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Abstract. Let A be the generator of a nondegenerate local a-times in-
tegrated C-cosine function C(-) on a Banach space X for some o« > 0,
fe L} (0,Ty),X)NnC((0,Tp), X), and =,y € X. We first show that the
abstract Cauchy problem : ACP(A,Cf,Cx,Cy) u"(t) = Au(t) + Cf(t),
u(0) = Cz and v/ (0) = Cvy, has a strong solution is equivalent to the function
v(-) = C()r+joxC()y+joxCx* f(-) € C*TL([0,Tp), X) and D*Ho(.) €
C((0,Tp), X), and then use it to prove some new existence and approxima-
tion theorems concerning strong solutions of AC'P(A, Cz+j,—1%Cg, Cx, Cy)
and mild solutions of ACP (A, Cx+j1Cy+j2Cz+ja-1%Cyg,0,0) (for a > 2)
in C2([0,Tp), X) when C(-) is locally Lipschitz continuous, and vectors z, y
and z satisfy some suitable regularity assumptions. Here 0 <7y < oo is fixed.

1. INTRODUCTION

Let X be a Banach space over F with norm || - ||, and let B(X') denote the family
of all bounded linear operators from X into itself. We consider the following second
order abstract Cauchy problem:

u//(t)
u(0)

Au(t) + f(t) for 0 < t < Ty,
x and u/(0) =y,

(1.1) ACP(A, f,x,y) {

where 0 < Ty < oo and z,y € X are given, A : D(A) € X — X is a closed
linear operator in X with domain D(A) and range R(A), and f is an X-valued
function defined on (0, 7). A function « : [0, Ty) — X is called a strong solution
of ACP(A, f,z,y)ifu € C?((0,Tp), X)NC([0, Tp), X)NC((0, Ty), [D(A)]) and
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satisfies ACP(A, f,z,y). Here [D(A)] denotes the Banach space D(A) equipped
with the graph norm |z|4 = ||z|/+]||Az||. For each >0 and C € B(X), a family
C()(={C(t)|0<t<Tp}) in B(X) is called a local a-times integrated C-cosine
function on X if

1.2) C(-) is strongly continuous, that is, for each z € X,
1.2
C(-)x : [0,Tp) — X is continuous,

(1.3) C(-)C =CC(), thatis,C(t)C = CC(t) on X for all 0 <t < Ty,

t+s t s
20(4)C(s)a = ﬁ{[/o —/0 —/0 [(t + 5 — 1) 1C(r) Cadr

t
+ (s —t +m)*rC(r)Cadr+

(1.4) =l

/ (t — s +7)*"1O(r)Cadr+
It

—s|
=l
/0 (1t — | + 7)°C(r)Cadr}

forallz € X and 0 < t,s,t+s < Ty (see [9]); or called a local (O-times integrated)
C-cosine function on X if it satisfies (1.2), (1.3), and

(1.5) 2C(t)C(s)x = C(t +5)Cx + C(Jt — s|)Cx

forall z € X and 0 < ¢,s,t + s < Ty (see [7]). Here I'(-) denotes the Gamma
function. Moreover, we say that C(-) is

(i) locally Lipschitz continuous, if for each 0 < ¢, < T} there exists a K;, > 0
such that

(1.6) IC(t + h) — C(t)]| < Kyyh forall 0 < t,h < t+h < to;

(if) nondegenerate, if = 0 whenever C(t)z = 0 for all 0 < t < Tp. In this
case, its (integral) generator A : D(A) C X — X is a closed linear operator
in X defined by D(A) = {x € X| there exists a y,, € X such that C(¢t)x —
F(i—il)(}’x = fot Jo C(r)yzdrds for 0 < t < Ty} and Az =y, forall 2 €
D(A).

In general, a local a-times integrated C-cosine function on X is also called
an a-times integrated C'-cosine function on X if T, = co (see [1,2,6-14,16,17]),
an a-times integrated C-cosine function may not be exponentially bounded (see
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[9]), and the generator of a local «-times integrated C'-cosine function may not be
densely defined (see [2, 16]). Moreover, a local a-times integrated C-cosine func-
tion is not necessarily extendable to the half line [0, co) except for C' = I the case
of cosine function(that is, C = I and Ty, = oo)(see [1,3,4]). Here I denotes the
identity operator on X. The concept of a-times integrated C'-cosine functions has
been extensively applied to discuss the existence of (strong, mild or weak) solutions
of ACP(A, f,z,y) when o« € N U {0}(see [3, 7, 12, 14, 16]) or C' = I(see [2,
4, 13] and their references). Some equivalence conditions between the existence
of an a-times integrated C-cosine function and the unique existence of (strong or
weak) solutions of ACP(A, f,z,y) are also discussed as in [9-11]. Several exam-
ples concerning a-times integrated cosine functions with densely defined generators
are given as in [2, 6, 17]. All consequences of this paper are motivated by the
aforementioned results as in [1, 6, 8, 12, 15] for which the concept of a-times inte-
garted C-semigroups is used to obtain some existence and approximation theorems
concerning (strong or mild) solutions of the following first order abstract Cauchy
problem:

u/(t) = Au(t) + f(t) for 0 <t < Tp,

(1.7) ACP(A, f,x) {
u(0) = .

In section 2, we first show that ACP(A,Cf,Cxz,Cy) has a unique strong
solution is equivalentto v(-) = C()z+jo* C()y+joxCx* f(-) € C*TL([0, Tp), X)
and D**ly(-) € C1((0,Tp), X) when A generates a nondegenerate local a-times
integrated C-cosine function C(-) on X for some a > 0, f € L} ([0,Tp), X) N

loc

C((0,Tp), X),and 2,y € X. Here jg(t) =t} /T(3+1) for 3 > —1 and ¢ > 0, and

1 fort=0
Jj-1(t) = In this case, u = D“v (the ath order derivative of v) on
0 fort+#0.

[0, Tp). Then, assuming C(-) is locally Lipschitz continuous, g € L} ([0, Tp), X)

loc

and z € X, we show that ACP(A,Cz + jo—1 * Cg,Cz,Cy) has a unique strong

solution « in C2((0, Tp), X) (resp., in C%([0, Tp), X)) when x € D(A),

1) D(AY and Aly € C*( resp., Aly € D(A)) if [o] is even

' Y\ Dratty if o] s odd,

and
D(AY if [o] is even

(1.9) w(=Az+2)€ _ _
D(AY and Alw € C*( resp., Alw € D(A)) if [o] is odd.

Moreover, ACP(A, Cx+j1 Cy+j2Cz+ja—1%Cg,0,0) has a unique strong solution
u in C%((0,Tp), X) (resp., in C?([0,Tp), X)) when 0 < o« < 1; or x € D(A) and
either 1 < o < 2, or a > 2 with
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D(A'™") and A"y € C'(resp., Ay € D(A)) if [o] is even

(L10) we {D(Al) if [a] is odd

and D(A'71Y if [o] is even

(111) w(=Az+2z) € ¢ D(A"Y) and A"~ tw € C( resp., A""1w € D(A))
if [o] is odd.

Here [a] denotes the largest integer that is less than or equal to «, I = [5],
and C' = {z € X|C(-)x is continuously differentiable on (0, Tp)}. In particular,
ACP(A,Cz + jo_3 % Cg,Cz,Cy) has a unique mild solution in C2((0,Tp), X)
(resp., in C%([0, Tp), X)) when o > 2, and both (1.10) and (1.11) are satisfied.
Applying these results we can also deduce some new approximation theorems in
section 3 concerning the unique strong solution of ACP(A, f,x,y).

2. ExISTENCE THEOREMS

From now on, we always write [«] to denote the largest integer that is less that
or equal to the real number «, and f x g(-) = [, f(- — s)g(s)ds on [0, o] for all
0 < tg < To, f € LY(]0,t9]) the set of all F-valued Lebesgue integrable functions
on [0,%o], and g € L'([0, o], X) the set of all Bochner integrable functions from
[0, to] into the Banach space X over F.

Definition 2.1. Let o> 0, k = [a] + 1, and I be a subinterval of [0, T;) con-
taining {0}. A function v : I — X is said to be a-times continuously differentiable
on [0, Ty), if v = v(0) + jo_ * u on I for some w € C*~1(I, X). In this case, we
write v € C*(I, X), and the (k — 1)th order derivative u(*~) of » on I is called
the ath order derivative of v on I and denoted by D*v on [ or D% : I — X.
Here C*(I, X) denotes the set of all k-times continuously differentiable functions
from I into X, and C°(I, X) = C(I, X) the set of all continuous functions from
I into X.

Next we note some basic properties concerning nondegenerate local «a-times
integrated C-cosine functions which are frequently applied in the following and
have been deduced as in [9] for the case Ty = oo, and so their proofs are omitted.

Proposition 2.2. Let o > 0, and A be the generator of a nondegenerate local
a-times integrated C-cosine function C'(-) on X. Then

(2.1) C' is injective and C~1AC = A,

(2.2) C(t)x € D(A) and AC(t)x = C(t)Ax
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forall z € D(A) and 0 <t < T,
(2.3) /t S(r)zdr € D(A) and A /t S(r)zdr = C(t)x — jao(t)Cx

forall z € X and 0 <t < T, where S(r)z = [; C(s)zds,
(2.4) C(0)=Con X if «a=0, and C(0)=0 the zero operator on X if a>0.

The next lemma is a direct consequence of Definition 2.1, and so its proof is
omitted.

Lemma 2.3. Let o > 0, v € C*(I,X) with v(0) = 0 for some subinterval
I of [0,Tp) containing {0}, and k¥ = [a] + 1. Then jy_o_1 * v € CF(I, X),
ve C (I, X), and D* v = (jr_q_1 *v)#~) on I for all integers 0 < i <
kE — 1. In particular, for each z € X, we have j,(-)z € C*([0,T}),X) and
D5 ( )z = D*" () = j;(-)z on [0, Tp) for all integers 0 < i < k — 1.

The next theorem is motivated by Arendt [1, Prop. 5.1 and Thm. 5.2] in which
the first order Cauchy problem (1.7) is considered.

Theorem 2.4. Let A be the generator of a nondegenerate local «a-times
integrated C-cosine function C(-) on X for some o > 0, f € L}, ([0,T), X) N
C((0,Tp), X),and z,y € X. Assume thatv(-) = C(-)x+S(-)y+S*f(-) on [0, T).
Then ACP(A, f,x,y) has a strong solution « if and only if v(¢) € R(C) forall 0 <
t < To, c-! () CO‘“([O Ty), X) and DeH1C—tw(-) € C1((0,Tp), X). Here
S f(t) fo f(s)ds for 0 < ¢ < Ty. In this case, we have u = D*C~lw.
Moreover, C~ 1v € CO‘“([O,TO), ) (resp., C~tv € C([0,Tp), [D(A)]) if and
only if u € C%([0, Tp), X) (resp., u € C([0, Tp), [D(A)])).

Proof. We consider only the case «.>0, for the case =0 can be treated simi-
larly. Now if w is a strong solution of ACP(A, f,z,y). Foreach 0 < ¢ < Tp, we set
w(-) = C(t — )u(:) on [0,¢]. Since u € C*([0,Tp), X), we have Lw(s)|s—s, =
LO(t — s)u(s0)|smso + C(t — 50)U'(8)|smsg = —Ja—1(t — s0)Cu(sp) — S(t —
s0)Au(sg) + C(t — so)u'(sg) for all 0 < s9 < t. Since u € C2((0,Tp), X) N
C((o, TO) [D(A)]), we also have u'(s) — u'(s0) = [; Au(r)dr + [; f(r)dr =
Af dr+ff Ydr for all 0 < sy < s <t, and so

v
d
:EC(t—s)u(s)

= —Ja-1(t—5)Cu(s) — S(t—s)Au(s)—i—C(t—s)[y—f—A/Os u(r)dr—f—/os f(r)dr]
= — ja—1(t — 8)Cu(s)—S(t—s)Au(s)+C(t—s)[y+jo * Au(s)+jo * f(s)]
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for all 0 < s < ¢. Hence

C(t)x

t
:—/0 %w(s)ds

_ / e (t = 5)Cu(s)ds + / " S(t — 5) Au(s)ds—
0 0

[/Ot C(t — s)yds + /Ot C(t — s)jo * Au(s)ds + /0 C(t—s)jox f(s)ds
=Cljg—1*u(t) + S * Au(t) — [S(t)y + S * Au(t) + S * f(t)]
=Clja—1*xu(t) — St)y — S = f(t).

Consequently, v(t) = Cjo—1 *u(t) € R(C) forall 0 < t < Ty, C71o(-) = jo_1 *
u(-) € C*TY[0,Tp), X), DM C~1w() € CY((0,Tp), X), and u = D*C~ 1.
Conversely, if v(t) € R(C) forall 0 <t < Ty, C~1u(-) € C**1([0, Tp), X), and
D C=1y(-) € CH((0,Tp), X). By (2.3) and (2.4) with o > 0, we have v(0) = 0,
j1*v(t) € D(A) and

Aji *o(t)
=C(t)x = ja(t)Cz + S()y = jat1(t)Cy + S * f(t) = jatr * Cf(t)
=0(t) = Clja()z + jas1()y + Jas1 * f(1)]
for all 0 <t < Tp, and so ACj1 * C~tw(t) = Ajy * v(t) € R(C) and
Ajx Clo(t) =C7TACH, * C 1o (t)
=C""0(t) = [ja(O)a + jar1(D)y + jas1 % f(1)]

for all 0 <t < Tp. Now if k = [a] + 1. By Lemma 2.3, we have D=4, (¢) =
4 DO (1) = & 5i(t), DT o g (8) = ji(t) and DL, (1) = 0 = D*2j, (1)
for all integers 0 < i < kand all 0 < ¢ < Ty. Combining this, and the closedness of
A with the fact j;_o_1 * C~ () € C*2((0,Ty), X) N Ck1([0, Tp), X ), we have
Aji#ji—a-1%C 1 0(t) = fr—a—1¥C ™ 0(t) = [k () 2+ jrr1 (8)y -+ + (1) for all
0 <t < Ty, AD'(jy—a-1%C7'0)(") = D2 (froa-1%C710)() = [p—(ig2) ()2 +
Jr—(i+1) ()Y + Jr—is1) * f(-)] on [0,Tp) for all integers 0 < i < k — 2 if k > 2,
ADF Vg 1% C7lo() = DM C7lo() = (y + jo * f(+)) on [0,Tp)
and ADFjy_ o 1 % C7 (t) = D*2(jp_a_1 x C10)(t) — f(t) forall 0 < ¢ < Ty,
Combining these facts with induction, we also have Dj;_,_1 * C~1v(0) = 0 for
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all integers 0 < i < k—1 and D¥jj__1 % C7'0(0) — 2 = 0 = DFFlj_ 1 %
C~1v(0)—y. Consequently, D*ji_o_1*C~1v(-) = D*C~'v(-) is a strong solution
of ACP(A, f,x,y). [ |

By slightly modifying the proof of Theorem 2.4, the next corollary is also at-
tained.

Corollary 2.5. Let A be the generator of a nondegenerate local a-times
integrated C-cosine function C(-) on X for some o > 0, f € L}, ([0,Tp), X) N
C((0,Tp),X), and z,y € X. Assume that v(-) = C(-)z + S(-)y+ S = f(-) on
[0,Ty). Then ACP(A,Cf,Cz,Cy) has a unique strong solution w if and only if
v € C*TL([0,Tp), X) and Dty € CL((0,Tp), X). In this case, we have v =
D%y on [0, Ty). Moreover, v € C*2([0,Tp), X) (resp., v € C*([0,Tp), [D(A)]))

if and only if u € C?([0, Ty), X) (resp., u € C([0, Tp), [D(A)])).

Proposition 2.6. Let « > 1, and C(-) be a nondegenerate locally Lipschitz
continuous local a-times integrated C-cosine function on X with generator A.
Then A, the part of A in X(= D(A)) generates a nondegenerate local (o — 1)-
times integrated C';-cosine function C';(-) on X;. Here C; denotes the part of C
in Xy and Cy(t)z = LC(t)z forall z € X; and 0 < t < Ty,

Proof. It is easy to see that A; : D(A;) C X1 — X; is a closed linear operator
satisfying Cl‘lAlCl = A;. Since {z € X|C(-)x is continuously differentiable on
[0, Ty)} is a closed subspace of X containing D(A), we have £C(t)z € D(A) for
all z € D(A)and 0 < t < T,. Applying the closedness of A and (2.3), we also have
C1 ()2 — ja—1()C1z = LC(t)a — jar1()Cx = AS(t)x = Ay [ [7 Ci(r)zdrds
for all z € D(A) and 0 <t < Tj. It follows from the uniqueness of solutions of
ACP(A, jo-1(-)Cx,0,0) that S(-)x = j1 * C1(-)z is the unique strong solution of
ACP(A1, jo_1C1,0,0)in C2%([0, Ty), X1)NC([0, Tp), [D(A)]) for all 2 € D(A).
We conclude from [9, Thm.2.3 or 11, Thm.2.5] that C;(+) is a nondegenerate local
(o — 1)-times integrated C4-cosine function on X; with generator A;. [

Remark 2.7. Let A be the generator of a nondegenerate locally Lipschitz
continuous local a-times integrated C-cosine function C(-) on X for some 0 <
a < 1. Then A is also the generator of a nondegenerate norm continuous local
C-cosine function C(-) on X which is defined by C(t)z = %C % j_q(t)x for all
x € X and 0 <t < Tp. In particular, A € B(X) if C = 1.

Proposition 2.8. Let « > 1, and C(-) be a nondegenerate locally Lipschitz
continuous local a-times integrated C-cosine function on X with generator A. Then
for each 0 < 6 < 1 there exists a nondegenerate local (o — 1 + 0)-times integrated
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C-cosine function 5(-) on X with generator A such that for each 0 < to < Tp, we
have

(2.5) |C(t+ h) — C(t)|| < Ky, h?
forall 0 <t ,h <t+h <tg, where K, is given as in (1.6).

Proof. Clearly, —1 < 6 —1 < 0. It follows that C * jp_1(-)z € C1([0, Tp), X)
forall z € X, and C*jy_1 (-) is a local (a+6)-times integrated C-cosine function on
X with generator A. Now let C(t) : X — X be defined by C(t)z = L Cxjg_1(t)x
for all z € X. Just as in the proof of Proposition 2.6, we can show that 5(-) is a
local (o« — 1 + 6)-times integrated C-cosine function on X with generator A and
(2.5) is satisfied. ]

Theorem 2.9. Let o > 0, 1 = [§], and C(-) be a nondegenerate locally Lips-
chitz continuous local a-times integrated C'-cosine function on X with generator A.
Assume that = € D(A), y,z € X, and g € L}, .([0,Ty), X). Then ACP(A,Cz +
ja_1 * Cg,Cz,Cy) has a unique strong solution u in C2([0, Tp), X )(resp., in
C?((0,Tp), X)) when

D(AY and Aly € D(A)( resp., Aly € CY) if [o] is even
(2.7) y {

D(A1Y if [a] s odd
and
D(A!) if [a] is even

(2.8) w(=Az+z) 6{ . .
D(AY and Alwe D(A)(resp., AlweC) if [o] is odd .

In fact, ACP(A,Cz + jo—1 * Cg,Cxz,Cy) has a unique strong solution « in

C2(]0,Ty), X ) when o € NU{0}, z € D(A), and either « is even with Aly € D(A)

and w € D(AY); or « is odd with y € D(A*!) and Alw € D(A).

Proof. Indeed, if we set k = [a] and f = 2z + jo—1 * g ONn [0,Tp), then

_ 21 if [a] is even
| 20+ 1 if [o] is odd.
§(-)y + jo * §(-)w + jar1 * S * g(+) on [0,Tp). Here 5(-) denotes the local
[a]-times integrated C-cosine function on X with generator A which is given as
in either Remark 2.7 when 0 < « < 1 or Proposition 2.8 when a > 1 with
0 = [a] = (e —1), and S(-) = jo » C(-). _Applying Corollary 2.5, we need
only to show that v(-) = C(-)a + S(-)y + S = f(-) € C*2([0,Tp), X)( resp.,
v(-) € CF*2((0,Tp), X)). Now if k = 0, then I = 0, and s0 jo * S(-)w, ja_1 *

By (2.3), we have C(-)z+S(-)y+ S+ f(-) = jr(-)Cx +



On Existence and Approximation of Solutions of Second Order Abstract Cauchy Problem 1101

Sxg=SxgeC*[0,Tp),X), and S(-)y € C*([0, Tp), X) for y € D(A) (resp.,
S(-)y € C2((0,Tp), C) NC* ([0, Ty), X) for y € Ct). Hence v € C*+2([0, Tp), X)
for y € D(A) (resp., v € C*+2((0,Tp), X) N C**1([0, Ty), X) for y € C). Next
if £ > 1, then

d* ~ , ~
(2.9) JpEja—1* S*g(t) = ja—k-1xSxg(t) =S *g(t),
C(t)y if k=1
dk - dk1 - d d20-1) _ —
(2.10) s (ty = FC(t)y =< o 7dt2(1_1)0(t)y if k=20>2.
d2l .
ﬁ(}'(t)y if k=20+12>3,
and
.~
S(t)w if k=1
(2.11) -2 J20-1) _ _
dd=t < d 2=V - =

By induction, we have

dqzm - m—1 . L ~
—m C(tv = > dkagirn (OCA™ i+ C(t) A
(2.12) =0

= ij_gi(t)CAm_i’U + é(t)Am’U
=1

for all m € N and v € D(A™), and so
C?([0,Tp), X) if v € D(A™)

(2.13) (C()v)®™ e { C([0,Ty), X) if « € N,ve D(A™) and A™v € D(A)
C((0,Ty), X) if v e D(A™) and A™v € C*

for all m € NU {0}, where (C(-)v)® = C(-)v and A° = I. Hence



1102 Chung-Cheng Kuo

(S()y)*HD

(C()y) € CY([0,Tp), X)
if k=1and y € D(A)
(2.14) (C()y) ) e CH((0,Tv), X) N O([0, Tp), X)
if k=20>2yec D(A) and Aly € O
(C()y) @D e ([0, Ty), X)
if k=2+1>3andy c D(AF)

and
(jo * S(-)w)*+D)

C(yw e CH(0,Ty), X) N C ([0, Ty), X)
if t=1and w e C!
(2.15) (C(w) =D e ¢Y([0, Ty), X)
if k=21 >2and w e D(A)
(C()w)@D e C1((0, Tp), X) N C([0, Tp), X)
if k=20+1>3we D(A) and Alw € C.

Consequently, v(-) € C*+2)([0, Tp), X) (resp., v(-) € C*+2((0,Tp), X) N CF+!
([0, Tp), X)) and w = D*wv is a strong solution of ACP(A, Cz+jo_1%Cg, Cx, Cy)
in C2([0, Tp), X) (resp., in C2((0,Tp), X)) when (2.7) and (2.8) both are satisfied.
The uniqueness of strong solutions of ACP(A,Cz + jo—1 % Cg,Cx, Cy) follows
from the uniqueness of strong solutions of ACP(A,0,0,0) (see [9, Thm. 2.3] or
[11, Thm. 2.4]). In this case, we have

u(-)=Sx*g(-)+ Cx
S

C

Yy +jox S(Hw if k=0
Jy+SHw if k=1

|
_ =

—~

Jre(2is) (Y CAT Ty 4+ §(-) Aly

(2.16) =0
* + 3 jre2i()VCAT "y + C(HA w if k=21 > 2
i=1

! L
;jk—%(')cz‘ll_zy +C()Aly
A A _
+ 3 Jr—itn)(HCAT w + S()Alw if k =21+ 1 > 3,
=0
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u'() =Cxg()+

CHy+S(Hw if k=0
Cy+S()Ay+C(Hw if k=1
S i ai(JOAiy 4 G() Aly

(2.17) =

+y ki AT w0+ S() A if k=20 > 2
=0

l . -
onk—(mﬂ)(')CAl_zy +S(-)A*y

z L
+ 3 Greni()CATw + C(YAw i k=21+1>3
=1

on [0, Tp), and

W) = (Cxg) ()4

(Cy) +C(Hw if k=0
C()Ay + Cw + S(-)Aw if k=1
l . ~
> Jr—2in)(VCA Ty + (C() Aly)
(2.18) =1
+ 3 dr-2i()CAT w4 C () Alw if k=20>2
141 i=1 A B
> Jr—2i(-)CATITy 4+ C (1) ATy
i=1
l . ~
+ 2 ki) (VCAT w + (C()Aw)  ifk=204+1>3
i=1
on [0, Tp) (resp., on (0, Tp)). [ |

By slightly modifying the proof of Theorem 2.9, the next theorem is also attained.

Theorem 2.10. Let o >0, I = [5], and C(-) be a nondegenerate locally Lip-
schitz continuous local a-times integrated C'-cosine function on X with generator
A. Assume that z,y, z € X and g € L}, ([0,T), X ). Then ACP(A, Cz+ j1Cy+

§20% + jo_1 % Cg,0,0) has a unique strong solution u in C 2([0, Tp), X) (resp., in
C?((0,Tp), X)) when 0<a<1; or z€ D(A) and either 1<a <2, or a>2 with

D(A"!) and A 'ye D(A)(resp., AlyeCt) if [a] is even

(2.19) ye {D(Al) i [a] is odd
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and
w(= Az +2) €

(2.20) D(AY) if [a] is even
{D(Al—l) and A" 'we D(A)( resp., A”"lweCt) if [o] is odd.

In fact, ACP(A, Cx+j1Cy+j2Cz+jo—1%Cg,0,0) has a unique strong solution
in C2([0, Tp), X) when o € N\ {1}, = € D(A), and either « is even with A’y €

D(A) and w € D(A"Y); or a is odd with y € D(A!) and A"~'w € D(A).

Remark 2.11. If o > 2, and w is the unique strong solution of ACP(A, Cxz +
71Cy + j2Cz + ja_1 * Cg,0,0) in C2%(]0,Tp), X). Then «” is the unique mild
solution of ACP(A,Cz + jo—3 x Cg,Cx,Cy) in C([0,Tp), X). That is, u” is
the unique continuous function v from [0, 7,) into X which satisfies the integral
equation v = Aj; * v + Cz + j1(-)Cy + j1 * (Cz + ja_3 * Cg) on [0, Tp).

Corollary 2.12. Let o > 0, [ = [§], and C(-) be a nondegenerate lo-
cally Lipschitz continuous local a-times integrated C-cosine function on X with
generator A. Assume that z € D(A), y,z € X, and g € L}, ([0,Tp), X). Then

ACP(A,Cz+jo_1+Cg,Cx, Cy) has a unique strong solution v in C'2(]0, Tp), X)
when y € D(A™1) and

D(AY) if [o] is even

w(= Az +2) € {D(Al+1) if [a] is odd .

Corollary 2.13. Let « € NU {0}, I = [§], and C(-) be a nondegenerate
locally Lipschitz continuous local a-times integrated C-cosine function on X with
generator A. Assume that € D(A), y,z € X, and g € L, ([0,Tp), X). Then
ACP(A,Cz+j,_1%Cg, Cx, Cy) has a unique strong solution v in C'2([0, Tp), X)
when either o is even with Aly € D(A) and w € D(A!); or « is odd with

y € D(A™Y) and Alw € D(A).

Corollary 2.14. Let o € NU {0}, I =[], and C(-) be a nondegenerate
local a-times integrated C-cosine function on X with densely defined generator A.
Assume that = € D(A), y,z € X, and g € L},.([0,Ty), X). Then ACP(A,Cz +
ja*xCg, Cx, Cy) has a unique strong solution w in C'2([0, Ty), X ) when w € D(AY),
and either « is even with y € D(A1); or « is odd with y € D(A?Y).

Corollary 2.15. Let o > 0, I = [§], and C(-) be a nondegenerate locally
Lipschitz continuous local a-times integrated C-cosine function on X with gener-
ator A. Assume that z,y,z € X and g € L}, ([0,T), X). Then ACP(A, Cx +

71Cy + j2aCz + jo—1 * Cg,0,0) has a unique strong solution v in C 2([0, Tp), X )
when 0<a<1; or z€ D(A) and either 1 <« < 2, or a>2 with yc D(A') and
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D(A'71) if o is even

w(=Ax +2) €
( {D(Al) if o is odd .

Corollary 2.16. Let o € N, I = [§], and C(-) be a nondegenerate locally
Lipschitz continuous local a-times integrated C-cosine function on X with gen-
erator A. Assume that z € D(A), y,z € X, and g € L}, ([0,Tp), X). Then
ACP(A,Cx + j1Cy + j2Cz + jo—1 % Cg,0,0) has a unique strong solution « in
C?%([0, Tp), X) when o = 1, or « > 2 and either « is even with A'~1y € D(A)

and w € D(A'™1); or « is odd with y € D(A") and A'"'w € D(A).

Corollary 2.17. Let a € NU {0}, I = [%£}], and C(-) be a nondegenerate
local a-times integrated C-cosine function on X with densely defined generator A.
Assume that = € D(A), y,z € X, and g € L}, ([0, Tp), X). Then ACP(A,Cz +

710y +342Cz+jo % Cg,0,0) has a unique strong solution u in C2([0, Ty), X ) when
o = 0, or « Z 1 with ’U}(: Ax + Z) c D(Al—l) and

D(A!) if o is even

y €
D(A"Y) if o is odd .

3. APPROXIMATION THEOREMS

Definition 3.1. A sequence of local a-times integrated C-cosine functions
{Cn(-)}2°_, on X is said to be uniformly locally Lipschitz continuous, if for each
0 < tg < T there exists a K, > 0 such that

(3.1) |Con(t + 1) = Con(D)]] < Kioh
foral0 <t,h<t+h <tgand m € N.

We first apply Theorem 2.9 to obtain an approximation theorem concerning
strong solutions of ACP(A,Cz + jo_1 * Cg,Cx, Cy) in C%(]0, Tp), X).

Theorem 3.2. Let « > 0, the hypotheses of Corollary 2.12 hold for C(-),
A x,y,z and w(= Az + z), and also for C.,(+), Am, Tm, Ym, 2m and wy, (=
A + zm) in place of C(+), A, x,y, z and w, respectively. Assume that
(i) {Chn(-)}55_; is uniformly locally Lipschitz continuous, and lim Cp,(-)v =
C(+)v uniformly on compact subsets of [0, T) for all v € X,
(i) zp, — x, and AL y,,, — Aly in X for all integers 0 <4 <[+ 1,
(iii) A% w,, — A'w in X for all integers 0 < i < [ if [a] is even; or A% w,, —
Al in X for all integers 0 < i <1+ 1 if [a] is odd,



1106 Chung-Cheng Kuo

(iV) gm — g in L} ([0,T0), X). That is, [lgm — gllri(0.10.x)(= Jo° llgm(s) —
g(s)||ds) — 0 in R for all 0 < to < Tp.

Then the strong solution w,,, of ACP(A.,, Czm + jat+1 * Cgm, Cxp,, Cym) CON-
verges to the strong solution u of ACP(A, Cz+jo11%Cg, Cx, Cy) in C%([0, Tp), X).
That is, u,, — u, u,, — «' and !/, — «” uniformly on compact subsets of [0, T').

Proof. Indeed, if & = [a], and C,(-) denotes the local k-times integrated
C-cosine function on X with generator A,,. By (2.6), we have C,, (t)v = %jk_a *
Ci(t)v forall v e X and 0 < ¢ < Ty. Combining (2.16)-(2.18), we also have

um() = Sm * gm() + me""

Sm(')ym +j0*§m(')wm ifk=0
ém(')ym + gm(')wm ifk=1
l_l . ~
> Jk—(2i41) VCAL "y + S () Alyym

(32) | &7

Y e (VOAL 4 Con (VA ik =20> 2
i=1

! A _
;jk_%(-)CAlrgzym + Con () ALy
- A -
+ 3 Jk—2irn) () CAL Y wn, + S () A wy,  if k=2141>3,
1=0

U, (+) = i % gm () +

Con (VY + S () if k=0
Cym + S () AmYm + Crn(*) if k=1
l . ~
Z jk—2i(')CA£-;Zym + Cm()Agnym

(3.3) =0

5 G iy (VCAT w0 + S (VAL i = 20 > 2
1=0

l A ~
onk—(%—i—l) (')CAlr;Zym + Sm(')Alr;Li—lym

! . ~
+ 3 di—id1) (VCAL w4+ Coy (VAL wp,  if k=21+1>3,
1=0

and
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U () = (Crn % gm)' () +

S () Aty + Con (Y wm if k=0
Con () Ay + Ctor + S(-) At if k=1
l . ~
Z jk—(2z‘+1)(')CAlr;Zym + Sm(')Alr;Lf—lym
(34) | =0
+ 5 jre2i(-)C A, 4+ Cr ()AL w), if k=20>2
=1
+1

Z jk—2i(')CA£';L’—1_iym + ém(')Ag-;Lf—lym
i=1

1 . ~
+ 3 ki) (VCAL w4+ S (VA wy, ik =2041>3
=0

on [0,7p). To show that u,, — wu in C?([0,T,), X), we shall first show that
Cin * gm — C x g uniformly on compact subsets of [0, 7y). Indeed, if 0 < ty < Tp
is fixed. Then for each ¢ € C([0, t], X), we deduce from the uniform continuity
of ¢ on [0, to], the uniform boundedness of {||C,,(-||}o°_; on [0, %] and (i) that
Cn(t — )o(-) — C(t — -)o(-) uniformly on [0,¢] for all 0 < ¢ < ¢, and so
Cin x ¢(t) — C = ¢(t) in X for all 0 < ¢ < ty3. The uniform Lipschitz continuity
of {Cr,(+)}59_, on [0, ¢o] implies that {Cy, * ¢(-)}25_; is uniformly bounded and
equicontinuous on [0, tg]. It follows from the pointwise convergence of {C,, *
o(-) 10— to Cx¢(-) on [0, %] and Arzela-Ascoli’s theorem that each subsequence
of {Cy, xd(-) }5o_, contains a subsequence which converges to C'x¢(-) uniformly on
[0, to]. Hence Cy, x ¢(-) — C * ¢(+) uniformly on [0, ¢ for all ¢ € C([0, to], X).
Combining this, and the uniform boundedness of {||Cy,(-)|}5o_; on [0, t9] with
the denseness of C([0,to], X) in L([0, o], X), we have C,, x ¢(-) — C * ¢(-)
uniformly on [0, t] for all ¢ € L([0, to], X ). Consequently, Cp, x ¢(-) — C x ¢(-)
uniformly on compact subsets of [0, 7p) for all ¢ € L}Oc([o, To), X). In particular,
Crn*gm(-) = Con*(gm—9)(-) +Cxg(-) — Cxg(-) uniformly on compact subsets
of [0, 7). Similarly, we can show that Cy,(-) vy, — C(-)v and Sy, () vy — S(-)v
uniformly on compact subsets of [0,7;) whenever v,, — v in X. Here C(-)
denotes the local k-times integrated C'-cosine function on X' with generator A and
S(-) = jo * C(-). To show that u,, — u in C?([0,Tp), X ), we observe from
(1)-(iii) and (3.1)-(3.4) that it remains to show that (C,, * ¢g)'(:) — (C * g)'()
uniformly on compact subsets of [0, 7p). Indeed, if 0 < ¢ty < Tp is fixed. Then
for each ¢ € C'([0, o], X), we deduce from the previous argument and (i) that
(Con#0) () = Cd! () +Crn () $(0) — ! (-)+C(-)(0) = (C¢)'(-) uniformly
on [0, to]. Combining this, and the denseness of C'1 ([0, to], X) in L1([0, to], X) with
the fact

(3.5) 1(Con # 8V (D]| < Koy /0 16(s)1ds
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forall ¢ € L1([0, 0], X),m € Nand 0 < t < tg, we have (Cp,%¢)'(-) — (Cx¢)'(+)
uniformly on [0,%] for all ¢ € L'([0,t], X), where K, is given as in (3,1).
Consequently, (Cy, * ¢)'(-) — (C * ¢)'(-) uniformly on compact subsets of [0, 7p)
forall ¢ € L} ([0, Tp), X ), which together with (3.5) implies that (Cyp, * g,n,)'(-) =
(Com o (gm —9))'(-) + (Cru % g)'(-) = (C % g)'(+) uniformly on compact subsets of
[0, TQ) |

Similarly, we can apply Theorem 2.10 to obtain the next approximation theorem
concerning strong solutions of ACP(A.Cx 4 j1Cy + j2Cz + ja—1 * Cg,0,0) in
02([07TO)7X)'

Theorem 3.3. Let o > 0, the hypotheses of Corollary 2.15 hold for C(-),
A x,y,z and w(= Az + z), and also for C,,(+), Am,Tm, Ym, 2m and wy, (=
Ay + zm) in place of C(+), A, z,y, z and w, respectively. Assume that

(i) {Cn(-)}oo_, is uniformly locally Lipschitz continuous, and lim C,(-)v =
C(+)v uniformly on compact subsets of [0, T) for all v € X,
(i) @y, — x, and A¢ y,, — Ay in X for all integers 0 < i <,

(iii) zpm — 2in X if 0 < a < 1; AL w,, — Aw in X for all integers 0 < i <
(I—1)if a > 1 and [o] is even; or A% w,, — A%w in X for all integers
0<i<lifa>1and[a] isodd,

(V) gm — g in L}, ([0, Tp), X ).
Then the strong solution u,, of ACP(A,,,Czy + j1Cym + j2Czm + ja—1 *

Cgm,0,0) converges to the strong solution u of ACP(A,Cz + j1Cy + joCz +
ja—1%Cg,0,0) in C*([0, Tp), X).
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