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NOTE ON F -IMPLICIT GENERALIZED VECTOR

VARIATIONAL INEQUALITIES

Yen-Cherng Lin and Mu-Ming Wong*

Abstract. In this paper, we deal with weak and strong solutions to F -implicit
generalized vector variational inequalities and F -implicit generalized (weak)
vector variational inequalities. Several results of the existence for the weak

solutions and strong solutions to both problems are derived.

1. INTRODUCTION AND PRELIMINARIES

Let X be arbitrary real normed space with dual space X? and (·, ·) be the dual
pair of X? and X . Let K be a nonempty closed convex set of X . The mappings
F : K → R and g : K → K and T : K → 2X∗

are given. In 2006, Zeng et. al.[3]

introduced and discussed the F -Implicit generalized variational inequality problem:

find x̄ ∈ K such that

sup
s∈T (x̄)

(s, y − g(x̄)) + F (y) − F (g(x̄)) ≥ 0

for all y ∈ K.

We will generalize some results of the F -Implicit generalized variational in-
equality problem for the vector case with moving cone in the Section 2.

Let X, Y be arbitrary real Housdorff topological vector spaces. Let K be

a nonempty set of X , C : K → 2Y a set-valued mapping such that for each

x ∈ K, C(x) is a proper closed convex and pointed cone with apex at the origin
and intC(x) 6= ∅, that is, for each x ∈ K, C(x) is proper closed with intC(x) 6= ∅
and satisfied (1) λC(x) ⊆ C(x), ∀λ > 0;(2) C(x) + C(x) ⊆ C(x); and (3)
C(x) ∩ (−C(x)) = {0}.
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For each x ∈ K, we can define relations “≥C(x)” and “6≥C(x)” as follows:

(1) y ≥C(x) z ⇔ y − z ∈ C(x); and (2) y 6≥C(x) z ⇔ y − z 6∈ C(x). The
notation “z ≤C(x) y” is equivalent to “y ≥C(x) z” and “z 6≤C(x) y” is equivalent to

“y 6≥C(x) z”. Throughout this paper, for each x ∈ K, the relation “yρxz” represents
one and only one of the following relations: (1) y ≥C(x) z, (2) y 6≤intC(x) z, for all

y, z ∈ Y . The relation “yρc
xz” represents one and only one of the corresponding

relations: (1) y 6≥C(x) z, (2) y ≤intC(x) z, for all y, z ∈ Y .

Let L(X, Y ) be the space of all continuous linear mappings from X to Y . The
mappings F : K → Y , g : K → K, A : L(X, Y ) → L(X, Y ) and T : K →
2L(X,Y ) are given. Now, we consider the F -implicit generalized vector variational
inequality (FIGVVI) as follows: find an x̄ ∈ K such that for each y ∈ K, there is
s̄ ∈ T (x̄) satisfying

(1) {(As̄, y − g(x̄)) + F (y) − F (g(x̄))}ρx̄0

and we call such a solution a weak solution to FIGVVI. For the case that s̄ does
not depend on y, that is, find an x̄ ∈ K with some s̄ ∈ T (x̄) such that

(2) {(As̄, y − g(x̄)) + F (y) − F (g(x̄))}ρx̄0

for all y ∈ K, we call such solution a strong solution to FIGVVI.
In this paper, we aim to derive some solvabilities for these two kinds of F -

implicit generalized vector variational inequality problem. We note that existence

and solution methods for similar problems in scalar and vector cases have been

investigated extensively in for example [6-29]. Now let us list the basic assumptions

for the mappings F : K → Y , g : K → K, A : L(X, Y ) → L(X, Y ), T : K →
2L(X,Y ), C : K → 2Y and ν : K × K → Y as follows.

Hypothesis (H0). Let X , Y be real Hausdorff topological vector spaces, K a

nonempty closed convex subset of X . The set-valued mapping C : K → 2Y is such

that for any fixed x ∈ K, C(x) is a proper closed convex and pointed cone with
apex at the origin and intC(x) 6= ∅.

Hypothesis (Ha). The mappings A : L(X, Y ) → L(X, Y ), F : K → Y ,

g : K → K, T : K → 2L(X,Y ) and ν : K × K → Y . Suppose that

(a1) for each x ∈ K, there is s ∈ T (x) such that for all y ∈ K,

F (y) − F (g(x))− (ν(x, y)− (As, y − g(x))) ∈ C(x);

(a2) there is a nonempty compact convex subset D of K, such that for every
x ∈ K \ D, there is y ∈ D such that for all s ∈ T (x),

(As, y − g(x))ρc
x(F (g(x))− F (y)).
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Hypothesis (Hb) The vector-valued mapping ν : K × K → Y is such that

(b1) ν(x, x) ∈ C(x) for all x ∈ K;

(b2) for each x ∈ K, the set {y ∈ K : ν(x, y) 6∈ C(x)} is convex.

We note that the hypothesis (a1) is equivalent to the statement “for each x ∈ K,

there is s ∈ T (x) such that for all y ∈ K, ν(x, y)− (As, y − g(x)) ≤C(x) F (y) −
F (g(x))” and is weaker than (1) and (2) because the value of ν(x, y) need not
belong to C(x). For more detail, we refer the reader to Example 2.1 below. Let us
first recall the following results.

Fan’s Lemma. ([1]). Let K be a nonempty subset of Hausdorff topological

vector space X . Let G : K → 2X be a KKM mapping such that for any y ∈ K,

G(y) is closed and G(y∗) is compact for some y∗ ∈ K. Then there exists x∗ ∈ K
such that x∗ ∈ G(y) for all y ∈ K.

Definition 1.1. ([5]). Let Ω be a vector space, Σ a topological vector space,

K a nonempty convex subset of Ω, C : K → 2Σ a set-valued mapping such that

for each x ∈ K, C(x) is a proper closed convex and pointed cone with apex at the
origin and intC(x) 6= ∅. For any fixed x ∈ K, ϕ : K → Σ is said to be

(1) C(x)-convex if ϕ(tx1 + (1 − t)x2) ≤C(x) tϕ(x1) + (1 − t)ϕ(x2) for every
x1, x2 ∈ K and t ∈ [0, 1];

(2) properly quasi C(x)-convex if we have either

ϕ(tx1 + (1− t)x2) ≤C(x) ϕ(x1)

or

ϕ(tx1 + (1− t)x2) ≤C(x) ϕ(x2)

for every x1, x2 ∈ K and t ∈ [0, 1].

The following definition can also be found in [5].

Definition 1.2. Let Ω be a vector space, Σ a topological vector space, K a

nonempty convex subset of Ω, C : K → 2Σ a set-valued mapping such that for any

fixed x ∈ K, C(x) is a proper closed convex and pointed cone with apex at the
origin and intC(x) 6= ∅, A a nonempty subset of Σ, then for any fixed x ∈ K,

(1) a point z ∈ A is called a minimal point of A with respect to the cone C(x) if
A ∩ (z − C(x)) = {z}; MinC(x)A is the set of all minimal points of A with

respect to the cone C(x);
(2) a point z ∈ A is called a maximal point of A with respect to the cone C(x)

if A ∩ (z + C(x)) = {z}; MaxC(x)A is the set of all maximal points of A
with respect to the cone C(x);
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(3) a point z ∈ A is called a weakly minimal point of A with respect to the cone

C(x) if A ∩ (z − intC(x)) = ∅; MinC(x)
w A is the set of all weakly minimal

points of A with respect to the cone C(x); and
(4) a point z ∈ A is called a weakly maximal point of A with respect to the cone

C(x) if A∩ (z + intC(x)) = ∅; MaxC(x)
w A is the set of all weakly maximal

points of A with respect to the cone C(x).

Lemma 1.1. Let Σ be an arbitrary real Housdorff topological vector space, K
a nonempty set, C : K → 2Σ a set-valued mapping such that for any fixed x ∈ K,
C(x) is a proper closed convex and pointed cone with apex at the origin. For any
fixed x ∈ K, If y ≥C(x) 0 and y ≤C(x) 0, then y = 0.

Lemma 1.2. ([4]). Let X , Y and Z be real topological vector spaces, K and

C be nonempty subsets of X and Y , respectively. Let F : K × C → 2Z , S :
K → 2Y be multi-valued mappings. If both F and S are upper semicontinuous

with compact values, then the multi-valued mapping T : K → 2Z defined by

T (x) =
⋃

y∈S(x) F (x, y) = F (x, S(x)) is upper semicontinuous with nonempty
compact values.

2. F -IMPLICIT GENERALIZED VECTOR VARIATIONAL INEQUALITIES PROBLEMS

Now, we state and show our main results of solvabilities for F -implicit gener-
alized vector variational inequalities problems with moving cone.

Theorem 2.1. Let X , Y , K, C, A, F , g, T and ν satisfy hypothesis (H0), (Ha)

and (Hb). Suppose that for each y ∈ K, the set

(3) {x ∈ K : (As, y − g(x))ρc
x(F (g(x))− F (y)) for all s ∈ T (x)}

is open in K. Then FIGVVI has a weak solution. That is, there is an x̄ ∈ K such

that for all y ∈ K, there is s̄ ∈ T (x̄) satisfying

{(As̄, y − g(x̄)) + F (y) − F (g(x̄))}ρx̄0.

Proof. Define Ω : K → 2D by

Ω(y) = {x ∈ D : (As, y − g(x))ρx(F (g(x))− F (y)) for some s ∈ T (x)}

for all y ∈ K. From condition (3) we see that for each y ∈ K, the set Ω(y) is
closed in K and hence it is compact in D because of the compactness of D.

Next, we claim that the family {Ω(y) : y ∈ K} has the finite intersection
property, then the whole intersection ∩y∈KΩ(y) is nonempty and any element in
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the intersection ∩y∈KΩ(y) is a weak solution of FIGVVI. Indeed, for any given
nonempty finite subset N of K. Let DN = co{D∪N}, the convex hull of D∪N .
Then DN is a compact convex subset of K. Define the mappings S, R : DN →
2DN , respectively, by

S(y) = {x ∈ DN : (As, y − g(x))ρx(F (g(x))− F (y)) for some s ∈ T (x)},

and

R(y) = {x ∈ DN : ν(x, y) ∈ C(x)},

for each y ∈ DN . From the conditions (b1) of (Hb) and (a1) of (Ha), we have

(4) ν(y, y) ∈ C(y) for all y ∈ DN ,

and for each y ∈ K, there is an s ∈ T (y) such that

F (y) − F (g(y)) + (As, y − g(y))− ν(y, y) ∈ C(y).

Hence (As, y − g(y)) + F (y) − F (g(y)) ∈ C(y) and then y ∈ S(y) for all
y ∈ DN . We can easily see that S has closed values in DN . Since, for each

y ∈ DN , Ω(y) = S(y) ∩ D, if we prove that the whole intersection of the family

{S(y) : y ∈ DN} is nonempty, we can deduce that the family {Ω(y) : y ∈ K} has
finite intersection property because N ⊂ DN and due to the condition (a2) of (Ha).

In order to deduce the conclusion of our theorem, we can apply the Fan’s Lemma if

we claim that S is a KKM mapping. Indeed, if S is not a KKM mapping, neither

is R since R(y) ⊂ S(y) for each y ∈ DN . Then there is a nonempty finite subset

M of DN such that

coM 6⊂ ∪u∈MR(u).

Thus there is an element ū ∈ coM ⊂ DN such that ū 6∈ R(u) for all u ∈ M , that

is, 0 6≤C(ū) ν(ū, u) for all u ∈ M . By (b2) of (Hb), we have

ū ∈ coM ⊂ {y ∈ K : ν(ū, y) 6∈ C(ū)}

and hence ν(ū, ū) 6∈ C(ū) which contradicts (4). Hence R is a KKM mapping, and

so is S. This completes the proof.

If condition (3) is replaced by stronger conditions as follows:

(5)

F is continuous on K, the mappings A : L(X, Y ) → L(X, Y ),

g : K → K are continuous and

T : K → 2L(X,Y ) is upper semicontinuous

with nonempty compact values,
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then from Lemma 1.2, we know that the condition (5) of Theorem 2.1 is always

true. Hence we have the following corollary.

Corollary 2.1. Under the framework of Theorem 2.1 except condition (3). Sup-

pose that the mappings A : L(X, Y ) → L(X, Y ), F : K → Y and g : K → K

are continuous, T : K → 2L(X,Y ) is upper semicontinuous with nonempty compact

values. Then there exists an x̄ ∈ K which is a weak solution to FIG VVI. That is,

there is an x̄ ∈ K such that for all y ∈ K, there is s̄ ∈ T (x̄) satisfying

{(As̄, y − g(x̄)) + F (y) − F (g(x̄))}ρx̄0.

Remark. If the condition (5) holds, then condition (3) of Theorem 2.1 can be

omitted automatically. Furthermore, we note that if F, A, g, T are single-valued

continuous mappings, then the condition (3) of Theorem 2.1 is fulfilled. Hence,

we have the following corollary in the Hausdorff topological vector spaces settings

with moving cone.

Corollary 2.2. Let X , Y , K, C satisfy hypothesis (H0). Let the mappings

F : K → Y and g : K → K be continuous, T : K → Y be continuous and the

mapping ν satisfy hypothesis (Hb). Suppose that

(1) F (y) − F (g(x))− ν(x, y) + (T (x), y − g(x)) ∈ C(x) ∀x, y ∈ K;

(2) there is a nonempty compact convex subset D of K, such that for every

x ∈ K \ D, there is a y ∈ D such that

((T (x), y − g(x)))ρc
x(F (g(x))− F (y)).

Then there is an x̄ ∈ K such that

(6) (T (x̄), y − g(x̄)) + F (y)− F (g(x̄))ρx̄0

for all y ∈ K. Furthermore, if the mapping C is closed; that is, C satisfies the

condition

(7) net ατ → α0, net βτ → β0, βτ ∈ C(ατ ) ⇒ β0 ∈ C(α0),

then the set of all solutions of the inequality (6) is compact.

Remark. For the compactness of the solution set in Corollary 2.2, we can use

the continuities of T, F and g, the condition (7) and the argument of Corollary 2.3
below to prove it, so we omit the proof.
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We note that if we take C(x) = C for all x ∈ K, then Corollary 2.2 can be

reduced to [6, Theorem 3.2]. In order to discuss the results of existence for the

strong solution to FIGVVI, we introduce the geometric conditions (GCK ) for the

mappings A, T , g and F with respect to the set K as follows.

Geometric Conditions (GCK)

(G1) MaxC(x̄)
⋃

s∈T (x̄) Min
C(x̄)
w

⋃
x∈K{(As, x − g(x̄)) − F (g(x̄)) + F (x)} ⊂

Min
C(x̄)
w

⋃
x∈K{(As, x−g(x̄)) − F (g(x̄))+F (x)}+C(x̄), ∀s ∈ T (x̄);

(G2) for any fixed x ∈ K, if δ ∈ MaxC(x̄)
⋃

s∈T (x̄){(As, x − g(x̄)) − F (g(x̄)) +
F (x)} and δ cannot be compared with (As̄, x − g(x̄)) − F (g(x̄)) + F (x)
which does not equal to δ, then δρx̄0; and

(G3) if MaxC(x̄)
⋃

s∈T (x̄) Min
C(x̄)
w

⋃
x∈K{(As, x − g(x̄)) − F (g(x̄)) + F (x)} ⊂

B(x̄), there exists an s ∈ T (x̄) such that Min
C(x̄)
w

⋃
x∈K{(As, x− g(x̄)) −

F (g(x̄)) + F (x)} ⊂ B(x̄), where B(x) is either C(x) or Y \ (−intC(x))
that corresponds to ρx.

The conditions (GCK ) are obviously fulfilled that if Y = R.

Theorem 2.2. Let X, Y, K, C, D, A, F, g and ν satisfy hypothesis (H0),
(Ha) and (Hb). If the condition (3) of Theorem 2.1 holds, then we have a weak
solution x̄ to FIGVVI. In addition, if K is compact, T (x̄) is convex, F is C(x̄)-
convex and continuous on K, the mapping A : L(X, Y ) → L(X, Y ) is continuous,
T : K → 2L(X,Y ) is upper semicontinuous with nonempty compact values and the

mapping s → −(As, x − g(x̄)) is properly quasi C(x̄)-convex on T (x̄) for each
x ∈ K. Assume that the conditions (GCK ) hold. Then x̄ is a strong solution to

FIGVVI, that is, there exists s̄ ∈ T (x̄) such that

{(As̄, x− g(x̄)) + F (x) − F (g(x̄))}ρx̄0

for all x ∈ K.

Proof. Since F is C(x̄)-convex on K, the mapping x → (As, x − g(x̄)) −
F (g(x̄)) + F (x) is C(x̄)-convex on K. Since the mapping s → −(As, x − g(x̄))
is properly quasi C(x̄)-convex on T (x̄) for each x ∈ K, so is the mapping s →
−(As, x − g(x̄)) + F (g(x̄))− F (x) for each x ∈ K.

From Theorem 2.1, we know that x̄ ∈ K such that for all x ∈ K, there is
s̄ ∈ T (x̄) such that (1) holds. Then ∀γ ∈ Min ∪x∈K Max ∪s∈T (x̄) {(As, x −
g(x̄)) − F (g(x̄)) + F (x)}, by (G2) we have γρx̄0. From condition (G1), the

convexity of T (x̄) and [2, Theorem 3.1], we have for every α ∈ Max ∪s∈T (x̄)

Minw ∪x∈K {(As, x− g(x̄))− F (g(x̄)) + F (x)}, αρx̄0. This implies that

Max∪s∈T (x̄) Minw ∪x∈K {(As, x− g(x̄))− F (g(x̄)) + F (x)} ⊂ B(x̄).
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From (G3), there is an s̄ ∈ T (x̄) such thatMinw∪x∈K {(As̄, x−g(x̄))−F (g(x̄))+
F (x)} ⊂ B(x̄). Hence, we know that ∀τ ∈

⋃
x∈K{(As̄, x − g(x̄)) − F (g(x̄)) +

F (x)}, we have τρx̄0. Hence there exists s̄ ∈ T (x̄) such that

{(As̄, x − g(x̄)) − F (g(x̄)) + F (x)}ρx̄0

for all x ∈ K and x̄ is a strong solution to FIGVVI.

Corollary 2.3. Under the framework of Theorem 2.2 except X, g and C. Let
X be a real Banach space, g : K → K is continuous and C : K → 2Y is a closed

mapping. Then the set of all strong solutions to FIGVVI is compact.

Proof. Let us claim that the solution set to FIGVVI is compact. It is sufficient

to show that the solution set is closed due to the coercivity condition (4) of Theorem

2.1. To this end, let Γ denote the solution set of FIGVVI. Suppose that {xn} ⊂ Γ
which converges to some p. Fix y ∈ K. For each n ∈ N, there is sn ∈ T (xn) such
that

(8) (Asn, y − g(xn))ρxn(F (g(xn))− F (y)).

Since T is upper semicontinuous with nonempty compact values and the set {xn}∪
{p} is compact, it follows that T ({xn} ∪ {p}) is compact. Therefore, without loss
of generality, we may assume that the sequence {sn} converges to some s. Then
s ∈ T (p) and

(Asn, y − g(xn)) − F (g(xn)) + F (y) ∈ B(xn).

We note that

(9)

−F (g(xn)) + F (y) + (Asn, y − g(xn))

= −F (g(xn)) + F (y) + (Asn − As, y − g(xn)) + (As, y − g(xn))

= −F (g(xn)) + F (y) + (Asn − As, y − g(xn))

+(As, (y − g(xn))− (y − g(p))) + (As, y − g(p)).

Since {xn}∪{p} is compact and g is continuous, g({xn}∪{p}) is also compact.
Hence it is bounded. Thus (Asn − As, y − g(xn)) → 0 as n → ∞ and

(As, (y − g(xn)) − (y − g(p))) = (As, g(p)− g(xn)) → 0, n → ∞

by the continuity of g. Since F is continuous and the condition (7), from (8) and
(9) we have

−F (g(p)) + F (y) + (As, y − g(p))

= lim
n→∞

−F (g(xn)) + F (y) + (Asn, y − g(xn)) ∈ B(p).
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We then obtain

{(As, y − g(p)) + F (y) − F (g(p))}ρp0.

Hence p ∈ Γ and Γ is closed.

We would like to point out that the conditions ((GCK ) and (7) of Theorem 2.2

are fulfilled if we take Y = R, and C(x) = [0,∞) for each x ∈ K. The following

is a concrete example for Theorem 2.1 and Theorem 2.2.

Example 2.1. Let X = R2, Y = R2, K = [0, 1]× [0, 1] ⊂ R2, F ≡ const.,

C(x) =

{ {(y1, y2) ∈ Y : 0 ≤ y1 ≤ y2}, 0 ≤ x1 6= x2 ≤ 1,

{(y1, y2) ∈ Y : y1 ≥ 0, y2 ≥ 0}, 0 ≤ x1 = x2 ≤ 1,

for all x = (x1, x2) ∈ K and D = {(y1, y2) ∈ K : y1 + y2 ≤ 1}. Choose
A : L(X, Y ) → L(X, Y ) and g to be identity mapping on K. Let T : K → 2L(X,Y )

be defined by

T (x) =








0 0

0
∫ x2+1

0
2tdt








⊂ L(X, Y )

for every x ∈ K. Choose ν : K × K → Y by

ν(x, y) =





(0, 0) y2 ≥ x2, 0 ≤ x1 ≤ x2 ≤ 1

(0, (x2 + 1)2(y2 − x2)), y2 ≥ x2, 0 ≤ x2 < x1 ≤ 1,

(0, (x2 + 1)2(y2 − x2)), y2 ≤ x2.

Then all conditions of both Theorem 2.1 and Theorem 2.2 are satisfied. By Theorem

2.2, the FIGVVI has a strong solution. A simple geometric discussion tells us that

x̄ = (0, 0) is a strong solution to FIGVVI.
Next, we consider the result of existence theorem for the strong solutions to

FIGVVI without compactness. The proof can be obtained by standard argument so

it will be omitted.

Theorem 2.3. LetX be a finite dimensional real Banach space, Y, K, C, D, A,

F, g, T and ν as in Theorem 2.1. Under the assumptions of Theorem 2.1, we have
a weak solution x̄ to FIGVVI. In addition, if T (x̄) is convex, F is C(x̄)-convex and
continuous on K, C : K → 2Y is a closed mapping, the mappings A : L(X, Y ) →
L(X, Y ), g : K → K are continuous, T : K → 2L(X,Y ) is upper semicontinuous

with nonempty compact values and the mapping s → −(As, x− g(x̄)) is properly
quasi C(x̄)-convex on T (x̄) for each x ∈ K. Assume that for some r > ‖g(x̄)‖,
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the conditions(GCKr) with respect to the set Kr
.= B̄(0, r)∩K are satisfied. Then

x̄ is also a strong solution to FIGVVI, that is, there exists s̄ ∈ T (x̄) such that

{(As̄, x − g(x̄)) + F (x) − F (g(x̄))}ρx̄0

for all x ∈ K. Furthermore, the set of all strong solutions to FIGVVI is compact.
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