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A RATIONAL SHIRA METHOD FOR THE HAMILTONIAN
EIGENVALUE PROBLEM

Peter Benner and Cedric Effenberger

Abstract. The SHIRA method of Mehrmann and Watkins belongs among the
structure preserving Krylov subspace methods for solving skew-Hamiltonian
eigenvalue problems. It can also be applied to Hamiltonian eigenproblems
by considering a suitable transformation. Structure-induced shift-and-invert
techniques are employed to steer the algorithm towards the interesting region
of the spectrum. However, the shift cannot be altered in the middle of the
computation without discarding the information that has been accumulated so
far. This paper shows how SHIRA can be combined with ideas from Ruhe’s
Rational Krylov algorithm to yield a method that permits an adjustment of
shift after every step of the computation, adding greatly to the flexibility of
the algorithm. We call this new method Rational SHIRA. A numerical example
is presented to demonstrate its efficiency.

1. INTRODUCTION

1.1. The Hamiltonian eigenvalue problem

We consider the standard eigenvalue problem

(1.1) Hx = λx,

for a Hamiltonian matrix H . Hamiltonian matrices H ∈ R
2n×2n feature the explicit

block structure

H =
[

A B
C −AT

]
, B = BT , C = CT ,

where A, B, C are real n × n matrices.
Hamiltonian matrices and eigenproblems arise in a variety of applications. They

are ubiquitous in control theory, where they play an important role in various control
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design procedures (linear-quadratic optimal control, Kalman filtering, H2- and H∞-
control, etc., see, e.g., [2, 17, 24, 30] and most textbooks on control theory), system
analysis problems like stability radius, pseudo-spectra, H∞-norm computations [8-
10], and model reduction [1, 5, 6, 14, 26, 29]. Another source of eigenproblems
exhibiting Hamiltonian structure is the linearization of certain quadratic eigenvalue
problems [4, 18, 20, 28]. Further applications can be found in computational physics
and chemistry, e.g. symplectic integrators for molecular dynamics [12, 16], methods
for random phase approximation (RPA) [19], etc.

Hamiltonian matrices may equivalently be characterized as those that are skew-
adjoint with respect to the bilinear form 〈x, y〉J := yT Jx induced by the skew-
symmetric matrix

J = Jn =
[

0 In

−In 0

]
,

where In denotes the n×n identity matrix. This definition is advantageous in that it
leads us directly to two other types of structured matrices, which play an important
role when dealing with Hamiltonian eigenvalue problems, namely skew-Hamiltonian
and symplectic matrices. Skew-Hamiltonian matrices are those that are self-adjoint
with respect to 〈·, ·〉J and symplectic matrices S ∈ R

2n×2n fulfill the relation

STJS = J

which means they are orthogonal with respect to 〈·, ·〉J. Similarity transformations
using symplectic matrices can be shown to preserve all of these structures.

Hamiltonian matrices arising in the aforementioned applications are often large
and sparse and only a small portion of their spectrum is sought. Krylov subspace
methods have proven to be a viable tool for solving this kind of task. They extract
certain spectral information by projection of the original matrix onto a sequence of
expanding Krylov subspaces. Recall that the Krylov subspace of order m associated
with the matrix H and the starting vector u is defined to be

Km(H, u) := span{u, Hu, H2u, . . . , Hm−1u}.

Note that the choice of the starting vector u may critically influence the outcome of
the method. In practice, the process is frequently restarted to gradually improve the
quality of the starting vector [3, 25].

The spectra of Hamiltonian matrices cannot be arbitrary. Real and purely imagi-
nary eigenvalues are bound to occur in pairs {λ,−λ}, while general complex eigen-
values always occur in quadruples {λ,−λ, λ,−λ}. That is, the spectrum of a
Hamiltonian matrix is symmetric with respect to both the real and the imaginary
axis. We will refer to this property as the Hamiltonian spectral symmetry. Nu-
merical methods that take this symmetry into account are capable of preserving the
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eigenvalue pairings despite the presence of roundoff errors and thus return physi-
cally meaningful results. Moreover, exploiting the structure usually leads to more
efficient and sometimes more accurate algorithms.

Krylov subspace methods can be redesigned to preserve the Hamiltonian struc-
ture. This is done by rearranging the computations such that J-orthogonal bases for
the underlying Krylov subspaces are produced. Projections of the original matrix
onto these spaces will then amount to partial symplectic similarity transformations
and hence will inherit the Hamiltonian structure.

1.2. The isotropic Arnoldi process

Skew-Hamiltonian matrices are somewhat easier to handle in this context as we
can take advantage of the following result.

Lemma 1.1. Let L ∈ R
2n×2n be skew-Hamiltonian, then for every starting

vector u ∈ R2n the Krylov subspace K = Km(L, u) of order m ∈ N, m ≤ n, is
isotropic, i.e., yTJx = 0 for all x, y ∈ K.

Proof. See [18, Prop. 3.3].

Hence, at least in theory, there is no need for J-orthogonalization and we are
free to orthogonalize the basis vectors with respect to the standard inner product
instead, i.e., we can apply the Arnoldi algorithm. In practice, however, this isotropy
is distorted by roundoff error and has to be enforced numerically. This gives rise
to the isotropic Arnoldi process of Mehrmann and Watkins [18], where each new
basis vector uj+1 is orthogonalized not only against the previously computed basis
vectors u1, . . . , uj , but also against Ju1, . . . , Juj to yield the augmented Arnoldi
relation

(1.2) LUj = UjTj + JUjSj + uj+1tj+1,je
T
j .

As was already mentioned, Sj would vanish in exact arithmetic. In finite precision
it may happen to deviate from zero, but can still be assumed to be tiny and therefore
neglected in our considerations. Moreover, since Uj is orthogonal and isotropic the
extended matrix [U, JTU ] is orthogonal and J-orthogonal. By projection we find

[Uj, J
T Uj]TL[Uj, J

TUj ] =
[

Tj ∗
−Sj T T

j

]
≈

[
Tj ∗
0 T T

j

]

meaning that the eigenvalues of Tj are approximations to double eigenvalues of the
projected matrix.

The use of this procedure is not restricted to skew-Hamiltonian eigenproblems,
though. It is valuable in the Hamiltonian case as well if applied to an appropriate
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modification of the original matrix. For example, one might think of employing H2,
whose eigensystem is the same as H’s except that eigenvalues have been squared
and which is skew-Hamiltonian whenever H is Hamiltonian. This is a proper choice
as long as extremal eigenvalues of H are required, but might be rather slow when
it comes to interior eigenvalues. In [18], Mehrmann and Watkins propose the use
of the compound shift-and-invert operators

L1(µ) = (H − µI)−1(H + µI)−1

for real and purely imaginary target shifts µ and

L2(µ) = (H − µI)−1(H + µI)−1(H − µI)−1(H + µI)−1

for general complex target shifts. Both of these operators are skew-Hamiltonian
for any Hamiltonian matrix H and accelerate the convergence of eigenvalues near
the pair {µ,−µ} or the quadruple {µ,−µ, µ,−µ}, respectively, by simultaneously
mapping them to eigenvalues of large modulus.

If the isotropic Arnoldi algorithm applied to either L1(µ) or L2(µ) is comple-
mented with implicit restarts [25], we obtain the SHIRA method [18].

1.3. Contributions by this paper

With conventional SHIRA the target shift µ is chosen in the beginning of the
computation and maintained throughout an entire run of the algorithm. The only way
to alter the shift is to terminate the current run and start a new one, thereby discarding
the Krylov basis that has been assembled so far. However, if two consecutive shifts
are not too far apart from each other, the old Krylov subspace will also contain
some approximations to eigenvectors corresponding to eigenvalues in the vicinity
of the new shift. Conversely, the new Krylov subspace will develop unwanted
components in the direction of eigenvectors corresponding to eigenvalues near the
old shift, which the old Krylov basis could help to filter out. Sequences of close-by
shifts occur, e.g., when the first shift is an initial guess, which is successively being
improved as Ritz values progress towards actual eigenvalues. For these reasons it
seems beneficial to circumvent sacrificing the Krylov subspace and the information
it includes.

The Rational Krylov Method of Ruhe [21-23] permits us to transform an Arnoldi
relation for any shifted and inverted operator back to an Arnoldi relation for the
original matrix regardless of shift. Consequently, we may vary the shift at will
without being forced to rerun the algorithm. The Krylov subspace is retained and
expanded at every step. The price we have to pay is that the projected smaller
eigenvalue problems are now generalized upper Hessenberg/triangular instead of
upper Hessenberg standard eigenvalue problems.
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As the Rational Krylov Method is designed to work with the simple shift-
and-invert transformation H �→ (H − µI)−1, it might seem inappropriate for the
compound operators L1(µ) and L2(µ) at first glance. But if we write L1(µ) as
(H2 − µ2I)−1, we observe that it can equally well be understood as a simple shift-
and-invert operator for the matrix H2 with the target shift µ2. Accordingly, we
can apply Rational Krylov to obtain an Arnoldi relation for H2. Based upon this
idea, a rational SHIRA algorithm for the Hamiltonian eigenvalue problem will be
constructed in Section 2. Numerical evidence for the efficiency of this new method
will be given in section 3. The paper concludes with a brief summary and some
remarks in Section 4.

2. RATIONAL SHIRA

Throughout this section, H will denote a Hamiltonian 2n × 2n matrix so that
H2 is skew-Hamiltonian. We will make use of the induced structural properties
without always reminding the reader of these.

2.1. Rational Krylov transformation for real or purely imaginary shifts

Assume we have a generalized Arnoldi recurrence of the form

H2Uj−1Tj−1 = UjKj,j−1,

where the columns u1, . . . , uj of Uj ∈ R2n×j constitute an orthonormal and isotropic
basis of the Krylov subspace Kj(H2, u1), Tj−1 ∈ R

(j−1)×(j−1) is upper triangular
and Kj,j−1 ∈ Rj×(j−1) is upper Hessenberg. The components resulting from the
numerical J-orthogonalization of the basis vectors in (1.2) have been neglected here
as they are zero in exact arithmetic. Note that in a standard Arnoldi recurrence,
Tj−1 = Ij−1. Allowing a more general matrix Tj−1 adds the flexibility necessary
for deriving the rational Krylov transformation in the following.

Given a shift µj , we calculate (H2 − µ2
jI)−1uj and orthogonalize it against

u1, . . . , uj and Ju1, . . . , Juj to obtain

(2.1) tj+1,juj+1 = (H2 − µ2
jI)−1uj −

j∑
i=1

ti,jui −
j∑

i=1

si,jJui.

Let us confine ourselves to real or purely imaginary shifts µj for now, so the
computation remains real. If we again neglect the components resulting from the
J-orthogonalization, (2.1) can be rewritten as

(H2 − µ2
jI)−1uj = Uj+1tj , tj = (ti,j)

j+1
i=1 .

Premultiplication by H2 − µ2
j I yields

(H2 − µ2
j I)Uj+1tj = uj ,
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which can be further rearranged into

(2.2) H2Uj+1tj = Uj+1(ej + tjµ
2
j ),

where ej designates the j-th unit vector. Combining the previous Arnoldi relation
with (2.2) results in

(2.3) H2Uj+1T̃j+1,j = Uj+1K̃j+1,j ,

where

(2.4)

T̃j+1,j =




t1,j

Tj−1
...

tj−1,j

0 · · · 0 tj,j
0 · · · 0 tj+1,j




,

K̃j+1,j =




t1,jµ
2
j

Kj,j−1
...

1 + tj,jµ
2
j

0 · · · 0 tj+1,jµ
2
j


 .

Note that both T̃j+1,j ∈ R
(j+1)×j and K̃j+1,j ∈ R

(j+1)×j are rectangular upper
Hessenberg matrices. In order to regain a generalized Arnoldi recurrence from
(2.3), we determine orthogonal matrices Q ∈ R

(j+1)×(j+1) and Z ∈ R
j×j , such

that QT T̃j+1,jZ := Tj+1,j is upper triangular and QT K̃j+1,jZ := Kj+1,j is again
upper Hessenberg. This can be achieved by the following bulge-chasing procedure,
starting from the bottom and chasing the bulge off the top: use a Givens rotation
applied to rows j, j + 1 from the left to eliminate tj+1,j . This introduces a bulge in
the (j + 1, j − 1) position in K̃j+1,j which in turn can be eliminated by a Givens
rotation in planes j − 1, j applied from the right. Now the Hessenberg structure
in K̃j+1,j is restored at the price of a bulge in the (j, j − 1) position of T̃j+1,j .
Eliminating this by a plane rotation applied to rows j−1, j again introduces a bulge
in the Hessenberg structure of K̃j+1,j , now in the (j, j−2) position. As before, this
is eliminated by a rotation from the right applied to the corresponding columns, i.e.,
to columns j − 2, j − 1 this time. The process continues by alternately eliminating
the introduced bulges in T̃j+1,j and K̃j+1,j , respectively, in the same way as just
described for the last two rows. In this way, the bulges move up and to the left one
position during each step until the bulge is chased off the top. The accumulation of
necessary rotations from the left yields Q while the rotations from the right form Z.

Now postmultiplying (2.3) by Z and utilizing these transformed matrices, we
achieve

H2Uj+1QTj+1,j = Uj+1,jQKj+1,j .
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Observe that its triangular shape causes the last row of Tj+1,j to be zero, so we can
partition

Tj+1,j =
[

Tj

0 · · · 0

]
,

where Tj ∈ R
j×j is upper triangular and square. Lastly, we let Vj+1 := Uj+1Q

and our equation reduces to

H2VjTj = Vj+1Kj+1,j .

Since Q is orthogonal the columns of Vj+1 are orthonormal as were those of Uj+1.
Thus, we have restored a generalized Arnoldi relation. Because of

(2.5) ‖V T
j+1JVj+1‖2 = ‖QTUT

j+1JUj+1Q‖2 = ‖UT
j+1JUj+1‖2 = 0,

Vj+1 also inherits numerical isotropy from Uj+1. So, the Rational Krylov transfor-
mation does not interfere with the (generalized) isotropic Arnoldi process.

2.2. Rational Krylov transformation for general complex shifts
Let us now drop the assumption that µj be either real or purely imaginary and

examine what can be done to handle a general complex target shift. We start again
with the Arnoldi recurrence

H2Uj−1Tj−1 = UjKj,j−1,

where the columns u1,. . . ,uj of Uj are orthonormal and isotropic, Tj−1∈R(j−1)×(j−1)

is upper triangular and Kj,j−1 ∈ R
j×(j−1) is upper Hessenberg, once more ignoring

components coming from the J-orthogonalization. In the event that µj is neither
real nor purely imaginary the operation L1(µj)uj will fail to produce a real result.
The classical SHIRA method overcomes this difficulty by employing the operator
L2(µj) instead, which is guaranteed to deliver a real vector regardless of the choice
for µj . This strategy, however, is not viable in our case due to the fact that the
expansion of L2(µj) contains powers of H higher than H2, which by far compli-
cates the rational transformation. Preferably, we will adopt the approach described
by Ruhe in [21] and treat the real and imaginary parts of L1(µj)uj separately.

First, we orthogonalize the real part 
[
L1(µj)uj

]
against u1, . . . , uj and Ju1,

. . . , Juj yielding

tj+1,juj+1 = 
[
L1(µj)uj

] −
j∑

i=1

ti,jui −
j∑

i=1

si,jJui.

Afterwards, we orthogonalize the imaginary part �[
L1(µj)uj

]
against u1, . . . , uj+1

and Ju1, . . . , Juj+1 to obtain

tj+2,j+1uj+2 = �[
L1(µj)uj

] −
j+1∑
i=1

ti,j+1ui −
j+1∑
i=1

si,j+1Jui.
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If we once again neglect expressions associated with the J-orthogonalization, these
can be rearranged into


[
(H2 − µ2

jI)−1uj

]
= Uj+2tj , tj = [t1,j, . . . , tj+1,j, 0]T ,(2.6)

�[
(H2 − µ2

jI)−1uj

]
= Uj+2tj+1, tj+1 = [t1,j+1, . . . , tj+2,j+1]T .(2.7)

Together, (2.6) and (2.7) imply

(H2 − µ2
j )

−1uj = Uj+2(tj + itj+1).

As with the simpler case above this can be converted into

H2Uj+2(tj + itj+1) = Uj+2(ej + tjµ
2
j + itj+1µ

2
j )

Splitting µ2
j = ρj + iθj into its real and imaginary parts, we obtain

(2.8) H2Uj+2(tj + itj+1) = Uj+2

(
ej + tjρj − tj+1θj + i(tjθj + tj+1ρj)

)
.

Equation (2.8), too, is decomposed into its real and imaginary parts

H2Uj+2tj = Uj+2(ej + tjρj − tj+1θj),(2.9)

H2Uj+2tj+1 = Uj+2(tjθj + tj+1ρj),(2.10)

which can be combined with the initial Arnoldi relation to produce

(2.11) H2Uj+2T̃j+2,j+1 = Uj+2K̃j+2,j+1,

where

(2.12) T̃j+2,j+1 =




t1,j t1,j+1

Tj−1
...

...
tj−1,j tj−1,j+1

0 · · · 0 tj,j tj,j+1

0 · · · 0 tj+1,j tj+1,j+1

0 · · · 0 0 tj+2,j+1




,

and

(2.13)

K̃j+2,j+1

=




t1,jρj − t1,j+1θj t1,jθj + t1,j+1ρj

Kj,j−1
...

...
tj−1,jρj − tj−1,j+1θj tj−1,jθj + tj−1,j+1ρj

1 + tj,jρj − tj,j+1θj tj,jθj + tj,j+1ρj

0 · · · 0 tj+1,jρj − tj+1,j+1θj tj+1,jθj + tj+1,j+1ρj

0 · · · 0 −tj+2,j+1θj tj+2,j+1ρj




.
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Using a similar bulge chasing procedure as before, orthogonal matrices Q ∈
R

(j+2)×(j+2) and Z ∈ R
(j+1)×(j+1) can be found, such that QT T̃j+2,j+1Z :=

Tj+2,j+1 is upper triangular and QT K̃j+2,j+1Z := Kj+2,j+1 is upper Hessenberg,
again leaving the bottom row of Tj+2,j+1 to be zero. Note that this time, in order
to chase the bulges which consist of two elements each in T̃j+2,j+1, K̃j+2,j+1, we
need two rotations from the left and two from the right in order to chase the bulge
up one row and one column to the left.

If we postmultiply (2.11) by Z, let Vj+2 := Uj+2Q and choose Tj+1 to be the
leading j + 1 rows of Tj+2,j+1, we obtain the generalized Arnoldi relation

H2Vj+1Tj+1 = Vj+2Kj+2,j+1.

Thus, we have incremented the order of our Arnoldi decomposition by 2. As


[L1(µj)uj] =
1
2
(
L1(µj)uj + L1(µj)uj

)
,

�[L1(µj)uj] =
1
2i

(
L1(µj)uj − L1(µj)uj

)
,

the above procedure can be viewed as taking both L1(µj)uj and L1(µj)uj and then
adding the space spanned by them to the Krylov subspace.

2.3. Applying the operators

In every step of the expansion phase, the operator (H − µjI)−1(H + µjI)−1

has to be applied to a vector u. This can be accomplished by successively solving
the linear systems

(H − µjI)y = u

and
(H + µjI)x = y.

Thanks to the Hamiltonian structure of H , only one LU -factorization is needed to
solve both linear systems for we have

H + µjI = J(H − µjI)TJ ,

and (H − µjI)T = UTLT is an LU -factorization of (H − µjI)T whenever H −
µjI = LU is an LU -factorization of H − µjI . Bear in mind, though, that this
LU -factorization has to be redone whenever the shift changes. Therefore, we ought
not to alter the shift too often in order to save some factorizations.

2.4. Implicit restarts, locking and purging

In practice, we cannot arbitrarily extend our Krylov sequences due to memory
constraints. The remedy is to frequently restart the computation using a better start-
ing vector, which is to be deduced from the precedent run. Polynomial filters have
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successfully been utilized to purify the starting vector by de-emphasizing unwanted
components. In [25], Sorensen shows how to apply them implicitly through per-
forming QR-iterations on the projected problem. Additionally, locking and purging
techniques can be pursued in order to reduce the computational effort.

As was pointed out earlier, the Arnoldi recurrences generated by the Rational
SHIRA method are typically of the generalized form

(2.14) H2UjTj = Uj+1Kj+1,j .

Since Tj is always invertible unless u1, . . . , uj span an exact invariant subspace un-
der H2, we may turn this into a standard Arnoldi relation by multiplying T−1

j from
the right. Doing so, however, is strongly discouraged as especially smaller eigen-
values may be very sensitive to the roundoff error incurred in forming the product
Kj+1,jT

−1
j explicitly. Preferably, we seek to adapt the restarting and deflation

strategies to work directly with the pair (Kj+1,j, Tj).
Hence, a QZ-like approach must be taken to effect an implicit restart. Assume

we want to apply the filter polynomial p(H2) = (H2 − ρ1I) · · ·(H2 − ρdI) to the
decomposition (2.14). It suffices to investigate how a single linear factor (H2−ρI)
of the polynomial can be applied. First, we split up the right hand side of (2.14)
into

(2.15) H2UjTj = UjKj + uj+1kj+1,je
T
j , Kj+1,j =

[
Kj

kj+1,je
T
j

]
,

which is another common way of writing down an Arnoldi relation. Afterwards,
the equation is shifted by −ρUjTj to give

(2.16) (H2 − ρI)UjTj = Uj(Kj − ρTj) + uj+1kj+1,je
T
j .

Postmultiply (2.16) by the first unit vector e1 and let Q0 be a Householder reflector,
such that QT

0 (Kj − ρTj)e1 = αe1, α ∈ R. Then, we have for j > 1

(2.17) t1,1(H2 − ρI)Uje1 = αUjQ0e1

since Tj is upper triangular. Thus, the first column of UjQ0 is some multiple of
(H2 − ρI)u1. Now, apply QT

0 from the left to Tj and Kj . This will introduce a
bulge in the (2, 1)-position of Tj while leaving Kj’s upper Hessenberg structure
intact. Using the standard Hessenberg-triangular bulge-chasing procedure employed
in a QZ step [13], we can annihilate this bulge by performing a Givens rotation Z1

from the right on both Tj and Kj. Tj is now again in upper triangular form, but
the Hessenberg form of Kj is disturbed by a bulge in the (3, 1)-position. Eliminate
it using a Givens rotation QT

1 from the left on both Tj and Kj . Keep on applying
Givens rotations Zi from the right and QT

i from the left to chase the bulge out of
these matrices. The resulting matrices T̂j and K̂j will again be of upper triangular
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and upper Hessenberg form, respectively. If we accumulate the transformations
Q := Q0Q1 · · ·Qs and Z := Z1Z2 · · ·Zs+1, we can equate

T̂j = QT TjZ, K̂j = QT KjZ.

Postmultiply (2.15) by Z and utilize our newly acquired matrices T̂j and K̂j together
with Vj := UjQ to arrive at

H2VjT̂j = VjK̂j + uj+1kj+1,je
T
j Z.

Observe that eT
j Zi = eT

j for all Zi except the last one. Hence, eT
j Z has nonzeros

only in its last two components. Observe furthermore that QT
1 , . . . , QT

s do not act
upon the first rows of Tj or Kj . Consequently, Q1, . . . , Qs do not touch the first
column of Q0, which means Qe1 = Q0e1. If we combine this with (2.17), we
find that v1, i.e. the first column of Vj , is a multiple of (H2 − ρI)u1. Thus, we
have successfully applied a linear factor to the starting vector. These steps may be
repeated to process more linear factors until the complete filter polynomial has been
applied. Note, however, that the last vector of the decomposition has to be truncated
every time due to the fill-in in eT

j .
For the purposes of locking and purging we propose a slight modification of

the Krylov-Schur approach [27], which is capable of dealing with the expanded
generalized Arnoldi relation (2.15). First, Kj and Tj are reduced to generalized
real Schur form by means of the QZ-algorithm. Accordingly, orthogonal matrices,
Q ∈ R

j×j and Z ∈ R
j×j , are determined, such that QTTjZ := T̂j is upper

triangular and QTKjZ := K̂j is upper quasi-triangular, i.e. block upper triangular
having only 1×1- or 2×2-blocks on its diagonal. If we multiply (2.15) by Z from
the right, let Vj = UjQ and deploy the transformed matrices T̂j and K̂j, we obtain
the generalized Krylov-Schur decomposition

(2.18) H2VjT̂j = VjK̂j + uj+1b
T ,

where bT = kj+1,je
T
j Z is now, in general, a full vector. Partitioning

T̂j =
[

T̂1,1 T̂1,2

0 T̂2,2

]
, K̂j =

[
K̂1,1 K̂1,2

0 K̂2,2

]
, b =

[
b1

b2

]
,

where both, T̂1,1 and K̂1,1, are k × k and b1 ∈ Rk , we may infer

(2.19) H2VkT̂1,1 = VkK̂1,1 + uj+1b
T
1

by looking only at the first k columns of (2.18). Since Vk has orthonormal columns
and T̂1,1 and K̂1,1 are upper triangular and upper quasi-triangular, respectively,
(2.19) itself poses a generalized Krylov-Schur decomposition. This fact can be
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exploited for purging by using the reordering procedure from [15] to move unwanted
Ritz values into the trailing part of the generalized Schur decomposition and then
truncating. Moreover, after rearranging and taking norms, (2.19) provides us with
a convergence criterion,

(2.20) ‖H2VkT̂1,1 − VkK̂1,1‖F = ‖uj+1b
T
1 ‖F ≤ ‖b1‖2,

for the column space of Vk towards an invariant subspace under H 2. Hence, we may
reorder (again using the procedure from [15]) every diagonal block of K̂j into the
position immediately following the leading block of previously locked eigenvalues
while monitoring the elements of b. Once the leading components b1 of b are found
to be negligible, we may consider the corresponding eigenvalue (in case the block
is 1 × 1) or pair of complex conjugate eigenvalues (in case of a 2 × 2-block) as
converged. Subsequently, we may safely set the already tiny elements of b1 to zero
without sacrificing backward stability. Doing so deflates the problem because it
enables us to transform only the trailing part back into an Arnoldi decomposition
leaving the converged block as well as the associated H2-invariant column space
of Vk untouched and removing them from the active part of the computation. This
constitutes our locking procedure.

It should be highlighted that only orthogonal transformations are applied to the
Krylov basis Uj , and, therefore, all of the above techniques maintain their numerical
isotropy, compare (2.5).

2.5. Postprocessing

As our method assembles a sequence of generalized, isotropic Arnoldi decom-
positions of H2, the Ritz values θi we calculate from the projected problems will, of
course, be approximations to eigenvalues of H2. Taking into account the Hamilto-
nian structure and resulting spectral symmetry of H , though, we can readily conclude
that adequate Ritz values for H are given by both

√
θi and −√

θi. It is safe to use
them simultaneously (thereby doubling the number of Ritz values), because the en-
forced isotropy ensures only one Ritz value is picked up by the Arnoldi process for
every positive/negative pair of H’s eigenvalues. Hence, no spurious double eigen-
values of H can be forged this way. Note also that the different manner in which
Rational SHIRA handles general complex shifts removes the ambiguity occurring
with the original method, see [18, sect. 5.1], when inferring the eigenvalues of H .

When it comes to eigenvectors more work has to be done. Since the eigenspaces
corresponding to a pair {λ,−λ} of eigenvalues of H are merged into a single
eigenspace associated with the eigenvalue λ2 when H is squared, an eigenvector of
H2 will, in general, turn out to be a linear combination of several eigenvectors of
H belonging to different eigenvalues and, therefore, will fail to be invariant under
H . The easiest way of acquiring eigenvectors is probably to perform a few steps of
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inverse iteration with the computed eigenvalue estimates. It might also be possible to
derive a Hamiltonian Schur form from the skew-Hamiltonian Krylov-Schur relation
(2.18) using a variant of the algorithm presented in [11] provided none of the real
Ritz values are negative, although this remains to be further researched.

2.6. Complete algorithm

Putting the pieces together, we obtain the following algorithm.

INPUT: Hamiltonian matrix H , starting vector u1, number of requested eigenvalue
pairs p.

OUTPUT: p eigenvalue pairs, optionally corresponding eigenvectors.
1 : j := 1
2 : normalize u1 := 1

‖u1‖u1

3 : T0 := []
4 : K1,0 := []
5 : repeat
6 : pick a shift µj

7 : compute w := (H − µjI)−1(H + µjI)−1uj as described in Section 2.3
8 : if µ2

j is real then
9 : orthogonalize ũj+1 := w − Ujtj , where tj := UT

j w (Gram-Schmidt)
10 : repeat orthogonalization as necessary
11 : normalize uj+1 := 1

tj+1,j
ũj+1, where tj+1,j := ‖ũj+1‖

12 : form T̃j+1,j and K̃j+1,j as in (2.4)
13 : determine orthogonal matrices Q ∈ R

(j+1)×(j+1), Z ∈ R
j×j , such that

Tj+1,j := QT T̃j+1,jZ is upper triangular and

Kj+1,j := QT K̃j+1,jZ is upper Hessenberg
14 : define Tj to be the first j rows of Tj+1,j

15 : set Uj+1 := Uj+1Q

16 : j := j + 1
17 : else
18 : orthogonalize ũj+1 :=
(w)−Ujtj , where tj :=UT

j 
(w) (Gram-Schmidt)
19 : repeat orthogonalization as necessary
20 : normalize uj+1 := 1

tj+1,j
ũj+1, where tj+1,j := ‖ũj+1‖

21 : orthogonalize ũj+2 := �(w)− Uj+1tj+1,

where tj+1 := UT
j+1�(w) (Gram-Schmidt)

22 : repeat orthogonalization as necessary
23 : normalize uj+2 := 1

tj+2,j+1
ũj+2, where tj+2,j+1 := ‖ũj+2‖

24 : split µ2
j := ρj + iθj

25 : form T̃j+2,j+1 as in (2.12) and K̃j+2,j+1 as in (2.13)
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26 : determine orthogonal matrices Q∈R
(j+2)×(j+2), Z∈R

(j+1)×(j+1) such that,
Tj+2,j+1 := QT T̃j+2,j+1Z is upper triangular and
Kj+2,j+1 := QT K̃j+2,j+1Z is upper Hessenberg

27 : define Tj+1 to be the first j + 1 rows of Tj+2,j+1

28 : Uj+2 := Uj+2Q

29 : j := j + 2
30 : end if
31 : reduce Tj−1 and Kj,j−1 to generalized Schur form using the QZ algorithm
32 : test every Ritz value for convergence by appropriately reordering the Schur form
33 : lock converged Ritz values
34 : transform active part back into an Arnoldi decomposition
35 : optionally apply a filter polynomial
36 : Until p Ritz values have been locked
37 : take positive and negative roots of locked Ritz values as eigenvalue estimates
38 : determine corresponding eigenvectors by inverse iteration if requested

3. NUMERICAL EXPERIMENTS

In order to assess the numerical behavior of the Rational SHIRA method as it
is described in Section 2, we have applied it to the ”intelligent highway” problem
taken from the benchmark collection [7, Ex. 15] using MATLAB 6.1. We chose
the number of vehicles to be 500 resulting in a Hamiltonian matrix H of dimension
1998 × 1998. The matrix itself is very sparse as is shown in Figure 3.1, which
allows for cheap solutions of linear systems involving this matrix or shifted versions
thereof. The spectrum of the matrix (as returned by MATLAB’s eig command)
has the appearance of Figure 3.2 featuring both real and general complex, but no
purely imaginary eigenvalues.

We start out performing two steps of Rational SHIRA with shift µ1 = 0.7.
We keep track of the residuals of the individual Ritz values by means of (2.20)
utilizing the Krylov-Schur approach outlined in 2.4. We then choose the new shift
to be the Ritz value with smallest residual not less than 10−5 in order to speed
up convergence for this Ritz value, but prevent the shifted operator from becoming
nearly singular. We carry out two more steps of Rational SHIRA and then repeat
this strategy of selecting another shift from the Ritz values. Continuing this scheme,
where every shift is kept for two iterations and then replaced, yields the convergence
history depicted in Figure 3.3. A Ritz value whose residual becomes less than 10−9

is considered converged and deflated from the active part of the computation as
explained in 2.4. As doing so inhibits our residual estimate (2.20) (causing it to be
zero), the residuals of deflated (locked) eigenvalues are always listed to be machine
precision u ≈ 2.22 · 10−16.
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Fig. 3.1. Sparsity pattern of test matrix.

Fig. 3.2. Spectrum of the test matrix.

The plot in Figure 3.3 indicates that the residuals of a total of 18 real Ritz values
or pairs of complex conjugate Ritz values could be driven below the threshold of
10−9 within 40 steps of the iteration. Bear in mind, however, that the Krylov
sequence has been extended by two vectors in those steps where complex shifts
were used. Figure 3.4 shows the computed Ritz values in the first quadrant in com-
parison to the eigenvalues determined by eig. Because of the Hamiltonian spectral
symmetry we also have corresponding Ritz values within the other three quadrants.



820 Peter Benner and Cedric Effenberger

Fig. 3.3. Convergence history of the Rational SHIRA method for the test matrix.

Fig. 3.4. Ritz values for the test problem computed by Rational SHIRA.

Even though the computed Krylov basis is all real, MATLAB’s complex arith-
metic has been taken advantage of when solving linear systems for operators with
complex shifts.
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4. CONCLUSIONS

We have presented a detailed derivation of an algorithm for solving Hamiltonian
eigenproblems, which combines the SHIRA method of Mehrmann and Watkins
with Ruhe’s Rational Krylov algorithm in pursuit of equipping the former with the
possibility of changing the shifts at runtime. We, therefore, call this new method
Rational SHIRA. Preliminary numerical results confirm the efficiency of the method,
although the need for more numerical experience persists at the time of writing this
paper.

REFERENCES

1. A. C. Antoulas, A new result on positive real interpolation and model reduction,
Systems and Control Letters, 54 (2005), 361-374.

2. P. Benner, Computational Methods for Linear-Quadratic Optimization, Supplemento
ai Rendiconti del Circolo Matematico di Palermo, Serie II, 58 (1999), 21-56.

3. P. Benner and H. Faβbender, An implicitly restarted symplectic Lanczos method for
the Hamiltonian eigenvalue problem, Linear Algebra Appl., 263 (1997), 75-111.

4. P. Benner, H. Faβbender and M. Stoll, Solving Large-Scale Quadratic Eigenvalue
Problems with Hamiltonian Eigenstructure using a Structure-Preserving Krylov Sub-
space Method, Electr. Trans. Num. Anal., 29 (2008), 212-229.

5. P. Benner and H. Faβbender, Numerische Methoden zur passivitätserhaltenden Mod-
ellreduktion, at-Automatisierungstechnik, 54(4) (2006), 153-160.

6. P. Benner and H. Faβbender, Passivity Preserving Model Reduction via a Structured
Lanczos Method, Proc. 2006 IEEE Conf. CACSD, Munich, Germany, Oct. 4-6,
IEEE, 2006, pp. 8-13.

7. P. Benner, A. J. Laub and V. Mehrmann, A Collection of Benchmark Examples for
the Numerical Solution of Algebraic Riccati Equations I: Continuous-Time Case,
Fakultät für Mathematik, TU Chemnitz-Zwickau, SPC 95 22, 1995.

8. S. Boyd, V. Balakrishnan and P. Kabamba, A bisection method for computing the
H∞ norm of a transfer matrix and related problems, Math. Control, Signals, Sys., 2
(1989), 207-219.

9. J. V. Burke, A. S. Lewis and M. L. Overton, Robust stability and a criss-cross
algorithm for pseudospectra, IMA J. Numer. Anal., 23 (2003), 359-375.

10. R. Byers, A bisection method for measuring the distance of a stable to unstable
matrices, SIAM J. Sci. Statist. Comput., 9 (1988), 875-881.

11. D. Chu, X. Liu and V. Mehrmann, A numerical method for computing the Hamilto-
nian Schur form, Numer. Math., 105(3) (2006), 375-412.

12. T. Eirola, Krylov integrators for Hamiltonian systems, Workshop on Exponential
Integrators, Innsbruck, 20.-23.10.2004, 2004.



822 Peter Benner and Cedric Effenberger

13. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press third edition, Baltimore, 1996.

14. K. Ito and K. Kunisch, Reduced order control based on approximate inertial mani-
folds, Linear Algebra Appl., 415(2-3) (2006), 531-541.

15. B. Kagström, A Direct Method for Reordering Eigenvalues in the Generalized Real
Schur Form of a Regular Matrix Pair (A, B), Linear Algebra for Large Scale and
Real-Time Applications, M. S. Moonen, G. H. Golub and B. L. R. De Moor, eds.,
Kluwer Academic Publishers, Amsterdam, 1993, pp. 195-218.

16. L. Lopez and V. Simoncini, Preserving geometric properties of the exponential matrix
by block Krylov subspace methods, BIT, 46 (2006), 813-830.

17. V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and
Numerical Solution, Lecture Notes in Control and Information Sciences, No. 163,
M. Thomas and A. Wyner, eds., Springer-Verlag, Heidelberg, 1991.

18. V. Mehrmann and D. S. Watkins, Structure-preserving methods for computing eigen-
pairs of large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J. Sci. Statist.
Comput., 22 (2001), 1905-1925.

19. J. Olson, H. J. A. Jensen and P. Jørgensen, Solution of large matrix equations which
occur in response theory, J. Comput. Phys., 74 (1988), 265-282.

20. C. Pester, Hamiltonian eigenvalue symmetry for quadratic operator eigenvalue prob-
lems, J. Integral Equations Appl., 17(1) (2005), 71-89.

21. A. Ruhe, The Rational Krylov algorithm for nonsymmetric Eigenvalue problems. III:
Complex shifts for real matrices, BIT, 34 (1994), 165-176.

22. A. Ruhe, Rational Krylov algorithms for nonsymmetric Eigenvalue problems, Recent
Advances in Iterative Methods, IMA Volumes in Mathematics and its Applications
60, G. Golub, A. Greenbaum and M. Luskin eds., Springer-Verlag, New York, 1994,
pp. 149-164.

23. A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, II: Ma-
trix pairs, Linear Algebra Appl., 197/198 (1994), 283-296.

24. V. Sima, Algorithms for Linear-Quadratic Optimization, Pure and Applied Mathe-
matics, 200, Marcel Dekker, Inc., New York, NY., 1996.

25. D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method,
SIAM J. Matrix Anal. Appl., 13(1) (1992), 357-385.

26. D. C. Sorensen, Passivity Preserving Model Reduction via Interpolation of Spectral
Zeros, Systems & Control Letters, 54 (2005), 347-360.

27. G. W. Stewart, A Krylov-Schur algorithm for large eigenproblems, SIAM J. Matrix
Anal. Appl., 23(3) (2001), 601-614.

28. F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43
(2001), 235-286.



Rational SHIRA for Hamiltonian Eigenproblems 823

29. N. Wong, V. Balakrishnan and C.-K. Koh, Passivity-Preserving Model Reduction Via
A Computationally Efficient Project-And-Balance Scheme, Proc. Design Automation
Conference, San Diego, CA (June), 2004, pp. 369-374.

30. K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall,
Upper Saddle River, NJ, 1996.

Peter Benner
TU Chemnitz, Fakultät für Mathematik,
Mathematik in Industrie und Technik,
09107 Chemnitz,
Germany
E-mail: benner@mathematik.tu-chemnitz.de

Cedric Effenberger
Seminar für Angewandte Mathematik,
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