ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE WITH CONSTANT MEAN CURVATURE

Uğur Dursun

Abstract

We give explicit parameterizations of rotation hypersurfaces in Lorentz-Minkowski space L^{n+1}. Then we obtain rotation hypersurfaces in Lorentz-Minkowski space L^{n+1} with constant mean curvature. In particular, we determine nonplanar rotation hypersurfaces with zero mean curvature, namely, generalized catenoids of L^{n+1}. In the case the rotation axis is lightlike, the generalized catenoids generalize Enneper's surfaces of the 2nd and 3rd kind.

1. Introduction

In an old paper [3], Delaunay proved that the profile curve of a rotation surface with nonzero constant mean curvature in Euclidean 3-space can be described as the locus of a focus when a quadratic curve is rolled along the axis of revolution. This result was generalized in various directions by Hsiang and Yu [5]. In [9], Pinl and Ziller proved that the only minimal rotation hypersurface (except the hyperplane) of Euclidean space is the generalized catenoid. In [4], Carmo and Dajczer defined rotation hypersurfaces in space of constant curvature and gave a local characterization of such hypersurfaces. Also they studied some special cases of rotation hypersurfaces with constant mean curvature in hyperbolic space.

On the other hand, in Lorentz-Minkowski 3 -space there are several different kinds of rotation surfaces depending on the rotation axis: rotations about spacelike, time-like, and light-like axes. Rotation surfaces of constant mean curvature in Minkowski 3 -space L^{3} has been studied by a number of differential geometers. For

[^0]instance, in [4], Hano and Nomizu studied the Delaunay's problem in the LorentzMinkowski 3 -space L^{3}, restricting themselves to the space-like surfaces such that the rotation axis is either space-like, time-like or light-like. In the case of revolution about the space-like and time-like axis, the profile curve is obtained by revolving the focus of a quadratic curve along the axis of rotation, similarly to the Delaunay surface in Euclidean 3-space. They also studied for the profile curves when the rotation axis is light-like. The completeness of the surfaces obtained in [4] was investigated in [2]. Recently in [7], Lee and Varnado studied various nonlinear ordinary differential equations that characterize space-like constant mean curvature rotation surfaces in Minkowski 3 -space. They solved the differential equations by using some numerical methods to obtain examples of space-like constant mean curvatures.

In particular, there are various type of catenoids, that is, nonplanar rotation surfaces with zero mean curvature, in Lorentz-Minkowski 3 -space depending on the rotation axis. In [6], Kobayashi classified maximal space-like rotation surfaces in Minkowski space L^{3}. However, McNertney [8] and Van de Woestijne [10] independently classified catenoids, that is, nonplaner rotation surfaces with zero mean curvature, in Lorentz-Minkowski space L^{3}. In [10], Van de Woestijne calls the space-like catenoid and time-like catenoid with light-like axis the surface of Enneper of the 2nd kind and 3rd kind, respectively.

In this paper we extend the notion of rotation surfaces of the 3 -dimensional Lorentz-Minkowski space L^{3} to hypersurfaces of an $(n+1)$-dimensional Lorentz -Minkowski space L^{n+1}. We firstly give explicit parametrization of rotation hypersurfaces in L^{n+1} according to the rotation axis is time-like, space-like or light-like. Especially, when the rotation axis is light-like we determine the orthogonal transformations of L^{n+1} that leaves the rotation axis fixed. We then compute the principal curvatures of each rotation hypersurface in L^{n+1} to determine the differential equation of the hypersurface with constant mean curvature. By solving the differential equations we obtain profile curves of rotation hypersurfaces of constant mean curvature. As a consequence we determine the generalized catenoids of L^{n+1}. In the case the rotation axis is light-like, the generalized catenoids generalize Enneper's surfaces of the 2nd and 3rd kind.

2. Preliminaries

Let L^{n+1} denotes the $(\mathrm{n}+1)$-dimensional Lorentz-Minkowski space, that is, the real vector space \mathbb{R}^{n+1} endowed with the Lorentzian metric $\langle\rangle=,\left(d x_{1}\right)^{2}+\cdots+$ $\left(d x_{n}\right)^{2}-\left(d x_{n+1}\right)^{2}$, where $\left(x_{1}, \ldots, x_{n+1}\right)$ are the canonical coordinates in \mathbb{R}^{n+1}. A vector x of L^{n+1} is said to be space-like if $\langle x, x\rangle>0$ or $x=0$, time-like if $\langle x, x\rangle<0$ or light-like (or null) if $\langle x, x\rangle=0$ and $x \neq 0$.

An immersed hypersurface M_{q} of L^{n+1} with index $q(q=0,1)$ is called spacelike (Riemannian) or time-like (Lorentzian) if the induced metric, which, as usual, is also denoted by \langle,$\rangle on M_{q}$ has the index 0 or 1 , respectively. The de Sitter n-space $\mathbb{S}_{1}^{n}\left(x_{0}, c\right)$ centered at $x_{0} \in L^{n+1}, c>0$, is a Lorentzian hypersurface of L^{n+1} defined by

$$
\mathbb{S}_{1}^{n}\left(x_{0}, c\right)=\left\{x \in L^{n+1} \mid\left\langle x-x_{0}, x-x_{0}\right\rangle=c^{2}\right\}
$$

and the hyperbolic space $\mathbb{H}^{n}\left(x_{0},-c\right)$ centered at $x_{0} \in L^{n+1}, c>0$, is a space-like hypersurface of L^{n+1} defined by

$$
\mathbb{H}^{n}\left(x_{0},-c\right)=\left\{x \in L^{n+1} \mid\left\langle x-x_{0}, x-x_{0}\right\rangle=-c^{2} \text { and } x_{n+1}-x_{n+1}^{0}>0\right\}
$$

where $x_{n+1}-x_{n+1}^{0}$ is the $(n+1)$-th component of $x-x_{0}$. The de Sitter n-space $\mathbb{S}_{1}^{n}\left(x_{0}, c\right)$ and the hyperbolic space $\mathbb{H}^{n}\left(x_{0},-c\right), c>0$, are both totally umbilical hypersurfaces of the Lorentzian space L^{n+1}.

Let e_{1}, \ldots, e_{n} be an orthonormal local tangent frame on a hypersurface M_{q} of L^{n+1} with signatures $\varepsilon_{i}=\left\langle e_{i}, e_{i}\right\rangle=\mp 1$, and A_{N} denotes the shape operator of M_{q} in a chosen unit normal direction N. Then the mean curvature α of M_{q} is defined by

$$
\alpha=\frac{1}{n} \operatorname{tr} A_{N}=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left\langle A_{N}\left(e_{i}\right), e_{i}\right\rangle .
$$

A space-like hypersurface of L^{n+1} with vanishing mean curvature is called maximal.
Let Π be a 2-dimensional subspace of L^{n+1} passing through the origin. We will say that Π is non-degenerate if the metric \langle,$\rangle restricted to \Pi$ is a non-degenerate quadratic form. A curve in L^{n+1} is called space-like, time-like or light-like if the tangent vector at any point is space-like, time-like or light-like, respectively. An orthogonal transformation of L^{n+1} is a linear map that preserves the metric.

Here we will define non-degenerate rotation hypersurfaces in L^{n+1} with timelike, space-like or light-like axis. For an open interval $I \subset \mathbb{R}$, let $\gamma: I \rightarrow \Pi$ be a regular smooth curve in a non-degenerate 2-plane Π of L^{n+1} and let ℓ be a line in Π that does not meet the curve γ. A rotation hypersurface M_{q} with index q in L^{n+1} with a rotation axis ℓ is defined as the orbit of a curve γ under the orthogonal transformations of L^{n+1} with positive determinant that leaves the rotation axis ℓ fixed. When the rotation axis ℓ is space-like or time-like it is easy to write the orthogonal transformations of L^{n+1} that leaves the rotation axis ℓ fixed. However, if the rotation axis ℓ is light-like we will give the orthogonal transformations of L^{n+1} that leaves the axis ℓ fixed. The curve γ is called profile curve of the rotation hypersurface. As we consider non-degenerate rotation hypersurfaces it is sufficient to consider the case that the profile curve is space-like or time-like.

We will give explicit parameterizations for non-degenerate rotation hypersurfaces M_{q} in L^{n+1} according to the axis ℓ is time-like, space-like or light-like. Let
$\left\{\eta_{1}, \ldots, \eta_{n+1}\right\}$ be the standard orthonormal basis of L^{n+1}, that is, $\left\langle\eta_{i}, \eta_{j}\right\rangle=\delta_{i j}$, $\left\langle\eta_{n+1}, \eta_{n+1}\right\rangle=-1,\left\langle\eta_{i}, \eta_{n+1}\right\rangle=0, i, j=1,2, \ldots, n$.

Let $\Theta\left(u_{1}, \ldots u_{n-2}\right)$ denotes an orthogonal parametrization of the unit sphere $\mathbb{S}^{n-2}(1)$ in the Euclidean space E^{n-1} generated by $\left\{\eta_{1}, \ldots, \eta_{n-1}\right\}$:

$$
\begin{align*}
\Theta\left(u_{1}, \ldots u_{n-2}\right)= & \cos u_{1} \eta_{1}+\sin u_{1} \cos u_{2} \eta_{2}+\cdots+\sin u_{1} \cdots \sin u_{n-3} \\
& \cos u_{n-2} \eta_{n-2}+\sin u_{1} \cdots \sin u_{n-3} \sin u_{n-2} \eta_{n-1} \tag{2.1}
\end{align*}
$$

where $0<u_{i}<\pi(i=1, \ldots, n-3), 0<u_{n-2}<2 \pi$.
Remark. When $n=2$, the term $\Theta\left(u_{1}, \ldots, u_{n-2}\right)$ in the following definitions of rotation hypersurfaces is replaced by η_{1}.

Case 1. $\quad \ell$ is time-like. In this case the plane Π that contains the line ℓ and a profile curve γ is Lorentzian. Without lose of generality, we may suppose that ℓ is the x_{n+1}-axis and Π is the $x_{n} x_{n+1}$-plane which is Lorentzian. Since every time-like line is transformed to the x_{n+1}-axis by a Lorentz transformation, and then every time-like plane containing the x_{n+1}-axis is transformed to the $x_{n} x_{n+1}$-plane.

Let $\gamma(t)=\varphi(t) \eta_{n}+\psi(t) \eta_{n+1}$ be a parametrization of γ in the plane Π with $x_{n}=\varphi(t)>0, t \in I \subset \mathbb{R}$. The curve is space-like if $\varepsilon=\operatorname{sgn}\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)=1$ and time-like if $\varepsilon=\operatorname{sgn}\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)=-1$.

So we can give a parametrization of a rotation hypersurface $M_{q, T}$ of L^{n+1} with time-like axis as

$$
\begin{align*}
f_{T}\left(u_{1}, \ldots, u_{n-1}, t\right)= & \varphi(t) \sin u_{n-1} \Theta\left(u_{1}, \ldots, u_{n-2}\right) \\
& +\varphi(t) \cos u_{n-1} \eta_{n}+\psi(t) \eta_{n+1} \tag{2.2}
\end{align*}
$$

where $0<u_{n-1}<\pi$. The second index in $M_{q, T}$ stands for the time-like axis. The hypersurface $M_{q, T}$ is also called a spherical rotation hypersurface of L^{n+1} as parallels of $M_{q, T}$ are spheres $\mathbb{S}^{n-1}(0, \varphi(t))$.

Case 2. ℓ is space-like. In this case the plane Π which contains a profile curve is Lorentzian or Riemannian. So there are rotation hypersurfaces of the first and second kind labeled by $M_{q, S_{1}}$ and $M_{q, S_{2}}$ in L^{n+1} with space-like axis.

Subcase 2.1. The plane Π is Lorentzian. Without losing generality we may suppose that ℓ is the x_{n}-axis, that is, the vector $\eta_{n}=(0, \ldots, 0,1,0)$ is the direction of the rotation axis, and Π is the $x_{n} x_{n+1}$-plane. Let $\gamma(t)=\psi(t) \eta_{n}+\varphi(t) \eta_{n+1}$ be a parametrization of γ in the plane Π with $x_{n+1}=\varphi(t)>0, t \in I \subset \mathbb{R}$. Thus we can give a parametrization of a rotation hypersurface of the first kind $M_{q, S_{1}}$ of L^{n+1} with space-like axis as

$$
\begin{align*}
f_{S_{1}}\left(u_{1}, \ldots, u_{n-1}, t\right)= & \varphi(t) \sinh u_{n-1} \Theta\left(u_{1}, \ldots, u_{n-2}\right)+\psi(t) \eta_{n} \tag{2.3}\\
& +\varphi(t) \cosh u_{n-1} \eta_{n+1}
\end{align*}
$$

$0<u_{n-1}<\infty$, which is also called a hyperbolic rotation hypersurface of L^{n+1} as parallels of $M_{q, S_{1}}$ are hyperbolic spaces $\mathbb{H}^{n-1}(0,-\varphi(t))$.

Subcase 2.2. The plane Π is Riemannian. We may suppose that ℓ is the x_{n}-axis and Π is the $x_{n-1} x_{n}$-plane without lose of generality. Let $\gamma(t)=\varphi(t) \eta_{n-1}+\psi(t) \eta_{n}$ be a parametrization of γ in the plane Π with $x_{n-1}=\varphi(t)>0, t \in I \subset \mathbb{R}$. In this case the curve γ is space-like. Similarly we give a parametrization of a rotation hypersurface of the second kind $M_{q, S_{2}}$ of L^{n+1} with space-like axis as

$$
\begin{align*}
f_{S_{2}}\left(u_{1}, \ldots, u_{n-1}, t\right)= & \varphi(t) \cosh u_{n-1} \Theta\left(u_{1}, \ldots, u_{n-2}\right)+\psi(t) \eta_{n} \tag{2.4}\\
& +\varphi(t) \sinh u_{n-1} \eta_{n+1}
\end{align*}
$$

$-\infty<u_{n-1}<\infty$, which is called a pseudo-spherical rotation hypersurface of L^{n+1} as parallels of $M_{q, S_{2}}$ are pseudo-spheres $\mathbb{S}_{1}^{n-1}(0, \varphi(t))$ when $n>2$. (If $n=2$, then $S_{1}^{1} \equiv H^{1}$.) Later we will show that $M_{q, S_{2}}$ has the index 1 , that is, $q=1$.

Case 3. ℓ is light-like. Let $\left\{\hat{\eta}_{1}, \ldots, \hat{\eta}_{n+1}\right\}$ be a pseudo-Lorentzian basis of L^{n+1}, that is, $<\hat{\eta}_{i}, \hat{\eta}_{j}>=\delta_{i j}, \quad i, j=1, \ldots, n-1, \quad<\hat{\eta}_{i}, \hat{\eta}_{n}>=<$ $\hat{\eta}_{i}, \hat{\eta}_{n+1}>=0, \quad i=1,2, \ldots, n-1, \quad<\hat{\eta}_{n}, \hat{\eta}_{n+1}>=1,<\hat{\eta}_{n}, \hat{\eta}_{n}>=0,<$ $\hat{\eta}_{n+1}, \hat{\eta}_{n+1}>=0$. We can choose $\hat{\eta}_{1}=(1,0, \ldots, 0), \ldots, \hat{\eta}_{n-1}=(0, \ldots, 1,0,0)$, $\hat{\eta}_{n}=\frac{1}{\sqrt{2}}(0, \ldots, 0,1,-1), \hat{\eta}_{n+1}=\frac{1}{\sqrt{2}}(0, \ldots, 0,1,1)$. We may suppose that ℓ is the line spanned by the null vector $\hat{\eta}_{n+1}$ and Π is the $x_{n} x_{n+1}$-plane without lose of generality. Let $\gamma(t)=\sqrt{2} \varphi(t) \hat{\eta}_{n}+\sqrt{2} \psi(t) \hat{\eta}_{n+1}$ be a parametrization of γ in the plane Π with $x_{n}=\varphi(t)>0, t \in I \subset \mathbb{R}$.

Let $\Theta_{1}\left(u_{1}, \ldots, u_{n-2}\right), \ldots, \Theta_{n-1}\left(u_{1}, \ldots, u_{n-2}\right)$ be the components of the orthogonal parameterization $\Theta\left(u_{1}, \ldots, u_{n-2}\right)$ given by (2.1) of the unit sphere $\mathbb{S}^{n-2}(1)$ in the basis $\left\{\hat{\eta}_{1}, \ldots, \hat{\eta}_{n-1}\right\}$. We consider the subgroup of Lorentz group which fixes the direction $\hat{\eta}_{n+1}$ of the light-like axis ℓ is given by

$$
\left\{B\left(u_{1}, \ldots, u_{n-1}\right): u_{1}, \ldots, u_{n-3} \in(0, \pi), u_{n-2} \in(0,2 \pi), u_{n-1} \in \mathbb{R}\right\}
$$

where B is the $(n+1) \times(n+1)$ matrix of the form

$$
B=\left(\begin{array}{cccccc}
1 & 0 & \cdots & 0 & u_{n-1} \Theta_{1} & -u_{n-1} \Theta_{1} \\
0 & 1 & \cdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 & \vdots & \vdots \\
0 & 0 & \cdots & 1 & u_{n-1} \Theta_{n-1} & -u_{n-1} \Theta_{n-1} \\
u_{n-1} \Theta_{1} & \cdots & \cdots & u_{n-1} \Theta_{n-1} & 1-\frac{u_{n-1}^{2}}{2} & \frac{u_{n-1}^{2}}{2} \\
u_{n-1} \Theta_{1} & \cdots & \cdots & u_{n-1} \Theta_{n-1} & -\frac{u_{n-1}^{2}}{2} & 1+\frac{u_{n-1}^{2}}{2}
\end{array}\right)
$$

which has determinant one. When we apply the transformation B to the vectors $\hat{\eta}_{1}, \ldots, \hat{\eta}_{n-1}$ we can have

$$
\begin{gather*}
B\left(\hat{\eta}_{i}\right)=\hat{\eta}_{i}+\sqrt{2} u_{n-1} \Theta_{i} \hat{\eta}_{n+1}, \quad i=1, \ldots, n-1, \tag{2.5}\\
B\left(\hat{\eta}_{n}\right)=\sum_{i=1}^{n-1} \sqrt{2} u_{n-1} \Theta_{i} \hat{\eta}_{i}+\hat{\eta}_{n}-u_{n-1}^{2} \hat{\eta}_{n+1} \quad \text { and } \quad B\left(\hat{\eta}_{n+1}\right)=\hat{\eta}_{n+1} .
\end{gather*}
$$

If we write $x=\sum_{i=1}^{n+1} x_{i} \hat{\eta}_{i}$, then by using (2.5) and (2.6) it can easily be shown that B preserves the metric, that is, $\langle B(x), B(x)\rangle=\langle x, x\rangle$.

Hence, writing $\gamma(t)=(0, \ldots, 0, \psi(t)+\varphi(t), \psi(t)-\varphi(t))$ the rotation hypersurface $M_{q, L}$ of L^{n+1} with light-like axis is defined as

$$
\begin{align*}
& f_{L}\left(u_{1}, \ldots, u_{n-1}, t\right)=B(\gamma(t)) \\
&=\left(2 \varphi(t) u_{n-1} \Theta_{1}, \ldots, 2 \varphi(t) u_{n-1} \Theta_{n-1},\left(\psi(t)+\varphi(t)-\varphi(t) u_{n-1}^{2}\right),\right. \tag{2.7}\\
&\left.\left(\psi(t)-\varphi(t)-\varphi(t) u_{n-1}^{2}\right)\right), \quad u_{n-1} \neq 0
\end{align*}
$$

or equivalently by using $\gamma(t)=\sqrt{2} \varphi(t) \hat{\eta}_{n}+\sqrt{2} \psi(t) \hat{\eta}_{n+1}$ and (2.6) in the pseudoLorentzian basis we can write

$$
\begin{align*}
f_{L}\left(u_{1}, \ldots, u_{n-1}, t\right)= & B(\gamma(t)) \\
= & 2 \varphi(t) u_{n-1} \Theta\left(u_{1}, \ldots, u_{n-2}\right)+\sqrt{2} \varphi(t) \hat{\eta}_{n} \tag{2.8}\\
& +\sqrt{2}\left(\psi(t)-\varphi(t) u_{n-1}^{2}\right) \hat{\eta}_{n+1}, \quad u_{n-1} \neq 0 .
\end{align*}
$$

Note that in the third case if $\varphi(t)=\varphi_{0}$ or $\psi(t)=\psi_{0}$ is a constant, then the profile curve is degenerate. However, in the other cases if $\varphi(t)=\varphi_{0}>0$ is a constant and $\psi(t)=t$, then the rotation hypersurface $M_{1, T}$ is the Lorentz cylinder $\mathbb{S}^{n-1}\left(0, \varphi_{0}\right) \times L^{1}, M_{0, S_{1}}$ is the hyperbolic cylinder $\mathbb{H}^{n-1}\left(0,-\varphi_{0}\right) \times \mathbb{R}$, and $M_{1, S_{2}}$ is the pseudo-spherical cylinder $\mathbb{S}_{1}^{n-1}\left(0, \varphi_{0}\right) \times \mathbb{R}$. If $\varphi(t)=t$ and $\psi(t)=\psi_{0}$ is a constant, then $M_{0, T}$ is a space-like hyperplane of L^{n+1}, and $M_{1, S_{1}}$ and $M_{1, S_{2}}$ are time-like hyperplanes of L^{n+1}. Therefore all these are rotational hypersurfaces of L^{n+1} with constant mean curvature.

3. Rotation Hypersurfaces with Time-like Axis

In this section we determine rotation hypersurfaces $M_{q, T}$ of L^{n+1} with timelike axis and constant mean curvature. Especially we determine maximal space-like rotation hypersurface and Lorentzian rotation hypersurface with zero mean curvature of L^{n+1} as a generalization of catenoids of the first kind and third kind, respectively.

Proposition 3.1. Let $M_{q, T}$ be a rotation hypersurface of L^{n+1} with the index q and time-like axis parameterized by (2.2). Then the directions of parameters are principal directions, and the principal curvatures along the coordinate curves u_{i}, $i=1, \ldots, n-1$, are all equal and given by

$$
\lambda=-\frac{\psi^{\prime}}{\varphi \sqrt{\varepsilon\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)}}
$$

with multiplicity $n-1$, and the principal curvature along the coordinate curve t is given by

$$
\mu=\frac{\psi^{\prime} \varphi^{\prime \prime}-\psi^{\prime \prime} \varphi^{\prime}}{\left({\varphi^{\prime}}^{2}-\psi^{\prime 2}\right) \sqrt{\varepsilon\left({\varphi^{\prime}}^{2}-\psi^{\prime 2}\right)}}
$$

where $\varepsilon=\operatorname{sgn}\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)=\mp 1$ and, $q=0$ if $\varepsilon=1$ and $q=1$ if $\varepsilon=-1$.
Proof. Taking derivative of (2.2) we have the orthogonal coordinate vector fields on $M_{q, T}$ as

$$
\begin{align*}
\frac{\partial f_{T}}{\partial u_{i}} & =\varphi(t) \sin u_{n-1} \frac{\partial \Theta}{\partial u_{i}}, \quad i=1, \ldots, n-2 \\
\frac{\partial f_{T}}{\partial u_{n-1}} & =\varphi(t)\left(\cos u_{n-1} \Theta-\sin u_{n-1} \eta_{n}\right) \tag{3.1}\\
\frac{\partial f_{T}}{\partial t} & =\varphi^{\prime}(t)\left(\sin u_{n-1} \Theta+\cos u_{n-1} \eta_{n}\right)+\psi^{\prime}(t) \eta_{n+1}
\end{align*}
$$

The vectors $\partial f_{T} / \partial u_{i}$'s are space-like, and however the vector $\partial f_{T} / \partial t$ is space-like if $\varepsilon=\operatorname{sgn}\left(\left\langle\partial f_{T} / \partial t, \partial f_{T} / \partial t\right\rangle\right)=\operatorname{sgn}\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)=1$ and time-like if $\varepsilon=-1$.

Now we can choose an orthonormal tangent basis on $M_{q, T}$ as

$$
e_{i}=\frac{1}{\left\|\partial f_{T} / \partial u_{i}\right\|} \frac{\partial}{\partial u_{i}}, \quad i=1, \ldots, n-1, \quad e_{n}=\frac{1}{\sqrt{\varepsilon\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)}} \frac{\partial}{\partial t}
$$

with signatures $\varepsilon_{i}=<e_{i}, e_{i}>=1, i=1, \ldots, n-1$ and $\varepsilon_{n}=<e_{n}, e_{n}>=\varepsilon$, where $\left\|\partial f_{T} / \partial u_{i}\right\|=\sqrt{\varepsilon_{i}\left\langle\partial f / \partial u_{i}, \partial f / \partial u_{i}\right\rangle}$. We determine a unit normal vector field N on $M_{q, T}$ as

$$
N=\frac{1}{\sqrt{\varepsilon\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)}}\left[\psi^{\prime}(t)\left(\sin u_{n-1} \Theta+\cos u_{n-1} \eta_{n}\right)+\varphi^{\prime}(t) \eta_{n+1}\right]
$$

with $\langle N, N\rangle=-\varepsilon$. Let A_{N} denotes the shape operator of $M_{q, T}$ in the direction N. By a straightforward calculation we obtain

$$
A_{N}\left(e_{i}\right)=-\frac{\psi^{\prime}}{\varphi \sqrt{\varepsilon\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)}} e_{i}, \quad i=1, \ldots, n-1
$$

and

$$
A_{N}\left(e_{n}\right)=\frac{\psi^{\prime} \varphi^{\prime \prime}-\psi^{\prime \prime} \varphi^{\prime}}{\left(\varphi^{\prime 2}-\psi^{\prime 2}\right) \sqrt{\varepsilon\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)}} e_{n}
$$

It follows from above that the coordinate curves are lines of curvature, and hence the principal curvatures λ and μ are obtained.

Therefore the mean curvature of $M_{q, T}$ is

$$
\begin{equation*}
\alpha=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left\langle A_{N}\left(e_{i}\right), e_{i}\right\rangle=\frac{1}{n \sqrt{\varepsilon\left(\varphi^{\prime 2}-\psi^{\prime 2}\right)}}\left(-\frac{(n-1) \psi^{\prime}}{\varphi}+\frac{\psi^{\prime} \varphi^{\prime \prime}-\psi^{\prime \prime} \varphi^{\prime}}{\varphi^{\prime 2}-\psi^{\prime 2}}\right) \tag{3.2}
\end{equation*}
$$

which is the function of t.
Now we will investigate the rotation hypersurfaces of L^{n+1} with time-like axis and constant mean curvature. We consider the rotation hypersurface $M_{q, T}$ defined by (2.2) for the profile curve $\gamma(t)=(\varphi(t), \psi(t))=(t, g(t)), t>0$, that is,

$$
\begin{equation*}
f_{T}\left(u_{1}, \ldots, u_{n-1}, t\right)=t \sin u_{n-1} \Theta\left(u_{1}, \ldots, u_{n-2}\right)+t \cos u_{n-1} \eta_{n}+g(t) \eta_{n+1} \tag{3.3}
\end{equation*}
$$

where $g(t)$ is a differentiable function. This rotation hypersurface is space-like if $g^{\prime 2}<1,(\varepsilon=1, q=0)$ and time-like if $g^{\prime 2}>1,(\varepsilon=-1, q=1)$.

Theorem 3.2. The rotation hypersurface $M_{q, T}$ of L^{n+1} with the index q and time-like axis defined by (3.3) has constant mean curvature α if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\int^{t} \frac{a \pm \alpha t^{n}}{\sqrt{\left(a \pm \alpha t^{n}\right)^{2}+\varepsilon t^{2(n-1)}}} d t \tag{3.4}
\end{equation*}
$$

where a is an arbitrary constant, and $q=0$ for $\varepsilon=1$ and $q=1$ for $\varepsilon=-1$.
Proof. For the functions $\varphi(t)=t, t>0$ and $\psi(t)=g(t)$, from (3.2) the rotation hypersurface $M_{q, T}$ defined by (3.3) has constant mean curvature if and only if $g=g(t)$ satisfies the differential equation:

$$
\begin{equation*}
g^{\prime \prime}+\frac{(n-1)\left(1-g^{\prime 2}\right) g^{\prime}}{t}+n \alpha \varepsilon\left[\varepsilon\left(1-g^{\prime 2}\right)\right]^{3 / 2}=0, \tag{3.5}
\end{equation*}
$$

for some constant α.
Suppose that $M_{q, T}$ has constant mean curvature α. Let $\varepsilon=1$, that is, $g^{\prime 2}<1$. If we substitute $g^{\prime}=\sin u$, then the differential equation (3.5) becomes

$$
\begin{equation*}
u^{\prime}+\frac{(n-1)}{t} \cos u \sin u+n \mu \alpha \cos ^{2} u=0 \tag{3.6}
\end{equation*}
$$

where $\mu=\operatorname{sgn}(\cos u)= \pm 1$. Now we make another substitution $w=\tan u$, then we obtain

$$
u^{\prime}=\frac{w^{\prime}}{1+w^{2}}, \quad \cos u=\frac{1}{\sqrt{1+w^{2}}}, \quad \sin u=\frac{w}{\sqrt{1+w^{2}}}
$$

Hence the differential equation (3.6) becomes

$$
\begin{equation*}
w^{\prime}(t)+\frac{(n-1)}{t} w(t)+n \mu \alpha=0 \tag{3.7}
\end{equation*}
$$

The solution of (3.7) yields $w(t)=\frac{a \pm \alpha t^{n}}{t^{(n-1)}}$ for some constant a. Therefore

$$
\begin{equation*}
g^{\prime}(t)=\sin \left(\tan ^{-1}\left(\frac{a \pm \alpha t^{n}}{t^{(n-1)}}\right)\right)=\frac{a \pm \alpha t^{n}}{\sqrt{\left(a \pm \alpha t^{n}\right)^{2}+t^{2(n-1)}}} \tag{3.8}
\end{equation*}
$$

and then

$$
\begin{equation*}
g(t)=\int^{t} \frac{a \pm \alpha t^{n}}{\sqrt{\left(a \pm \alpha t^{n}\right)^{2}+t^{2(n-1)}}} d t \tag{3.9}
\end{equation*}
$$

Let $\varepsilon=-1$, that is, $g^{\prime 2}>1$. Now if we substitute $g^{\prime}=\cosh u$, then the differential equation (3.5) turns to

$$
\begin{equation*}
u^{\prime}-\frac{(n-1)}{t} \cosh u \sinh u-n \mu \alpha \sinh ^{2} u=0 \tag{3.10}
\end{equation*}
$$

where $\mu=\operatorname{sgn}(\sinh u)= \pm 1$. Let us put $w=\tanh u$. Then we obtain

$$
u^{\prime}=\frac{w^{\prime}}{1-w^{2}}, \quad \cosh u=\frac{1}{\sqrt{1-w^{2}}}, \quad \sinh u=\frac{w}{\sqrt{1-w^{2}}}
$$

Thus the differential equation (3.10) becomes

$$
\begin{equation*}
w^{\prime}(t)-\frac{(n-1)}{t} w(t)-n \mu \alpha w^{2}=0 \tag{3.11}
\end{equation*}
$$

which has solution $w(t)=\frac{t^{(n-1)}}{a \pm \alpha t^{n}}$ for some constant a. Therefore

$$
\begin{equation*}
g^{\prime}(t)=\cosh \left(\tanh ^{-1}\left(\frac{t^{(n-1)}}{a \pm \alpha t^{n}}\right)\right)=\frac{a \pm \alpha t^{n}}{\sqrt{\left(a \pm \alpha t^{n}\right)^{2}-t^{2(n-1)}}} \tag{3.12}
\end{equation*}
$$

and then

$$
\begin{equation*}
g(t)=\int^{t} \frac{a \pm \alpha t^{n}}{\sqrt{\left(a \pm \alpha t^{n}\right)^{2}-t^{2(n-1)}}} d t \tag{3.13}
\end{equation*}
$$

Conversely, it can be shown that the mean curvature of $M_{q, T}$ is constant if $g(t)$ is given by (3.4).

We can have the following corollaries.

Corollary 3.3. Let the mean curvature α of $M_{q, T}$ be a non-zero constant. If $a=0$ in (3.4), then $g(t)= \pm \alpha^{-1} \sqrt{\alpha^{2} t^{2}+\varepsilon}+c, t>1 /|\alpha|$ for $\varepsilon=-1$, where c is an integration constant. Moreover,
(1) for $\varepsilon=1$ the space-like rotation hypersurface $M_{0, T}$ of L^{n+1} with time-like axis defined by (3.3) is a part of hyperbolic n-space $\mathbb{H}^{n}\left(c \eta_{n+1},-1 /|\alpha|\right)$, hence it is totally umbilical.
(2) for $\varepsilon=-1$ the Lorentzian rotation hypersurface $M_{1, T}$ of L^{n+1} with timelike axis defined by (3.3) is a part of the de Sitter n-space $\mathbb{S}_{1}^{n}\left(c \eta_{n+1}, 1 /|\alpha|\right)$, hence it is totally umbilical.

Proof. If $a=0$, by integrating (3.4) we get $g(t)= \pm \alpha^{-1} \sqrt{\alpha^{2} t^{2}+\varepsilon}+c$ for $\varepsilon= \pm 1$, and $t>1 /|\alpha|$ when $\varepsilon=-1$. Using the parameterization (3.3) of $M_{q, T}$ we have
$\left\langle f_{T}-c \eta_{n+1}, f_{T}-c \eta_{n+1}\right\rangle=t^{2} \sin ^{2} u_{n-1}\langle\Theta, \Theta\rangle+t^{2} \cos ^{2} u_{n-1}-\frac{\alpha^{2} t^{2}+\varepsilon}{\alpha^{2}}=-\frac{\varepsilon}{\alpha^{2}}$
as $\langle\Theta, \Theta\rangle=1$ from (2.1). Thus the proof follows.

Corollary 3.4.

(1) The space-like rotation hypersurface $M_{0, T}$ of L^{n+1} with time-like axis defined by (3.3) is maximal if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\int^{t} \frac{a}{\sqrt{a^{2}+t^{2(n-1)}}} d t \tag{3.14}
\end{equation*}
$$

(2) The Lorentzian rotation hypersurface $M_{1, T}$ of L^{n+1} with time-like axis defined by (3.3) has zero mean curvature if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\int^{t} \frac{a}{\sqrt{a^{2}-t^{2(n-1)}}} d t, \quad 0<t<\sqrt[n-1]{|a|}, \tag{3.15}
\end{equation*}
$$

where a is a non-zero constant.

For $n>2$ a non-planer minimal rotation hypersurface of an Euclidean space E^{n+1} is called a generalized catenoid [1,9]. Similarly we call a rotation hypersurface of a Lorentz-Minkowski space L^{n+1} with zero mean curvature a generalized catenoid. So the maximal rotation hypersurface $M_{0, T}$ of L^{n+1} with time-like axis is a part of the generalized catenoid of first kind. For instance, if $n=2$, then from (3.14) we get $g(t)=a \sinh ^{-1}\left(\frac{t}{a}\right)+b$, and then we have from (3.3)

$$
f_{T}\left(u_{1}, t\right)=\left(t \sin u_{1}, t \cos u_{1}, a \sinh ^{-1}\left(\frac{t}{a}\right)+b\right)
$$

which is congruent to the catenoid of first kind given in [6].
Similarly, the Lorentzian rotation hypersurface $M_{1, T}$ of L^{n+1} with time-like axis and zero mean curvature is called a generalized catenoid of the 3rd kind. For instance, if $n=2$, then from (3.15) we get $g(t)=a \sin ^{-1}\left(\frac{t}{a}\right)+b$, and then by (3.3) we have

$$
f_{T}\left(u_{1}, t\right)=\left(t \sin u_{1}, t \cos u_{1}, a \sin ^{-1}\left(\frac{t}{a}\right)+b\right)
$$

which is congruent to a part of the catenoid of the 3rd kind given in [10].

4. Rotation Hypersurfaces of First Kind with Space-like Axis

In this section we investigate rotation hypersurfaces of the first kind $M_{q, S_{1}}$ of L^{n+1} with space-like axis and constant mean curvature. Especially we determine maximal space-like rotation hypersurfaces and Lorentzian rotation hypersurfaces with zero mean curvature of the first kind of L^{n+1} as a generalization of catenoids of the second kind and fourth kind, respectively.

On the hypersurface $M_{q, S_{1}}$ defined by (2.3), the unit normal field is given by

$$
\bar{N}=\frac{1}{\sqrt{\bar{\varepsilon}\left(\psi^{\prime 2}-\varphi^{\prime 2}\right)}}\left[\psi^{\prime}(t)\left(\sinh u_{n-1} \Theta+\cosh u_{n-1} \eta_{n+1}\right)+\varphi^{\prime}(t) \eta_{n}\right],
$$

where $\bar{\varepsilon}=\operatorname{sgn}\left(\psi^{\prime 2}-{\varphi^{\prime 2}}^{2}\right)$ and $\langle\bar{N}, \bar{N}\rangle=-\bar{\varepsilon}$.
We state the followings without proof because the most of the calculations are the same as in Section 2.

Proposition 4.1. Let $M_{q, S_{1}}$ be a rotation hypersurface of the first kind of L^{n+1} with the index q and space-like axis parameterized by (2.3). Then the directions of parameters are principal directions, and the principal curvatures along the coordinate curves $u_{i}, i=1, \ldots, n-1$, are all equal and given by

$$
\lambda=-\frac{\psi^{\prime}}{\varphi \sqrt{\bar{\varepsilon}\left(\psi^{\prime 2}-\varphi^{\prime 2}\right)}}
$$

with multiplicity $n-1$, and the principal curvature along the coordinate curve t is given by

$$
\mu=\frac{\psi^{\prime \prime} \varphi^{\prime}-\psi^{\prime} \varphi^{\prime \prime}}{\left(\psi^{\prime 2}-\varphi^{\prime 2}\right) \sqrt{\bar{\varepsilon}\left(\psi^{\prime 2}-\varphi^{\prime 2}\right)}}
$$

where $\bar{\varepsilon}=\operatorname{sgn}\left(\psi^{\prime 2}-\varphi^{\prime 2}\right)=\mp 1$ and, $q=0$ if $\bar{\varepsilon}=1$ and $q=1$ if $\bar{\varepsilon}=-1$.
Therefore the mean curvature vector of $M_{q, S_{1}}$ is

$$
\begin{equation*}
\bar{\alpha}=\frac{1}{n} \sum_{i=1}^{n} \bar{\varepsilon}_{i}\left\langle A_{\bar{N}}\left(e_{i}\right), e_{i}\right\rangle=\frac{1}{n \sqrt{\bar{\varepsilon}\left(\psi^{\prime 2}-\varphi^{\prime 2}\right)}}\left(-\frac{(n-1) \psi^{\prime}}{\varphi}+\frac{\varphi^{\prime} \psi^{\prime \prime}-\psi^{\prime} \varphi^{\prime \prime}}{\psi^{\prime 2}-\varphi^{\prime 2}}\right) \tag{4.1}
\end{equation*}
$$

which is the function of t, where e_{1}, \ldots, e_{n} are the unit principal directions of the shape operator $A_{\bar{N}}$ with signatures $\bar{\varepsilon}_{i}=\left\langle e_{i}, e_{i}\right\rangle$.

We now consider the rotation hypersurface of the first kind $M_{q, S_{1}}$ of L^{n+1} with space-like axis defined by (2.3) for the profile curve $\gamma(t)=(\varphi(t), \psi(t))=$ $(t, g(t)), t>0$, that is,

$$
\begin{align*}
f_{S_{1}}\left(u_{1}, \ldots, u_{n-1}, t\right)= & t \sinh u_{n-1} \Theta\left(u_{1}, \ldots, u_{n-2}\right)+g(t) \eta_{n} \tag{4.2}\\
& +t \cosh u_{n-1} \eta_{n+1}
\end{align*}
$$

where $g(t)$ is a differentiable function. This rotation hypersurface is space-like if $g^{\prime 2}>1,(\bar{\varepsilon}=1)$ and time-like if $g^{\prime 2}<1,(\bar{\varepsilon}=-1)$.

Hence, from (4.1) we can state that the rotation hypersurface of the first kind $M_{q, S_{1}}$ of L^{n+1} with space-like axis parametrized by (4.2) has constant mean curvature if and only if $g=g(t)$ satisfies the differential equation

$$
\begin{equation*}
g^{\prime \prime}-\frac{(n-1)\left(g^{\prime 2}-1\right) g^{\prime}}{t}+n \bar{\alpha} \bar{\varepsilon}\left[\bar{\varepsilon}\left(g^{\prime 2}-1\right)\right]^{3 / 2}=0 \tag{4.3}
\end{equation*}
$$

for some constant $\bar{\alpha}$.

Theorem 4.2. The rotation hypersurface of the first kind $M_{q, S_{1}}$ of L^{n+1} with the index q and space-like axis defined by (4.2) has constant mean curvature $\bar{\alpha}$ if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\int^{t} \frac{a \pm \bar{\alpha} t^{n}}{\sqrt{\left(a \pm \bar{\alpha} t^{n}\right)^{2}-\bar{\varepsilon} t^{2(n-1)}}} d t \tag{4.4}
\end{equation*}
$$

where a is an arbitrary constant, and $q=0$ for $\bar{\varepsilon}=1$ and $q=1$ for $\bar{\varepsilon}=-1$.
So we can have the following corollaries.

Corollary 4.3. Let the mean curvature $\bar{\alpha}$ of $M_{q, S_{1}}$ be a non-zero constant. If $a=0$ in (4.4), then $g(t)= \pm \bar{\alpha}^{-1} \sqrt{\bar{\alpha}^{2} t^{2}-\bar{\varepsilon}}+c, \quad t>1 /|\bar{\alpha}|$ for $\bar{\varepsilon}=1$, where c is an integration constant. Moreover,
(1) for $\bar{\varepsilon}=1$ the space-like rotation hypersurface of the first kind $M_{0, S_{1}}$ of L^{n+1} with space-like axis defined by (4.2) is a part of the hyperbolic n-space $\mathbb{H}^{n}\left(c \eta_{n},-1 /|\bar{\alpha}|\right)$, hence it is totally umbilical.
(2) for $\bar{\varepsilon}=-1$ the Lorentzian rotation hypersurface of the first kind $M_{1, S_{1}}$ of L^{n+1} with space-like axis defined by (4.2) is a part of de Sitter n-space $\mathbb{S}_{1}^{n}\left(c \eta_{n}, 1 /|\bar{\alpha}|\right)$, hence it is totally umbilical.

Corollary 4.4.

(1) The space-like rotation hypersurface of the first kind $M_{0, S_{1}}$ of L^{n+1} with space-like axis defined by (4.2) is maximal if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\int^{t} \frac{a}{\sqrt{a^{2}-t^{2(n-1)}}} d t, \quad 0<t<\sqrt[n-1]{|a|} \tag{4.5}
\end{equation*}
$$

(2) The Lorentzian rotation hypersurface of the first kind $M_{1, S_{1}}$ of L^{n+1} with space-like axis defined by (4.2) has zero mean curvature if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\int^{t} \frac{a}{\sqrt{a^{2}+t^{2(n-1)}}} d t \tag{4.6}
\end{equation*}
$$

where a is a non-zero constant.
The maximal rotation hypersurface of the first kind $M_{0, S_{1}}$ of L^{n+1} with spacelike axis is called a generalized catenoid of the second kind. For instance, if $n=2$, then from (4.5) we get $g(t)=a \sin ^{-1}\left(\frac{t}{a}\right)+b, \quad 0<t<\sqrt{|a|}$, and then by (4.2) we have

$$
f_{S_{1}}\left(u_{1}, t\right)=\left(t \sinh u_{1}, a \sin ^{-1}\left(\frac{t}{a}\right)+b, t \cosh u_{1}\right)
$$

which is congruent to a part of the catenoid of the second kind given in [6].
Similarly, the Lorentzian rotation hypersurface of the first kind $M_{1, S_{1}}$ of L^{n+1} with space-like axis and zero mean curvature is called a generalized catenoid of the 4th kind. For instance, if $n=2$, then from (4.6) we get $g(t)=a \sinh ^{-1}\left(\frac{t}{a}\right)+b$, and then by (4.2) we have

$$
f_{S_{1}}\left(u_{1}, t\right)=\left(t \sinh u_{1}, a \sinh ^{-1}\left(\frac{t}{a}\right)+b, t \cosh u_{1}\right)
$$

which is congruent to the catenoid of the 4th kind given in [10].

5. Rotation Hypersurfaces of Second Kind with Space-like Axis

In this section we study rotation hypersurfaces of the second kind $M_{q, S_{2}}$ of L^{n+1} with space-like axis and constant mean curvature. In the following it is seen that the index q is only one, That is, in this case we only have Lorentzian rotation hypersurface of L^{n+1}.

Taking derivative of (2.4) we have the orthogonal coordinate vector fields on $M_{q, S_{2}}$ as

$$
\begin{align*}
& \frac{\partial f_{S_{2}}}{\partial u_{i}}=\varphi(t) \cosh u_{n-1} \frac{\partial \Theta}{\partial u_{i}}, \quad i=1, \ldots, n-2 \\
& \frac{\partial f_{S_{2}}}{\partial u_{n-1}}=\varphi(t)\left(\sinh u_{n-1} \Theta+\cosh u_{n-1} \eta_{n+1}\right) \tag{5.1}\\
& \frac{\partial f_{S_{2}}}{\partial t}=\varphi^{\prime}(t)\left(\cosh u_{n-1} \Theta+\sinh u_{n-1} \eta_{n+1}\right)+\psi^{\prime}(t) \eta_{n}
\end{align*}
$$

The vectors $\partial f_{S_{2}} / \partial t, \quad \partial f_{S_{2}} / \partial u_{i} i=1, \ldots, n-2$ are space-like and the vector $\partial f_{S_{2}} / \partial u_{n-1}$ is time-like. This means that $M_{q, S_{2}}$ is Lorentzian, that is, $q=1$. Also, the space-like unit normal field on $M_{1, S_{2}}$ is given by

$$
\tilde{N}=\frac{1}{\sqrt{\varphi^{\prime 2}+\psi^{\prime 2}}}\left[\psi^{\prime}(t)\left(\cosh u_{n-1} \Theta+\sinh u_{n-1} \eta_{n+1}\right)-\varphi^{\prime}(t) \eta_{n}\right]
$$

Thus we give the followings without proof because the most of the calculations are the same as in Section 2.

Proposition 5.1. Let $M_{1, S_{2}}$ be the Lorentzian rotation hypersurface of the second kind of L^{n+1} with space-like axis parameterized by (2.4). Then the directions of parameters are principal directions, and the principal curvatures along the coordinate curves $u_{i}, i=1, \ldots, n-1$, are all equal and given by

$$
\lambda=-\frac{\psi^{\prime}}{\varphi \sqrt{\left(\psi^{\prime 2}+\varphi^{\prime 2}\right)}}
$$

with multiplicity $n-1$, and the principal curvature along the coordinate curve t is given by

$$
\mu=\frac{\psi^{\prime} \varphi^{\prime \prime}-\psi^{\prime \prime} \varphi^{\prime}}{\left(\psi^{\prime 2}+\varphi^{\prime 2}\right) \sqrt{\left(\psi^{\prime 2}+\varphi^{\prime 2}\right)}}
$$

Hence the mean curvature of $M_{1, S_{2}}$ is

$$
\begin{equation*}
\tilde{\alpha}=\frac{1}{n} \sum_{i=1}^{n} \tilde{\varepsilon}_{i}\left\langle A_{\tilde{N}}\left(e_{i}\right), e_{i}\right\rangle=\frac{1}{n \sqrt{\varphi^{\prime 2}+\psi^{\prime 2}}}\left(-\frac{(n-1) \psi^{\prime}}{\varphi}+\frac{\psi^{\prime} \varphi^{\prime \prime}-\varphi^{\prime} \psi^{\prime \prime}}{\varphi^{\prime 2}+\psi^{\prime 2}}\right) \tag{5.2}
\end{equation*}
$$

where e_{1}, \ldots, e_{n} are the unit principal directions of the shape operator $A_{\tilde{N}}$ with signatures $\tilde{\varepsilon}_{n}=\tilde{\varepsilon}_{i}=1, i=1, \ldots, n-2, \tilde{\varepsilon}_{n-1}=-1$.

We consider the Lorentzian rotation hypersurface of the second kind $M_{1, S_{2}}$ of L^{n+1} with space-like axis defined by (2.4) for the profile curve $\gamma(t)=(\varphi(t), \psi(t))$ $=(t, g(t)), t>0$, that is,

$$
\begin{align*}
f_{S_{2}}\left(u_{1}, \ldots, u_{n-1}, t\right)= & t \cosh u_{n-1} \Theta\left(u_{1}, \ldots, u_{n-2}\right)+g(t) \eta_{n} \tag{5.3}\\
& +t \sinh u_{n-1} \eta_{n+1}
\end{align*}
$$

where $g(t)$ is a differentiable function. Hence, from (5.2) we can state that the rotation hypersurface of the second kind $M_{1, S_{2}}$ of L^{n+1} with space-like axis parametrized by (5.3) has constant mean curvature if and only if the function $g=g(t)$ satisfies the differential equation:

$$
\begin{equation*}
g^{\prime \prime}+\frac{(n-1)\left(1+g^{\prime 2}\right) g^{\prime}}{t}+n \tilde{\alpha}\left(1+g^{\prime 2}\right)^{3 / 2}=0 \tag{5.4}
\end{equation*}
$$

for some constant $\tilde{\alpha}$.
Theorem 5.2. The Lorentzian rotation hypersurface of the second kind $M_{1, S_{2}}$ of L^{n+1} with space-like axis defined by (5.3) has constant mean curvature $\tilde{\alpha}$ if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\int^{t} \frac{a \pm \tilde{\alpha} t^{n}}{\sqrt{t^{2(n-1)}-\left(a \pm \tilde{\alpha} t^{n}\right)^{2}}} d t \tag{5.5}
\end{equation*}
$$

where a is an arbitrary constant.
From this theorem we have the following corollaries.
Corollary 5.3. Let the mean curvature $\tilde{\alpha}$ of $M_{1, S_{2}}$ be a non-zero constant. If $a=0$ in (5.5), then $g(t)=\mp \tilde{\alpha}^{-1} \sqrt{1-\tilde{\alpha}^{2} t^{2}}+c, \quad 0<t<1 /|\tilde{\alpha}|$. Moreover, the Lorentzian rotation hypersurface of the second kind $M_{1, S_{2}}$ of L^{n+1} with space-like axis defined by (5.3) is a part of the de Sitter n-space $\mathbb{S}_{1}^{n}\left(c \eta_{n}, 1 /|\tilde{\alpha}|\right)$, hence it is totally umbilical.

Corollary 5.4. The Lorentzian rotation hypersurface of the second kind $M_{1, S_{2}}$ of L^{n+1} with space-like axis defined by (5.3) has zero mean curvature if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\int^{t} \frac{a}{\sqrt{t^{2(n-1)}-a^{2}}} d t, \quad t>\sqrt[n-1]{|a|} \tag{5.6}
\end{equation*}
$$

where a is a non-zero constant.

The Lorentzian rotation hypersurface of the second kind $M_{1, S_{2}}$ of L^{n+1} with space-like axis and zero mean curvature is called a generalized catenoid of the 5th kind. For instance, if $n=2$, then from (5.6) we get $g(t)=a \cosh ^{-1}\left(\frac{t}{a}\right)+b$, and then by (5.3) we have

$$
f_{S_{2}}\left(u_{1}, t\right)=\left(t \cosh u_{1}, a \cosh ^{-1}\left(\frac{t}{a}\right)+b, t \sinh u_{1}\right)
$$

which is congruent to the catenoid of the 5th kind given in [10].

6. Rotation Hypersurface with Light-Like Axis

In this section we study rotation hypersurfaces $M_{q, L}$ of L^{n+2} with light-like axis and constant mean curvature. We determine maximal space-like rotation hypersurface and Lorentzian rotation hypersurface with zero mean curvature of L^{n+1} as a generalization of Enneper surfaces of the second kind and third kind, respectively.

Proposition 6.1. Let $M_{q, L}$ be a rotation hypersurface of L^{n+1} with the index q and light-like axis parameterized by (2.8). Then the directions of parameters are principal directions, and the principal curvatures along the coordinate curves u_{i}, $i=1, \ldots, n-1$ are all equal and given by

$$
\lambda=-\frac{\varphi^{\prime}}{2 \varphi \sqrt{\hat{\varepsilon} \varphi^{\prime} \psi^{\prime}}}
$$

with multiplicity $n-1$, and the principal curvature along the coordinate curve t is given by

$$
\mu=\frac{\varphi^{\prime} \psi^{\prime \prime}-\psi^{\prime} \varphi^{\prime \prime}}{4 \varphi^{\prime} \psi^{\prime} \sqrt{\hat{\varepsilon} \varphi^{\prime} \psi^{\prime}}}
$$

where $\hat{\varepsilon}=\operatorname{sgn}\left(\varphi^{\prime} \psi^{\prime}\right)=\mp 1$ and, $q=0$ if $\hat{\varepsilon}=1$ and $q=1$ if $\hat{\varepsilon}=-1$.
Proof. Taking derivative of (2.8) we have the orthogonal coordinate vector fields on $M_{q, L}$ as

$$
\begin{align*}
\frac{\partial f_{L}}{\partial u_{i}} & =2 \varphi(t) u_{n-1} \frac{\partial \Theta}{\partial u_{i}}, \quad i=1, \ldots, n-2, \\
\frac{\partial f_{L}}{\partial u_{n-1}} & =2 \varphi(t)\left(\Theta-\sqrt{2} u_{n-1} \hat{\eta}_{n+1}\right), \tag{6.1}\\
\frac{\partial f_{L}}{\partial t} & =\varphi^{\prime}(t)\left(2 u_{n-1} \Theta+\sqrt{2} \hat{\eta}_{n}\right)+\sqrt{2}\left(\psi^{\prime}(t)-\varphi^{\prime}(t) u_{n-1}^{2}\right) \hat{\eta}_{n+1} .
\end{align*}
$$

So we have $\left\langle\frac{\partial f_{L}}{\partial u_{i}}, \frac{\partial f_{L}}{\partial u_{j}}\right\rangle=4 \varphi^{2}(t) u_{n-1}^{2}\left\langle\frac{\partial \Theta}{\partial u_{i}}, \frac{\partial \Theta}{\partial u_{j}}\right\rangle=4 \varphi^{2}(t) u_{n-1}^{2}\left\|\frac{\partial \Theta}{\partial u_{i}}\right\|^{2} \delta_{i j}, u_{n-1} \neq$ $0, \quad i, j=1, \ldots, n-2$ as Θ is an orthogonal parametrization of the unit sphere
$S^{n-2}(1),\left\langle\frac{\partial f_{L}}{\partial u_{n-1}}, \frac{\partial f_{L}}{\partial u_{n-1}}\right\rangle=4 \varphi^{2}(t)$ and $\left\langle\frac{\partial f_{L}}{\partial t}, \frac{\partial f_{L}}{\partial t}\right\rangle=4 \varphi^{\prime}(t) \psi^{\prime}(t) \neq 0$ because the profile curve is nonnull.

The vectors $\partial f_{L} / \partial u_{i}$'s are space-like, and however the vector $\partial f_{L} / \partial t$ is spacelike if $\hat{\varepsilon}=\operatorname{sgn}\left(\left\langle\partial f_{T} / \partial t, \partial f_{T} / \partial t\right\rangle\right)=\operatorname{sgn}\left(\varphi^{\prime}(t) \psi^{\prime}(t)\right)=1$ and time-like if $\hat{\varepsilon}=-1$. Thus we can choose an orthonormal tangent basis on $M_{q, L}$ as

$$
e_{i}=\frac{1}{\left\|\partial f_{L} / \partial u_{i}\right\|} \frac{\partial}{\partial u_{i}}, \quad i=1, \ldots, n-1, \quad e_{n}=\frac{1}{2 \sqrt{\hat{\varepsilon} \varphi^{\prime} \psi^{\prime}}} \frac{\partial}{\partial t}
$$

with $\hat{\varepsilon}_{i}=1, i=1, \ldots, n-1, \hat{\varepsilon}_{n}=\hat{\varepsilon}$. Also we have the unit normal field to $M_{q, L}$ as

$$
\hat{N}=\frac{1}{\sqrt{2 \hat{\varepsilon} \varphi^{\prime} \psi^{\prime}}}\left[\varphi^{\prime}\left(\sqrt{2} u_{n-1} \Theta+\hat{\eta}_{n}\right)-\left(\psi^{\prime}+\varphi^{\prime} u_{n-1}^{2}\right) \hat{\eta}_{n+1}\right]
$$

with $\langle\hat{N}, \hat{N}\rangle=-\hat{\varepsilon}$. By a straightforward calculation we obtain

$$
A_{\hat{N}}\left(e_{i}\right)=-\frac{\varphi^{\prime}}{2 \varphi \sqrt{\hat{\varepsilon} \varphi^{\prime} \psi^{\prime}}} e_{i}, \quad i=1, \ldots, n-1 \text { and } A_{\hat{N}}\left(e_{n}\right)=\frac{\varphi^{\prime} \psi^{\prime \prime}-\psi^{\prime} \varphi^{\prime \prime}}{4 \varphi^{\prime} \psi^{\prime} \sqrt{\hat{\varepsilon} \varphi^{\prime} \psi^{\prime}}} e_{n}
$$

It follows from above that the coordinate curves are lines of curvature, and hence the principal curvatures λ and μ are obtained.

Therefore, for the mean curvature $\hat{\alpha}$ of $M_{q, L}$ we have

$$
\begin{equation*}
\hat{\alpha}=\frac{1}{n} \sum_{i=1}^{n} \hat{\varepsilon}_{i}\left\langle A_{\hat{N}}\left(e_{i}\right), e_{i}\right\rangle=\frac{1}{n \sqrt{\hat{\varepsilon} \varphi^{\prime} \psi^{\prime}}}\left(-\frac{(n-1) \varphi^{\prime}}{2 \varphi}+\frac{\varphi^{\prime} \psi^{\prime \prime}-\psi^{\prime} \varphi^{\prime \prime}}{4 \varphi^{\prime} \psi^{\prime}}\right) \tag{6.2}
\end{equation*}
$$

which is the function of t.
To investigate the rotation hypersurface $M_{q, L}$ of L^{n+1} with light-like axis and constant mean curvature we consider the rotation hypersurface defined by (2.8) for the profile curve $\gamma(t)=(\varphi(t), \psi(t))=(t, g(t)), t>0$, that is,

$$
\begin{align*}
f_{L}\left(u_{1}, \ldots, u_{n-1}, t\right)= & 2 t u_{n-1} \Theta\left(u_{1}, \ldots, u_{n-2}\right)+\sqrt{2} t \hat{\eta}_{n} \tag{6.3}\\
& +\sqrt{2}\left(g(t)-t u_{n-1}^{2}\right) \hat{\eta}_{n+1}
\end{align*}
$$

where $g(t)$ is a differentiable function. This rotation hypersurface is space-like if $g^{\prime}>0,(\hat{\varepsilon}=1)$ and time-like if $g^{\prime}<0,(\hat{\varepsilon}=-1)$ This means that the profile curve is strictly monotonic.

Theorem 6.2. The rotation hypersurface $M_{q, L}$ of L^{n+1} with light-like axis given by (6.3) has constant mean curvature $\hat{\alpha}$ if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\int^{t} \hat{\varepsilon} \frac{t^{2(n-1)}}{\left(a-2 t^{n} \hat{\alpha}\right)^{2}} d t, \quad \hat{\varepsilon}= \pm 1 \tag{6.4}
\end{equation*}
$$

where a is an arbitrary constant.

Proof. For the function $\varphi(t)=t, t>0$ and $\psi(t)=g(t)$, from (6.2) the rotation hypersurface $M_{q, L}$ parametrized by (6.3) has constant mean curvature if and only if $g=g(t)$ satisfies the differential equation:

$$
\begin{equation*}
g^{\prime \prime}-\frac{2(n-1) g^{\prime}}{t}-4 n \hat{\alpha} g^{\prime} \sqrt{\hat{\varepsilon} g^{\prime}}=0 \tag{6.5}
\end{equation*}
$$

for some constant $\hat{\alpha}$.
Suppose that $M_{q, L}$ has constant mean curvature $\hat{\alpha}$. Let us put $\hat{\varepsilon} g^{\prime}=w^{2}$. Then $g^{\prime \prime}=2 \hat{\varepsilon} w w^{\prime}$ and the differential equation (6.5) becomes

$$
\begin{equation*}
w^{\prime}-\frac{(n-1)}{t} w-2 n \mu \hat{\alpha} w^{2}=0 \tag{6.6}
\end{equation*}
$$

where $\mu=\operatorname{sgn}(w)= \pm 1$. The solution of (6.6) gives $w(t)=\mu \frac{t^{n-1}}{a-2 \hat{\alpha} t^{n}}$ for some constant a. We then obtain (6.4) by solving $g^{\prime}=\hat{\varepsilon} w^{2}$.

Conversely, it can be shown that the mean curvature of $M_{q, L}$ is constant if $g(t)$ is given by (6.4).

Then we have the following corollaries.

Corollary 6.3. Let the mean curvature $\hat{\alpha}$ of $M_{q, L}$ be a non-zero constant. If $a=0$ in (6.4), then $g(t)=c-\frac{\hat{\varepsilon}}{4 t \hat{\alpha}^{2}}, t>0$, where c is an integration constant. Moreover,
(1) for $\hat{\varepsilon}=1$ the space-like rotation hypersurface $M_{0, L}$ of L^{n+1} with light-like axis parameterized by (6.3) is a part of hyperbolic n-space $\mathbb{H}^{n}\left(c \hat{\eta}_{n+1},-1 /|\hat{\alpha}|\right)$, hence it is totally umbilical.
(2) for $\varepsilon=-1$ the Lorentzian rotation hypersurface $M_{1, L}$ of L^{n+1} with time-like axis parameterized by (6.3) is a part of the de Sitter n-space $\mathbb{S}_{1}^{n}\left(c \hat{\eta}_{n+1}, 1 /|\hat{\alpha}|\right)$, hence it is totally umbilical, where $\hat{\eta}_{n+1}$ is the direction of the light-like rotation axis.

Proof. If $a=0$, by integrating (6.4) we get $g(t)=c-\frac{\hat{\varepsilon}}{4 t \hat{\alpha}^{2}}$. Using the parameterization (6.3) of $M_{q, L}$ we have

$$
\begin{aligned}
\left\langle f_{L}-c \sqrt{2} \hat{\eta}_{n+1}, f_{L}-c \sqrt{2} \hat{\eta}_{n+1}\right\rangle & =4 t^{2} u_{n-1}^{2}\langle\Theta, \Theta\rangle+4 t\left(-\frac{\hat{\varepsilon}}{4 t \hat{\alpha}^{2}}-t u_{n-1}^{2}\right)\left\langle\hat{\eta}_{n}, \hat{\eta}_{n+1}\right\rangle \\
& =-\frac{\hat{\varepsilon}}{\hat{\alpha}^{2}}
\end{aligned}
$$

as $\langle\Theta, \Theta\rangle=1$ from (2.1). Therefore the proof follows.

Corollary 6.4.

(1) The space-like rotation hypersurface $M_{0, L}$ of L^{n+1} with light-like axis given by (6.3) is maximal if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=\frac{1}{a^{2}} \frac{t^{2 n-1}}{2 n-1}+b . \tag{6.7}
\end{equation*}
$$

(2) The Lorentzian rotation hypersurface $\hat{M}_{1, L}$ of L^{n+1} with light-like axis given by (6.3) has zero mean curvature if and only if the function $g(t)$ for the profile curve is given by

$$
\begin{equation*}
g(t)=b-\frac{1}{a^{2}} \frac{t^{2 n-1}}{2 n-1}, \tag{6.8}
\end{equation*}
$$

where $a \neq 0$ and b are constants.
We call the maximal space-like rotation hypersurface $M_{0, L}$ of L^{n+1} with lightlike axis the hypersurface of Enneper of the second kind. For instance, for $n=$ $2, a=1$ and $b=0$ from (6.3) and (6.7) the maximal space-like rotation surface $M_{0, L}$ with light-like axis is given by

$$
\begin{aligned}
f_{L}\left(u_{1}, t\right) & =2 t u_{1} \eta_{1}+\sqrt{2} t \hat{\eta}_{2}+\sqrt{2}\left(\frac{t^{3}}{3}-t u_{1}^{2}\right) \hat{\eta}_{3} \\
& =\left(2 t u_{1}, \frac{t^{3}}{3}+t-t u_{1}^{2}, \frac{t^{3}}{3}-t-t u_{1}^{2}\right)
\end{aligned}
$$

which is congruent to the Enneper's surface of the second kind given in [6].
Similarly we call the time-like rotation hypersurface $M_{1, L}$ of L^{n+1} with lightlike axis and zero mean curvature the hypersurface of Enneper of the third kind. For instance, for $n=2, a=1$ and $b=0$ from (6.3) and (6.8) the time-like rotation surface $M_{1, L}$ with light-like axis and zero mean curvature is given by

$$
\begin{aligned}
f_{L}\left(u_{1}, t\right) & =2 t u_{1} \eta_{1}+\sqrt{2} t \hat{\eta}_{2}+\sqrt{2}\left(-\frac{t^{3}}{3}-t u_{1}^{2}\right) \hat{\eta}_{3} \\
& =\left(2 t u_{1},-\frac{t^{3}}{3}+t-t u_{1}^{2},-\frac{t^{3}}{3}-t-t u_{1}^{2}\right),
\end{aligned}
$$

which congruent to the Enneper's surface of the third kind given in [10].
Corollary 6.5. For $n=2$ and $a \neq 0$, the rotation surface $M_{q, L}$ with light-like axis given by (6.3) has non-zero constant mean curvature if and only if the function
$g(t)$ for the profile curve is given by

$$
g(t)= \begin{cases}\frac{\hat{\varepsilon}}{8 \hat{\alpha}^{2}}\left(\frac{t}{\rho^{2}-t^{2}}-\frac{1}{\rho} \tanh ^{-1}\left(\frac{t}{\rho}\right)\right)+b, 0<\frac{t}{\rho}<1, & \frac{a}{2 \hat{\alpha}}=\rho^{2}>0 \tag{6.9}\\ \frac{\hat{\varepsilon}}{8 \hat{\alpha}^{2}}\left(\frac{-t}{t^{2}+\rho^{2}}+\frac{1}{\rho} \tan ^{-1}\left(\frac{t}{\rho}\right)\right)+b, t>0, & \frac{a}{2 \hat{\alpha}}=-\rho^{2}<0,\end{cases}
$$

where a is a non-zero constant, $q=0$ when $\hat{\varepsilon}=1$ and $q=1$ when $\hat{\varepsilon}=-1$.
Proof. The proof is followed from the evaluation of the integral in (6.4) for $n=2$.

The results given in Corollary 6.5 for the space-like surface $(\hat{\varepsilon}=1)$ was also obtained in [4].

Now we state a classification theorem for rotation hypersurfaces of L^{n+1} with constant mean curvature.

Theorem 6.6. Let M be a rotation hypersurface of a Lorentz-Minkowski space L^{n+1}. If M has constant mean curvature, then it is locally congruent to a part of one of the following rotation hypersurfaces:
(1) a space-like hyperplane or a time-like hyperplane of L^{n+1};
(2) a Lorentz cylinder $M_{1, T}=\mathbb{S}^{n-1}\left(0, \varphi_{0}\right) \times L^{1}$ or a hyperbolic cylinder $M_{0, S_{1}}=$ $\mathbb{H}^{n-1}\left(0,-\varphi_{0}\right) \times \mathbb{R}$ or a pseudo-spherical cylinder $M_{1, S_{2}}=\mathbb{S}_{1}^{n-1}\left(0, \varphi_{0}\right) \times \mathbb{R}$, where φ_{0} is a positive real number;
(3) the rotation hypersurface $M_{q, T}$ of L^{n+1} with time-like axis defined by (3.3) for the profile curve $g(t)$ given by (3.4);
(4) the rotation hypersurface of the first kind $M_{q, S_{1}}$ of L^{n+1} with space-like axis defined by (4.2) for the profile curve $g(t)$ given by (4.4);
(5) the rotation hypersurface of the second kind $M_{1, S_{2}}$ of L^{n+1} with space-like axis defined by (5.3) for the profile curve $g(t)$ given by (5.5);
(6) the rotation hypersurface $M_{q, L}$ of L^{n+1} with light-like axis defined by (6.3) for the profile curve $g(t)$ given by (6.4).

Note that the cases (3), (4), (5), and (6) in Theorem 6.6 include a hyperbolic n-space \mathbb{H}^{n} or a de Sitter n-space \mathbb{S}_{1}^{n} with time-like, space-like or light-like axis by following Corollaries 3.3, 4.3, 5.3, and 6.3.

When $n=2$, Theorem 6.6 gives all time-like and space-like rotation surfaces of Lorentz-Minkowski 3-space with constant mean curvature which includes locally the results on the space-like rotation surfaces with constant mean curvature given in [4].

I would like to express my thanks to the referee for his/her valuable suggestions to improve the article.

References

1. J. L. Barbosa and M. do Carmo, Helicoids, catenoids, and minimal hypersurfaces of R^{n} invariant by an ℓ-parameter group of motions, An. Acad. Brasil. Ciênc., 53 (1981), 403-408.
2. R. M. B. Chaves and C. C. Candido, On a conjecture about the Gauss map of complete spacelike surfaces with constant mean curvature in the Lorentz-Minkowski Space, Beiträge Algebra Geom., 45 (2004), 191-208.
3. C. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pure Appl., 6 (1841), 309-320.
4. J. I. Hano and K. Nomizu, Surface of revolution with constant mean curvature in Lorentz-Minkowski space, Tôhoku Math. J., 36 (1984), 427-437.
5. W-Y. Hsiang and W-C. Yu, A generalization of a theorem of Delaunay, J. Differential Geom., 16 (1981), 161-177.
6. O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L^{3}, Tokyo J. Math., 6 (1983), 297-309.
7. S. Lee and J. H. Varnado, Spacelike constant mean curvature surfaces of revolution in Minkowski 3 -space, Differ. Geom. Dyn. Sys., 8 (2006), 144-165.
8. L. McNertny, One-parameter families of surfaces with constant curvature in Lorentz 3-space, Ph.D. thesis, Brown University, 1980.
9. M. Pinl and W. Ziller, Minimal hypersurfaces in spaces of constant curvature, J. Differential Geom., 11 (1976), 335-343.
10. I. Van de Woestijne, Minimal surfaces in the 3-dimensional Minkowski space, in: Geometry and Topology of Submanifolds II, M. Boyom et al. (eds), World Scientific, Teaneck, NJ, 1990, 344-369.
[^1]
[^0]: Received November 23, 2007, accepted August 4, 2008.
 Communicated by Bang-Yen Chen.
 2000 Mathematics Subject Classification: 53C42, 53C50.
 Key words and phrases: Rotation hypersurface, Constant mean curvature, Catenoid, Enneper's hypersurface.

[^1]: Uğur Dursun
 Istanbul Technical University,
 Faculty of Science and Letters,
 Department of Mathematics, 34469 Maslak, Istanbul, Turkey
 E-mail: udursun@itu.edu.tr

