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CONTOUR INTEGRAL EIGENSOLVER FOR NON-HERMITIAN
SYSTEMS: A RAYLEIGH-RITZ-TYPE APPROACH

Tsutomu Ikegami* and Tetsuya Sakurai

Abstract. The Rayleigh-Ritz-type approach of the contour integral (CIRR)
eigensolver is extended to be generally applicable to non-Hermitian systems.
The CIRR method can extract only the eigenvalues in a given domain, which
was previously formulated for non-degenerated Hermitian systems. In this
method, the Ritz space for the domain is constructed by numerical evaluation
of a contour integral. The effect of the numerical approximation is analyzed
from the viewpoint of a filter operator, which supports the use of moderate
approximations. The numerical accuracy of the original moment-based ap-
proach is also assured. A block version of the CIRR method is proposed with
a detailed algorithm, which allows us to resolve degenerated systems.

1. INTRODUCTION

The resolvent is one of the standard tools in linear algebra, providing a base
to define analytic functions of matrices. Though the resolvent mostly appears in
an analytic context, the direct evaluation of the resolvent is also possible with the
powerful computers available nowadays, allowing novel numerical methods to be
derived [1]. A contour integral eigensolver [2, 3, 4] is one example. With this
eigensolver, a large-scale generalized eigenvalue problem is reduced to a handy one,
from which only the eigen-components of interest are obtained. Originally, the con-
tour integral method was formulated in a moment-based approach for diagonalizable
and non-degenerated systems [2]. In this approach, the size-reduced eigen-problem
is constructed from a set of contour integral calculations of a single-valued function,
which is derived from the original problem. Though each evaluation of the function
is costly, a series of these calculations can be processed in parallel independently, so
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that the method is suitable to modern computer architecture. To improve numerical
stability, a Rayleigh-Ritz-type approach of the contour integral (CIRR) method was
proposed for non-degenerated Hermitian systems [3]. In this approach, a set of Ritz
vectors that spans the target eigen-subspace is constructed via contour integrals.

Recently, we have reformulated the moment-based approach, extending the ap-
plicability of the method to degenerated non-diagonalizable systems [4]. In this
paper, we will similarly extend the Rayleigh-Ritz-type approach to degenerated non-
Hermitian systems. A numerical aspect of the contour integral method, where the
contour integral is approximated by some quadratures, is also discussed, based on
the filter operator concept. In the next section, we will give a brief outline of the
contour integral method, following the new formulation given in Ref. [4]. In Section
3, the new formulation for the Rayleigh-Ritz-type approach is given, and in Section
4, the numerical aspect of the contour integral method is discussed. A block ver-
sion of the CIRR method is proposed in Section 5 with the detailed algorithm, and
Section 6 concludes the paper.

2. CONTOUR INTEGRAL EIGENSOLVER

In this section, an outline of the contour integral method is surveyed, providing
building blocks to be used in the later discussions. Let A, B ∈ CN×N and assume
that the matrix pencil zB − A is regular. The goal of the contour integral method
is to solve a generalized eigenvalue problem,

(1) (zB − A)x = 0,

for all z contained in a selected domain.
We will start from the Weierstrass canonical form for the regular matrix pencil

[5].

Theorem 1. [Weierstrass canonical form]. Let zB − A be a regular pencil of
order N . Then there exist nonsingular matrices P̃, Q ∈ CN×N such that

W = P̃(zB − A)Q

=




zIk1 − J1

. . .
zIkd

− Jd

zNd+1 − Ikd+1

. . .
zNr − Ikr




,(2)

where Ji, Ni ∈ Cki×ki are Jordan blocks, Ni is nilpotent, and Ik denotes the identity
matrix of order k.
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We let αi be the eigenvalue of Ji, and αi = ∞ for i > d. Because P̃ and Q are
regular, there exist P = P̃

−1 and Q̃ = Q−1. According to the block structure of
W , we partition the row vectors of P̃, Q̃ into P̃i, Q̃i ∈ Cki×N for i = 1, 2, . . . , r.
Similarly, the column vectors of P, Q are partitioned into Pi, Qi ∈ CN×ki . Under
this partitioning, zB − A = PW Q̃ can be decomposed into

B =
d∑

i=1

PiQ̃i +
r∑

i=d+1

PiNiQ̃i,(3)

A =
d∑

i=1

PiJiQ̃i +
r∑

i=d+1

PiQ̃i.(4)

Note that the first vectors in P̃i and Qi are the left and right eigenvectors of the
matrix pencil zB − A, respectively, with eigenvalue αi. (We employ an upper
triangular form for the Jordan blocks.)

A moment matrix of the matrix pencil is defined based on the contour integral.

Definition 2. Let Γ be a positively oriented closed Jordan curve and G be
inside of Γ. For a non-negative integer n, the n-th order moment matrix of the
pencil zB − A, localized on G, is defined by

(5) Mn =
1

2πi

∮
Γ

zn(zB − A)−1dz.

We pick up eigenvalues contained in G, and construct the following collective
notations:

• The direct sum of Ji is taken over i; αi ∈ G to form a Jordan matrix JΓ ∈
CkΓ×kΓ , where kΓ =

∑
i;αi∈G ki.

• The corresponding Pi and Qi are collected in the same order used to form the
Jordan matrix above to form PΓ, QΓ ∈ CN×kΓ . P̃Γ, Q̃Γ ∈ CkΓ×N are defined
similarly.

Under the collective notation, the moment matrix is written as [4]

(6) Mn = QΓJ
n
ΓP̃Γ.

This expression leads to the basic theorem of the contour integral method [4]:

Theorem 3. Let C and D be arbitrary N × m matrices, where N > m ≥ kΓ,
and define a size-reduced moment matrix Mn = CHMnD(∈ Cm×m). If ranks of
both CHQΓ and P̃ΓD are kΓ, the non-singular part of a size-reduced matrix pencil
zM0 − M1 is equivalent to zIkΓ

− JΓ.
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Note that the moment matrix was previously defined as MnB [4]. The term B

is dropped here for the convenience of the CIRR method, though the proof of the
theorem is nearly identical.

The following addition theorem can also be derived from Eqs. (3), (4), and (6):

MiBMj = Mi+j ,(7)

MiAMj = Mi+j+1.(8)

In the moment-based contour integral method, two m×m Hankel matrices Hm

and H
<
m are prepared,

(9) Hm =




µ0 µ1 · · · µm−1

µ1 µ2 · · · µm
...

...
...

µm−1 µm · · · µ2m−2




and

(10) H
<
m =




µ1 µ2 · · · µm

µ2 µ3 · · · µm+1
...

...
...

µm µm+1 · · · µ2m−1


 ,

where µn = uHMnv and u, v ∈ CN are random vectors. By taking row vectors
of CH as CH

i = uHMiB and column vectors of D as Di = BMiv, and applying
the addition theorem, the Hankel matrices become Hm = M0 and H

<
m = M1.

Therefore, the non-singular part of the matrix pencil zHm − H
<
m is equivalent to

zIkΓ
− JΓ, if u and v are random enough and the eigenvalues are not degenerated

in G. A block version of the method was also proposed, in which the vectors u and
v are replaced by random matrices U, V ∈ CN×l. With the block version, up to the
l-th order degeneracy can be resolved for the eigenvalues in G.

3. RAYLEIGH-RITZ-TYPE APPROACH

In this section, we will give a new proof for the Rayleigh-Ritz-type contour
integral method, which allows us to use it for non-Hermitian systems. In general,
the Rayleigh-Ritz-type approach constructs the left and right Ritz vectors Li and Ri,
which are collectively noted as L, R ∈ CN×m, respectively. The original matrix
pencil zB − A is projected onto the Ritz space to form a size-reduced pencil,
zB − A ∈ Cm×m, where B = LHBR and A = LHAR. In the context of the
contour integral method, the Ritz space is constructed by using the moment matrix.
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Taking LH = CHM0 and R = M0D, the addition theorem leads to B = M0 and
A = M1. According to Theorem 3, the non-singular part of the matrix pencil zB−A

is equivalent to zIkΓ
− JΓ, if ranks of CHQΓ and P̃ΓD are kΓ.

In this crude approach, both the left and right Ritz spaces need be constructed,
and thus the approach is more costly than the moment-based one; the evaluation of
µn = uHMnv requires only the right Ritz space. As shown in the next theorem,
however, only one of the Ritz spaces is actually necessary to solve the problem.

Theorem 4. Let L, D ∈ CN×m be arbitrary matrices, and R = M0D. A
projected matrix pencil zB − A is defined by B = LHBR and A = LHAR. If
ranks of both LHPΓ and P̃ΓD are kΓ, the non-singular part of the projected matrix
pencil is equivalent to zIkΓ

− JΓ.

Proof. Let CH = LHPQ̃. Because P and Q̃ are regular, LH = CHQP̃.
From Eqs. (3), (4), and (6), we have

QP̃BMn = Mn,(11)

QP̃AMn = Mn+1,(12)

so that B = CHM0D = M0 and A = CHM1D = M1. Because CHQΓ = LHPΓ,
the rank of CHQΓ is kΓ. From Theorem 3, we get the result.

Similar to the moment-based method, the Ritz space can be constructed from a
single initial vector. Starting from a random initial vector v ∈ CN , the right Ritz
vectors are constructed as Ri = Miv, while the left Ritz vectors are arbitrary. If
there is no degeneracy in G, we can apply Theorem 4 by taking Di = BMiv.

When the left Ritz vectors are constructed as LH
i = uHMi in addition to

Ri = Miv, we have B = Hm and A = H
<
m , and the CIRR method becomes

identical to the moment-based method. This observation is especially important for
Hermitian systems, where A and B are self-adjoint and B is positive definite. In
this case, the moment matrix Mn also becomes self-adjoint, and the the left Ritz
space is obtained at no additional cost as Li = Ri by taking u = v. This is the
Rayleigh-Ritz-type method originally discussed in Ref. [3]. As shown in the next
section, the generation of both Ritz spaces improves the numerical accuracy of the
method.

The CIRR method can also be viewed from a filter operator standpoint [6, 7].
Obviously, from (6), the right Ritz space constructed by M0D is contained in the
subspace spanned by QΓ. In other words, the eigen-components outside of G are
filtered out from D by the operation of M0. More precisely, the operation of Mn

can be interpreted as a manipulation of an eigen-spectrum. Assume that the matrix
pencil zB−A is diagonalizable, and define the i-th P - and Q-amplitude of a vector
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v as P̃iv and Q̃iv, respectively. The P -amplitude of v is related to the Q-amplitude
of Mnv as

(13) Q̃iMnv = fn(αi)P̃iv,

where the filter function fn(x) is given by

fn(x) =
1

2πi

∮
Γ

zn

z − x
dz

=
{

xn, x ∈ G,
0, otherwise.(14)

The filter function fn(x) is a localized function, which is zero outside of G. The
moment matrix Mn correspondingly works as a filter operator, which diminishes
eigen-components outside of G.

4. NUMERICAL APPROXIMATION

In practical applications, the integral in Eq. (5) is approximated numerically by
an appropriate quadrature. In this section, we will discuss on the numerical aspect
of the contour integral method. First, a numerical example is shown, demonstrating
inconsistent numerical accuracies in the moment-based method. The inconsistency
is solved in the subsection 4.2, by attributing the numerically-approximated moment-
based method to the CIRR method. The numerical accuracy of the CIRR method
is further discussed quantitatively in the subsection 4.3, and the superior accuracy
of the CIRR method for Hermitian systems is explained in the last subsection. To
make the discussions simple, we assume hereafter that the matrix pencil zB −A is
diagonalizable.

4.1. Numerical example

One of the mysteries in the moment-based method is that eigenpairs are calcu-
lated accurately, even though the numerical accuracy of µn is far less comparable.
To start with, we will show a numerical demonstration.

Example 5. A real symmetric matrix A ∈ R400×400 was setup by preparing a
random unitary matrix and random eigenvalues in the range [−80, 80]. An identity
matrix was used for B. A unit circle placed at the origin was taken as Γ, inside of
which we found 4 eigenvalues. A random initial vector v ∈ R400 was prepared to
calculate

(15) µn =
1

2πi

∮
Γ

znvH(zI − A)−1vdz,

which was used to construct Hankel matrices Hm and H
<
m with m = 16. The

integral in Eq. (15) was approximated by the M -point trapezoidal rule, where
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M was varied to tune the numerical accuracy. We will refer to the approximated
matrices as H̄m and H̄<

m. We assume M = 256 calculations to be exact, and
any numerical errors of the matrices at any other M are examined against them.
The relative root mean square deviations (RMSD) of the matrix elements, ‖H̄m −
Hm‖F/‖Hm‖F and ‖H̄<

m − H<
m‖F/‖H

<
m‖F, are plotted in Fig. 1 for various M .

The four interior eigenpairs (ei, Qi) of zI − A were derived from solutions of a
generalized eigenvalue problem zH̄m − H̄<

m. The eigenvectors were normalized and
the residual norms of the eigenpairs were calculated by ‖(αiI −A)Qi‖2, which are
also plotted in Fig. 1. The Hankel matrices become accurate as M increases, though
they are far from the numerical limit. Nevertheless, the eigenpairs are obtained at
10−10 accuracy, even though the matrices are erroneous by a factor of 10−2 ∼ 1.

Fig. 1. Numerical errors of the Hankel matrices Hm and H
<
m

, and residual norms of
four eigenpairs located inside of Γ.

4.2. Quadrature approximated moment-based method

The discrepancy between the precision of the matrix pencil and its eigenpairs
is explained by the equivalence of the moment-based method to the CIRR method.
Let zj be quadrature points on Γ and wj be the corresponding weights, where
j = 1, 2, . . . , M . The moment matrix Mn is approximated by the quadrature as

(16) M̄n =
M∑

j=1

wjz
n
j (zjB − A)−1.

We will first show that the approximated moment matrix M̄n also works as a filter
operator.

Theorem 6. Let zB−A be a diagonalizable regular matrix pencil, and v ∈ C N

be arbitrary. The i-th P -amplitude of v is related to the Q-amplitude of M̄nv as

(17) Q̃iM̄nv = f̄n(αi)P̃iv,
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where

f̄n(x) =
M∑

j=1

wj

zn
j

zj − x
,(18)

f̄n(∞) = −
M∑

j=1

wjz
n
j .(19)

Proof. When the matrix pencil zB − A is diagonalizable, its resolvent is
written as [4]

(20) (zB − A)−1 =
d∑

i=1

QiP̃i

z − αi
−

r∑
i=d+1

QiP̃i.

Inserting Eq. (20) into Eq. (16), we have

(21) M̄n =
r∑

i=1

f̄n(αi)QiP̃i.

Operating Q̃i from the left side, we obtain the result of the theorem.

Typically, f̄n(x) becomes a fairly localized function around G, though the
boundary is not as sharp as that of Eq. (14). For example, let Γ be a unit cir-
cle centered at the origin, and apply the M -point trapezoidal rule. The quadrature
points and weights are given by zj = exp( 2πi

M (j− 1
2 )) and wj = zj/M , respectively.

This quadrature gives the filter function of

(22) f̄n(x) =
xn

1 + xM
,

for 0 ≤ n < M . Note that, under the trapezoidal rule with the circular path,
we have f̄n(∞) = 0, so that the eigen-amplitude of the infinite eigenvalues is
exactly nullified. When the filter operator was defined by M̄nB [4], the operation
of B effectively collapses the subspace with infinite eigenvalues, so that the eigen-
components i > d could be ignored. In the CIRR method, however, we have to pay
attention, so that such components do not contaminate the filtered subspace.

Next, we will connect the moment-based and CIRR methods under the approx-
imated moment matrix M̄n. Let u, v ∈ CN be random vectors and µ̄n = uHM̄nv,
which is used to build the approximated Hankel matrices. Let the right Ritz vectors
be Ri = M̄iv for i = 0, 1, . . . , m − 1. Based on Theorem 4, the moment-based
method becomes identical to the CIRR method, if we can choose left Ritz vectors
that satisfy

(23) LH
i BRj = µ̄i+j and LH

i ARj = µ̄i+j+1.
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In general, such a set of Li exists if N ≥ 2m. Especially, if the quadrature satisfies
f̄n(∞) = 0, we have, from Eq. (18), f̄n+1(x) = xf̄n(x). In this case, we can take
the left Ritz vectors explicitly as LH

i = uH(QP̃A)iQP̃. From these observations,
the numerically-approximated moment-based method can be considered as a special
case of the CIRR method, which separates the the numerical accuracy of µ̄n from
the accuracy of eigenvalues. In the next subsection, we will discuss on the accuracy
of the numerically-approximated CIRR method.

4.3. Quadrature approximated CIRR method

We have shown that the moment-based method is identical to the CIRR method
with the right Ritz vectors defined by Ri = M̄iv, i = 0, 1, . . . , m − 1. In this
subsection, we will discuss on the numerical properties of the Ritz vectors. The
moment operator M̄n modulates the eigen-spectrum of v, filtering out the eigen-
components far from G. Due to the numerical approximation, the eigen-components
near G are not exterminated completely. The filter performance of M̄n is determined
by the filter function f̄n(x), which is dependent on the quadrature. In Fig. 2, the
asymptotic behavior of the filter function is depicted for some of f̄n(x) used in
Example 5. In that example, we were trying to extract eigen-components in the
domain [−1, 1] along the real axis. The ideal filter function f0(x) is a window

Fig. 2. The filter function f̄n(x) of the M -point trapezoidal rule on the unit circle
centered at the origin. (a) f̄0(x) for various M . (b) f̄n(x) of M = 48 for
various n.

function with sharp edges at x = −1 and 1. Because of the numerical approxima-
tion, however, the actual filter functions f̄0(x) have dull edges as shown in Fig.
2(a). Still, they are well localized functions, and reflecting the functional form of
Eq. (18), they are guaranteed to approach zero asymptotically. The extent of the
asymptotic tail depends on the quality of the quadrature. In the present case, the
larger the number of trapezoidal points M , the sharper the edge becomes. In the
moment-based method, the higher order moment matrices M̄n, n > 0 are also used.
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As shown in Fig. 2(b), the tail of the corresponding filter functions f̄n(x) extends
as n increases. In Example 5, the dimension of the Hankel matrices was m = 16,
so that the right Ritz space was spanned by M̄iv, i = 0, 1, . . .15. Therefore, in
the case of M = 48 and with a machine epsilon of 10−16, those eigen-components
with eigenvalues 1 < αi < 3 may be contaminated in the result. Indeed, the non-
singular part of the matrix pencil zHm − H

<
m is enlarged as M decreases. It must

be noted that only a trace amount of the peripheral eigen-components is contained
in the constructed Ritz vectors, so that those peripheral eigenpairs are obtained with
fewer significant digits than the interior ones. In other words, the accuracy of the
obtained eigenpairs is not uniform. Besides calculating the residual norms, the re-
liability of the eigenpairs may be assessed by a singular value analysis on a set of
the constructed Ritz vectors.

4.4. Accuracy gain by the left Ritz space

As shown in Theorem 4, the left Ritz space can be arbitrary, if an exact moment
matrix Mn is used to construct the right Ritz space. When the moment matrix is
approximated numerically, however, the situation is not the same. Besides the right
Ritz vectors Ri = M̄iv, let the left Ritz vectors be constructed as LH

i = uHM̄i. We
also assume that the filter function satisfies f̄n(∞) = 0, and thus f̄n+1(x) = xf̄n(x).
From Eq. (21), these Ritz vectors give the projected matrices A and B as

Bij = LH
i BRj = uH

(
r∑

k=1

αi+j
k f̄0(αk)2QkP̃k

)
v,(24)

Aij = LH
i ARj = uH

(
r∑

k=1

αi+j+1
k f̄0(αk)2QkP̃k

)
v.(25)

In fact, the identical projection can be obtained with another set of Ritz vectors
given by

LH
i = uH(QP̃A)iQP̃,(26)

Ri =

(
r∑

k=1

f̄0(αk)f̄i(αk)QkP̃k

)
v.(27)

Equation (27) indicates that the right Ritz vectors are constructed by a set of filter
operators characterized by filter function ḡi(x) = f̄0(x)f̄i(x). In general, the filter
function ḡi(x) is sharper than f̄i(x) used in the moment-based method. Therefore,
the construction of the left Ritz space will make the filter performance better, which
narrows the non-singular space of the projected matrix pencil zB − A.

Usually, the construction of the left Ritz space is costly, so that it is less favorable
than using better quadratures. In the case of Hermitian systems, however, the left
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Ritz space is constructed implicitly at no additional cost, as described in Section 3.
The observed improvement of the CIRR method over the moment-based method [3]
may originate from the better filter performance achieved by the implicit construction
of the left Ritz space.

5. BLOCK CIRR

Similar to the moment-based method, a block version of the CIRR method can
be derived by preparing multiple initial vectors. Let V ∈ CN×l be a random matrix
and Sn = MnV where n = 0, 1, . . . , m − 1. In the block CIRR method, the right
Ritz space is spanned by the column vectors of Sn.

The advantage of the block version is three-fold. First, degenerated eigen-
components in G can be resolved. If the Ritz space is constructed from a single vec-
tor, degenerated eigen-components cannot be separated, because eigen-amplitudes
of those components are modulated in the same way (see Eq. (13)). By preparing l
independent initial vectors, up to the l-th order degeneracy can be resolved. Second,
we can keep the order of the moment matrix small. In the CIRR method, the dimen-
sion of the Ritz space must be much larger than kΓ, because the filter performance
of M̄n is not sharp enough. If the Ritz space is constructed from a single vector, we
have to choose m > kΓ, and the use of higher order moment matrices is inevitable.
As shown in Fig. 2(b), however, the filter performance is worse for the higher mo-
ment matrix, and the contamination from the peripheral eigen-components becomes
more severe. Because the dimension of the Ritz space is multiplexed to ml in the
block version, we can keep the order of the moment matrix small, which allows
us to use moderate quadratures. Finally, accidental oversights of eigen-components
can be avoided. From Eq. (13), if there is no P -amplitude in the initial vector, the
corresponding eigen-component is missing in the constructed Ritz space, even if it
is located inside of Γ. Such an accidental situation is less probable in the block
version, where many independent vectors are prepared initially.

A detailed algorithm of the block CIRR method is given below.

Algorithm 1. (Block CIRR)
Input: V ∈ CN×l, {zj, wj} for j = 1, 2, . . . , M
Output: (αi, Qi) for i = 1, 2, . . . , K

1. Solve Ṽj = (zjB − A)−1V at each quadrature point.

2. Compute S̄n =
∑M

j=1 wjz
n
j Ṽj for n = 0, 1, . . . , m− 1.

3. Perform singular value decomposition on the collection of S̄n:
S = (S0, S1, . . . , Sm−1) ∈ CN×ml,
S = UsWH where U ∈ CN×K , s ∈ CK×K , and W ∈ Cml×K ,
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K ≤ ml, UHU = WHW = IK , and s is diagonal and positive definite.

4. Compute B = UHBU and A = UHAU , and obtain eigenpairs (αi, qi) of the
projected matrix pencil zB − A ∈ CK×K .

5. Compute Qi = Uqi.

Some notes on the algorithm follow:
• Though Step 1 is the most time-consuming part, the linear equations can be

solved independently parallel for each quadrature point zj . This makes the
algorithm efficient on modern parallel computer architecture.

• In Step 2, the momental weight of zn
j can be replaced by the shifted-and-

scaled one, ((zj − γ)/ρ)n. For the numerical reason, γ and ρ should be
chosen such that a circle with a center γ and radius ρ mostly covers the
region G. Different from the moment-based method, the obtained eigenvalues
are not shifted-and-scaled.

• At Step 3, the column vectors of S should span the right eigen-subspace
around G in an overcomplete manner. Otherwise, the dimension of the sub-
space is larger than ml, so that we have to increase either m or l. The
orthonormal set to span the subspace is extracted as U , omitting components
with trace singular values.

• In Step 3, the column vectors of U = (U1, U2, . . . , UK) span the right Ritz
space. Though they form an orthonormal set, the reliability of the Uk direction
is not uniform: the smaller the singular value skk , the less reliable Uk is. The
reliability of Uk propagates to the eigenvectors Qi, which can be assessed by
an index

∑K
k=1 skk|qik|2.

• In Step 4, U is also used for the left Ritz space. Though the left space can be
taken arbitrarily, the present choice is better, at least for Hermitian systems.

6. CONCLUSION

The CIRR method is reformulated to be applicable to non-Hermitian systems.
The generalization is achieved by the basic theorem on the contour integral method,
which is based on the generalized resolvent [4]. In practical applications, the contour
integral is numerically approximated by an appropriate quadrature. The effect of the
numerical approximation is analyzed from the viewpoint of the filter operator, where
the moment matrix is considered as an operator that modifies an eigen-spectrum of
the operand. The performance of the filter operator is quantitatively related to
the employed quadrature, which may serve to show what happens when sloppy
quadratures are employed, encouraging more careful use of them in the future.
The numerical version of the moment-based method is successfully attributed to
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the special case of the CIRR method, supporting the numerical soundness of the
moment-based method. We have also proposed a block version of the CIRR method,
which not only can resolve degenerated eigen-components, but also is numerically
beneficial.
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