime}= \pm Q
$$

from which, we get

$$
Q(s)=\tilde{A} \cosh s+\tilde{B} \sinh s \quad \text { or } \quad Q(s)=\tilde{C} \cos s+\tilde{D} \sin s
$$

for some constants $\tilde{A}, \tilde{B}, \tilde{C}$ and \tilde{D}. Under an appropriate initial condition and rigid motion, we may assume that

$$
\begin{equation*}
Q(s)=\cosh s \quad \text { or } \quad Q(s)=\cos s \tag{3.28}
\end{equation*}
$$

On the other hand, from the second equation of (3.10), we have

$$
\begin{equation*}
\beta^{\prime \prime \prime}(s)+a^{2} \beta^{\prime}(s)=0, \tag{3.29}
\end{equation*}
$$

where $a=\sqrt{R^{2}+1}$. Under an initial condition $\beta(0)=(1,0,0), \beta^{\prime}(0)=(0,1,0)$, $\beta^{\prime \prime}(0)=(-1,0, R)$, we have a unique solution of (3.29) as follows

$$
\begin{equation*}
\beta(s)=\left(1-\frac{1}{a^{2}}+\frac{1}{a^{2}} \cos a s, \frac{1}{a} \sin a s, \frac{R}{a^{2}}-\frac{R}{a^{2}} \cos a s\right) . \tag{3.30}
\end{equation*}
$$

Using (3.10) and (3.30), we get, up to rigid motion,

$$
\begin{align*}
\alpha(s) & =\left(\frac{R}{a^{2}} \sinh s-\frac{R}{a^{2}\left(a^{2}+1\right)}(\sinh s \cos a s+a \cosh s \sin a s)+d_{1},\right. \\
& -\frac{R}{a\left(a^{2}+1\right)}(\sinh s \sin a s-a \cosh s \cos a s)+d_{2}, \tag{3.31}\\
& \left.\frac{1}{a^{2}} \sinh s+\frac{R^{2}}{a^{2}\left(a^{2}+1\right)}(\sinh s \cos a s+a \cosh s \sin a s)+d_{3}\right)
\end{align*}
$$

if $Q(s)=\cosh s$, or,

$$
\begin{align*}
\alpha(s) & =\left(\frac{R}{a^{2}} \sin s-\frac{R}{2 a^{2}}\left\{\frac{1}{a+1} \sin (a+1) s+\frac{1}{a-1} \sin (a-1) s\right\}+k_{1},\right. \\
& \frac{R}{2 a}\left\{\frac{1}{a+1} \cos (a+1) s+\frac{1}{a-1} \cos (a-1) s\right\}+k_{2} \tag{3.32}\\
& \left.\frac{1}{a^{2}} \sin s+\frac{R^{2}}{2 a^{2}}\left\{\frac{1}{a+1} \sin (a+1) s+\frac{1}{a-1} \sin (a-1) s\right\}+k_{3}\right),
\end{align*}
$$

if $Q(s)=\cos s$, where d_{i} and $k_{i}(i=1,2,3)$ are some constants.
Therefore, the ruled surface M is given by

$$
x(s, t)=\alpha(s)+t \beta(s)
$$

where α and β are obtained by (3.30) and (3.31) or (3.32).

Definition 3.2. A non-cylindrical ruled surface M generated by (3.30) and (3.31) is called a rotational ruled surface of the first kind and that generated by (3.30) and (3.32) a rotational ruled surface of the second kind.

Next, we consider the case of $R=0$. If we compute the leading coefficient and the constant term with respect to t in (3.19) with $R=0$, we have respectively

$$
Q^{\prime 2}-\nu^{2} Q^{\prime 2}=0 \quad \text { and } \quad \nu^{2} Q^{8} Q^{\prime 2}=0
$$

From these two equations with the property of non-vanishing Q, we see that Q is a nonzero constant. Therefore, the mean curvature H vanishes on M, that is, M is minimal. It contradicts the hypothesis that the Gauss map is of pointwise 1-type of the second kind. Thus, the case of $R=0$ can never occur. Consequently, we conclude

Proposition 3.5. Let M be a non-cylindrical ruled surface in \mathbb{E}^{3} with pointwise l-type Gauss map of the second kind. Then, M is a part of a rotational ruled surface of the first kind or the second kind.

Combining Theorem 3.3, Proposition 3.5 and [8], we have a complete classification :

Theorem 3.6. Let M be a ruled surface in \mathbb{E}^{3}. Then, M has pointwise 1-type Gauss map if and only if it is a part of a plane, a circular cylinder, a helicoid, a cylinder of an infinite type satisfying (3.9), or a rotational ruled surface of the first kind or the second kind.

Fig. 3.1. A rotational ruled surface of the first kind with $a=2$.

Fig. 3.2. A rotational ruled surface of the second kind with $a=2$.

Acknowledgments

The authors would like to express their deep appreciation to the referee for the valuable suggestions to improve the paper.

References

1. C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J., 34 (1992), 355-359.
2. C. Baikoussis, B.-Y. Chen and L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math., 16 (1993), 341-348.
3. B.-Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific Publ., New Jersey, 1984.
4. B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117-337.
5. B.-Y. Chen, M. Choi and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42 (2005), 447-455.
6. B.-Y. Chen, F. Dillen and L. Verstraelen, Finite type space curves, Soochow J. Math., 12 (1986), 1-10.
7. B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35 (1987), 161-186.
8. M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38 (2001), 753-761.
9. Y. H. Kim and D. W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math., 26 (2000), 85-96.
10. Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys., 34 (2000), 191-205.
11. Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math., 35 (2005), 1555-1581.

Miekyung Choi
Department of Mathematics,
Kyungpook National University,
Taegu 702-701,
South Korea
E-mail: mkchoi@knu.ac.kr
Young Ho Kim
Department of Mathematics, Teachers' College,
Kyungpook National University,
Taegu 702-701,
South Korea
E-mail: yhkim@knu.ac.kr
Dae Won Yoon
Department of Mathematics Education and RINS,
Gyeongsang National University,
Jinju 660-701,
South Korea
E-mail: dwyoon@gnu.ac.kr

[^0]: Received March 24, 2008, accepted August 14, 2008.
 Communicated by Bang-Yen Chen.
 2000 Mathematics Subject Classification: 53B25, 53C40.
 Key words and phrases: Ruled surface, Gauss map, Pointwise 1-type, Cylinder of an infinite type, Rotational ruled surface.
 *supported by Kyungpook National University Research Fund, 2007.

