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CLASSIFICATION OF RULED SURFACES WITH POINTWISE
1-TYPE GAUSS MAP
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Dedicated to Professor Bang-yen Chen on the occasion of his 65th birthday.

Abstract. Ruled surfaces with the Gauss map satisfying a partial differen-
tial equation which is similar to an eigenvalue problem in a 3-dimensional
Euclidean space are studied. Such a Gauss map is said to be of pointwise
1-type, namely, the Gauss map G satisfies ∆G = f(G + C), where ∆ is the
Laplacian operator, f is a non-zero function and C is a constant vector. As
a result, such ruled surfaces are completely determined by the function f and
the vector C when their Gauss map is of pointwise 1-type. New examples of
ruled surfaces called cylinders of an infinite type and rotational ruled surfaces
are introduced in this regard.

1. INTRODUCTION

In the late 1970’s B.-Y. Chen introduced the notion of finite type immersion.
Essentially submanifolds of finite type immersed into an m-dimensional Euclidean
space E

m are constructed in terms of finitely many E
m-valued eigenfunctions of their

Laplacian. Minimal submanifolds of a Euclidean space or minimal submanifolds
of a sphere are of the simplest finite type, i.e. 1-type, which are akin to eigenvalue
problems with regard to the immersion. Many results on this subject have been
collected in the book ([3]) and the motivations and problems were introduced in
a survey paper [4]. The notion of finite type immersion is naturally extended to
smooth functions on submanifolds of Euclidean space or pseudo-Euclidean space.
The most natural one of them is the Gauss map of the submanifold. In particular,
if the submanifold is a hypersurface, the Gauss map can be identified with the unit
normal vector field to it.
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In this area, B.-Y. Chen and P. Piccini ([7]) studied submanifolds of Euclidean
space with finite type Gauss map and classified compact surfaces with 1-type Gauss
map, that is, ∆G = λ(G + C), where ∆ is the Laplacian of M , G the Gauss map,
C a constant vector and λ ∈ R. Several geometers also studied submanifolds of
Euclidean spaces or pseudo-Euclidean spaces with finite type Gauss map ([1, 5, 8,
9-11], etc.).

However, there are some submanifolds satisfying ∆G = f(G + C) for some
smooth function f and a constant vector C. For example, an ordinary helicoid is,
up to rigid motion, parameterized by

x(t, θ) = (t cos θ, t sin θ, hθ), h �= 0

with respect to a surface patch (t, θ). Then the Gauss map is given by

G =
1√

h2 + t2
(h sin θ,−h cos θ, t)

and the Laplacian ∆G of the Gauss map G is obtained as

∆G =
2h2

(h2 + t2)2
G.

The right cone Ca which is parameterized by

x(u, v) = (v cos u, v sin u, av), a ≥ 0

has the Gauss map G equal to

G =
1√

1 + a2
(a cosu, a sinu,−1).

Then, its Laplacian ∆G satisfies

∆G =
1
v2

(
G +

(
0, 0,

1√
1 + a2

))
.

Based on this view, we raise the following question:

Problem. Classify all submanifolds M in an m-dimensional Euclidean space
E

m satisfying the condition

(1.1) ∆G = f(G + C)

for some non-zero smooth function f and some constant vector C. In this case,
we have to determine the submanifold M of E

m, the function f and the constant
vector C as well.
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A submanifold M in E
m is said to have pointwise 1-type Gauss map if it

satisfies (1.1). In particular, if C is zero, it is said to be of the first kind. Otherwise,
it is said to be of the second kind ([5]).

In the present paper, we completely classify ruled surfaces in a 3-dimensional
Euclidean space with pointwise 1-type Gauss map of the first kind and the second
kind. If f is not constant, it is said to be proper. So, a non-proper pointwise 1-type
Gauss map is of just an ordinary 1-type.

Throughout this paper, we assume that all the geometric objects are smooth and
all surfaces are connected unless otherwise mentioned.

bigskip

2. PRELIMINARIES

Let M be a surface of a 3-dimensional Euclidean space E
3. The map G : M →

S2 ⊂ E
3 which sends each point of M to the unit normal vector to M at the point is

called the Gauss map of the surface M, where S 2 is the unit sphere in E
3 centered

at the origin. For the matrix g̃ = (g̃ij) consisting of the components of the metric on
M , we denote by g̃−1 = (g̃ij) (resp. G ) the inverse matrix (resp. the determinant)
of the matrix (g̃ij). The Laplacian ∆ on M is, in turn, given by

(2.1) ∆ = − 1√G
∑
i,j

∂

∂xi

(√G g̃ij ∂

∂xj

)
.

Considering the results of [5], [8], [11] concerning mean curvature, we have

Lemma 2.1. Let M be a surface in a 3-dimensional Euclidean space E
3. Then,

the mean curvature H is constant if and only if the Gauss map G is of pointwise
1-type of the first kind.

In particular, if the surface M is a ruled surface, the first and the second named
author ([8]) proved the following theorem :

Theorem 2.2. ([8]). A ruled surface in E
3 with pointwise 1-type Gauss map

of the first kind is an open portion of either a circular cylinder or a helicoid.

Thus, we have immediately

Corollary 2.3. The helicoid is the only ruled surface in E
3 with proper pointwise

1-type Gauss map of the first kind.

3. MAIN THEOREMS

In this section, we will classify the ruled surfaces in terms of pointwise 1-type
Gauss map. More precisely, we focus on the ruled surfaces in E

3 with proper
pointwise 1-type Gauss map of the second kind.
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Let M be a cylindrical ruled surface in a 3-dimensional Euclidean space E
3.

Then, M is expressed by
x(s, t) = α(s) + tβ

where α(s) = (α1(s), α2(s), 0) is a plane curve parameterized by arc-length s

and β is a constant vector, namely β = (0, 0, 1). In this case, the Gauss map G
of M is given by G = α′ × β = (α′

2,−α′
1, 0) and the Laplacian ∆G of G by

∆G = (−α
′′′
2 , α

′′′
1 , 0), where the prime denotes the derivative with respect to s.

Suppose that the surface M has pointwise 1-type Gauss map of the second kind.
Then, from the equation (1.1) we have the following system of differential equations

(3.1)
−α

′′′
2 = fα′

2 + fc1

α
′′′
1 = −fα′

1 + fc2

where C = (c1, c2, 0). On the other hand, the curve α(s) is of unit speed, that is,
(α′

1)
2 + (α′

2)
2 = 1. So we may put

α′
1(s) = cos θ(s), α′

2(s) = sin θ(s)

for a smooth function θ = θ(s). So, it enables equation (3.1) to be rewritten in the
form

(3.2)
(θ′)2 sin θ − θ′′ cos θ = f sin θ + fc1,

(θ′)2 cos θ + θ′′ sin θ = f cos θ − fc2,

which give

(3.3) (θ′)2 = f(1 + c1 sin θ − c2 cos θ),

(3.4) θ′′ = −f(c1 cos θ + c2 sin θ).

If θ′ ≡ 0, the Gauss map G is a constant vector. In this case, M is a part of
a plane and ∆G = 0. Therefore, if we choose C = −G, we can take an arbitrary
non-zero smooth function f making (1.1) hold.

Suppose θ′ �= 0. Taking the derivative of (3.3) and using (3.3) and (3.4) we
obtain

(3.5) θ′ = c 3
√

f

for some non-zero constant c. By the composition of trigonometric function, (3.3)
and (3.4) we find the differential equation

(3.6)
(

1
f

(θ′)2 − 1
)2

+
(

1
f

θ′′
)2

= c2
1 + c2

2,
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which implies with the help of (3.5)

(3.7)
(
c2f− 1

3 − 1
)2

+
(
−1

2
c
(
f− 2

3

)′)2

= c2
1 + c2

2.

Putting y = f− 1
3 , the equation (3.7) becomes

(3.8) (c2y − 1)2 +
1
4
c2
(
(y2)′

)2 = c2
1 + c2

2.

The solution of the differential equation is given by

(3.9) sin−1

(
c2f− 1

3 − 1√
c2
1 + c2

2

)
−
√

c2
1 + c2

2 −
(
c2f− 1

3 − 1
)2

= ±c3(s + k),

where k is the constant of integration.

Definition 3.1. A cylindrical ruled surface M over an infinite type base curve
α is called a cylinder of an infinite type.

Thus, we have

Proposition 3.1. Let M be a cylindrical ruled surface in a 3-dimensional
Euclidean space E

3. If the Gauss map G is of pointwise 1-type of the second kind,
the non-zero smooth function f satisfies the equation (3.9).

Combining (3.4) and the result of [8], we obtain

Theorem 3.2. Let M be a cylindrical ruled surface in a 3-dimensional Eu-
clidean space E

3. If the Gauss map G is of pointwise 1-type of the first kind, then
θ′ is a constant, that is, the curvature of the base curve is a constant. Furthermore,
the surface M is an open part of a circular cylinder.

On the other hand, it is well-known that the plane curves of finite type are of
1-type, that is, they are part of straight lines or circles (See [ 6 ]). Viewing this
fact, we have

Theorem 3.3. Let M be a cylindrical ruled surface in a 3-dimensional Eu-
clidean space E

3. Then, the Gauss map G is of pointwise 1-type of the second
kind if and only if M is an open part of a plane or a cylinder of an infinite type
satisfying (3.9).

Now, we consider a reparametrization of a given non-cylindrical ruled surface
for our convenience of consideration.
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Proposition 3.4. Let M be a non-cylindrical ruled surface with parametriza-
tion

x1(s, t) = α1(s) + tβ(s)

where α1 is a base curve and β a director vector field satisfying 〈α ′
1, β〉 =

0, 〈β, β〉 = 1 and 〈β ′, β′〉 = 1. Then, there exists a reparametrization

x(s, t) = α(s) + tβ(s)

for M with the base curve α and the director vector β satisfying 〈α ′, β〉 =
0, 〈α′, β′〉 = 0, 〈β, β〉 = 1 and 〈β ′, β′〉 = 1. Proof. For a base curve α1 which is

a regular curve and a director vector field β parameterized by arc-length s, suppose
a parametrization x1(s, t) = α1(s) + tβ(s) of M with 〈α′

1, β〉 = 0, 〈β, β〉 = 1 and
〈β′, β′〉 = 1 is given. For such a base curve α1 and a director vector β, define
a curve α by α(s) = y1(s)α1(s) + y2(s)β(s), where y1 and y2 are the solutions
satisfying a system of ordinary differential equations

f1(s)y′1(s) + y′2(s) = 0,

f2(s)y1(s) + f3(s)y′1(s) + y2(s) = 0

with a proper initial condition y1(0) = (y1)0, y2(0) = (y2)0, where f1(s) =
〈α1(s), β(s)〉, f2(s) = 〈α′

1(s), β
′(s)〉 and f3(s) = 〈α1(s), β′(s)〉. Then, we easily

see α and β satisfy 〈α′, β〉 = 0, 〈α′, β′〉 = 0, 〈β, β〉 = 1 and 〈β′, β′〉 = 1.

Next, we consider a non-cylindrical ruled surface in a 3-dimensional Euclidean
space E

3 with pointwise 1-type Gauss map.

Let M be a non-cylindrical ruled surface in E
3. As is given by Proposition 3.4,

M is parameterized by a base curve α and a director vector field β, up to rigid
motion,

x(s, t) = α(s) + tβ(s)

such that 〈α′, β〉 = 0, 〈α′, β′〉 = 0, 〈β, β〉 = 1 and 〈β′, β′〉 = 1. Then, we have
the natural frame {xs, xt} given by xs = α′ + tβ′ and xt = β. From this setting,
we have an orthonormal frame {β, β′, β × β′}. For later use, we define the smooth
functions q, Q and R as follows :

q = 〈xs, xs〉, Q = 〈α′, β × β′〉, R = 〈β′′, β × β′〉.
In terms of the orthonormal frame {β, β′, β × β′} we obtain

(3.10)

α′ = Qβ × β′,

β′′ = −β + Rβ × β′,

α′ × β = Qβ′

β × β′′ = −Rβ′,
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from which, the Gauss map G of M is obtained by

G =
(

1
||xs × xt||

)
xs × xt = q−1/2(Qβ′ − tβ × β′)

and the smooth function q is given by

q = t2 + Q2.

Denote by H the mean curvature of M . Using (2.1) for the Laplacian operator ∆
and the well known equation ∆x = −2H , the mean curvature H of M is obtained
as follows:

(3.11) H =
1
2
q−3/2(−Rt2 − Q′t − Q2R).

Furthermore, the following formula for the Laplacian of the Gauss map of M in E
3

is easily obtained by applying the Gauss formula and the Weingarten formula:

(3.12) ∆G = 2gradH + (trA2)G,

where A denotes the shape operator of the surface M . From (3.11)

(3.13)

2gradH = 2e1(H)e1 + 2e2(H)e2

=
1
2
q−3A1e1 + q−5/2B1e2

=
1
2
q−7/2(2qB1β + tA1β

′ + QA1β × β′),

where e1 = xs
||xs|| , e2 = xt

||xt|| ,

A1 = − 2R′t4 − 2Q′′t3 + (2QQ′R − 4Q2R′)t2

+ (6Q(Q′)2 − 2Q2Q′′)t + (2Q3Q′R − 2Q4R′) and

B1 =Rt3 + 2Q′t2 + Q2Rt − Q2Q′.

Furthermore, we have
trA2 = q−3D1,

where

D1 = R2t4 + 2Q′Rt3 + (2Q2R2 + Q′2 + 2Q2)t2 + 2Q2Q′Rt + Q4R2 + 2Q4.

Thus, from (1.1) and (3.12) we have

(3.14)
1
2
q−7/2(2qB1β + tA1β

′ + QA1β × β′) + q−7/2D1(Qβ′ − tβ × β′)

= q−1/2f(Qβ′ − tβ × β′) + fC.
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If we take the inner products on the equation (3.14) with β, β ′ and β × β′, respec-
tively, then we have

(3.15) 〈C, β〉f = q−5/2B1,

(3.16) (〈C, β′〉 + q−1/2Q)f =
1
2
q−7/2tA1 + q−7/2QD1

and

(3.17) (〈C, β × β′〉 − q−1/2t)f =
1
2
q−7/2QA1 − q−7/2tD1,

respectively. From (3.15) and (3.16) we have

(3.18) 4qQ2B2
1 = (2qB1µ − λtA1 − 2λD1Q)2

and from (3.15) and (3.17)

(3.19) 4qt2B2
1 = (λQA1 − 2λtD1 − 2νqB1)

2 ,

where we put λ = 〈C, β〉, µ = 〈C, β′〉 and ν = 〈C, β×β′〉. Also, combining (3.16)
and (3.17), we obtain

(3.20)
(
Q2A1 + t2A1

)2 = q (νtA1 + 2νD1Q − µQA1 + 2µtD1)
2 .

Differentiating the constant vector C = λβ + µβ′ + νβ × β′ with respect to the
parameter s, we have

(ν′ + µR)β × β′ = 0

because of the last equation of (3.10), from which,

(3.21) ν′ + µR = 0.

From the definition of µ, we have

(3.22) µ′ = −λ + Rν.

If we look at (3.18), it is a polynomial in t with functions of s as the coefficients.
Thus, the leading coefficient must be zero, i.e.,

(3.23) µR + λR′ = 0,

from which,

(3.24) Rλ = k



Classification of Ruled Surfaces 1305

for some constant k. Consider an open subset U = {p ∈ M |R(p) �= 0}. Suppose
U �= φ. From (3.19), we have

(3.25) R2 = (λR2 + νR)2.

On U, (3.25) gives ν is constant on a component Uo of U. From (3.21), we see
that µ = 0 on Uo. Thus, (3.22) and (3.24) imply that λ is constant on Uo and so
is R on Uo. By continuity and connectedness of M , R is a non-zero constant on
M . Using (3.25), we see that ν is constant on M . By means of (3.24), λ is also a
constant on M . (3.21) with the help of ν = constant implies µ = 0 and λ = Rν.

In this case, if we consider the coefficients of polynomials in t of (3.18) and
(3.20), we have

(3.26) Q2R2 = λ2(R2Q − Q′′)2,

(3.27) Q′′2 = ν2(R2Q − Q′′)2,

which are respectively derived from the coefficients of t8 in(3.18) and t10 in (3.20).
From these two equations, we have

Q′′ = ±Q,

from which, we get

Q(s) = Ã cosh s + B̃ sinh s or Q(s) = C̃ cos s + D̃ sin s

for some constants Ã, B̃, C̃ and D̃. Under an appropriate initial condition and rigid
motion, we may assume that

(3.28) Q(s) = cosh s or Q(s) = cos s.

On the other hand, from the second equation of (3.10), we have

(3.29) β′′′(s) + a2β′(s) = 0,

where a =
√

R2 + 1. Under an initial condition β(0) = (1, 0, 0), β ′(0) = (0, 1, 0),
β′′(0) = (−1, 0, R), we have a unique solution of (3.29) as follows

(3.30) β(s) = (1 − 1
a2

+
1
a2

cosas,
1
a

sinas,
R

a2
− R

a2
cosas).

Using (3.10) and (3.30), we get, up to rigid motion,

(3.31)

α(s) =
(

R

a2
sinh s − R

a2(a2 + 1)
(sinh s cos as + a cosh s sinas) + d1,

− R

a(a2 + 1)
(sinh s sinas − a cosh s cos as) + d2,

1
a2

sinh s +
R2

a2(a2 + 1)
(sinh s cosas + a cosh s sin as) + d3

)
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if Q(s) = cosh s, or,

(3.32)

α(s) =
(

R

a2
sin s − R

2a2
{ 1
a + 1

sin(a + 1)s +
1

a − 1
sin(a − 1)s} + k1,

R

2a
{ 1
a + 1

cos(a + 1)s +
1

a − 1
cos(a − 1)s} + k2,

1
a2

sin s +
R2

2a2
{ 1
a + 1

sin(a + 1)s +
1

a − 1
sin(a − 1)s}+ k3

)
,

if Q(s) = cos s, where di and ki ( i = 1, 2, 3) are some constants.
Therefore, the ruled surface M is given by

x(s, t) = α(s) + tβ(s),

where α and β are obtained by (3.30) and (3.31) or (3.32).

Definition 3.2. A non-cylindrical ruled surface M generated by (3.30) and
(3.31) is called a rotational ruled surface of the first kind and that generated by
(3.30) and (3.32) a rotational ruled surface of the second kind.

Next, we consider the case of R = 0. If we compute the leading coefficient and
the constant term with respect to t in (3.19) with R = 0, we have respectively

Q′2 − ν2Q′2 = 0 and ν2Q8Q′2 = 0.

From these two equations with the property of non-vanishing Q, we see that Q is
a nonzero constant. Therefore, the mean curvature H vanishes on M , that is, M

is minimal. It contradicts the hypothesis that the Gauss map is of pointwise 1-type
of the second kind. Thus, the case of R = 0 can never occur. Consequently, we
conclude

Proposition 3.5. Let M be a non-cylindrical ruled surface in E
3 with point-

wise 1-type Gauss map of the second kind. Then, M is a part of a rotational ruled
surface of the first kind or the second kind.

Combining Theorem 3.3, Proposition 3.5 and [8], we have a complete classifi-
cation :

Theorem 3.6. Let M be a ruled surface in E
3. Then, M has pointwise 1-type

Gauss map if and only if it is a part of a plane, a circular cylinder, a helicoid, a
cylinder of an infinite type satisfying (3.9), or a rotational ruled surface of the first
kind or the second kind.
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Fig. 3.1. A rotational ruled surface of the first kind with a = 2.

Fig. 3.2. A rotational ruled surface of the second kind with a = 2.
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