TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 2, pp. 685-705, April 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

ROTATION HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE WITH CONSTANT MEAN CURVATURE

Uğur Dursun

Abstract. We give explicit parameterizations of rotation hypersurfaces in Lorentz-Minkowski space L^{n+1} . Then we obtain rotation hypersurfaces in Lorentz-Minkowski space L^{n+1} with constant mean curvature. In particular, we determine nonplanar rotation hypersurfaces with zero mean curvature, namely, generalized catenoids of L^{n+1} . In the case the rotation axis is light-like, the generalized catenoids generalize Enneper's surfaces of the 2nd and 3rd kind.

1. INTRODUCTION

In an old paper [3], Delaunay proved that the profile curve of a rotation surface with nonzero constant mean curvature in Euclidean 3-space can be described as the locus of a focus when a quadratic curve is rolled along the axis of revolution. This result was generalized in various directions by Hsiang and Yu [5]. In [9], Pinl and Ziller proved that the only minimal rotation hypersurface (except the hyperplane) of Euclidean space is the generalized catenoid. In [4], Carmo and Dajczer defined rotation hypersurfaces in space of constant curvature and gave a local characterization of such hypersurfaces. Also they studied some special cases of rotation hypersurfaces with constant mean curvature in hyperbolic space.

On the other hand, in Lorentz-Minkowski 3-space there are several different kinds of rotation surfaces depending on the rotation axis: rotations about spacelike, time-like, and light-like axes. Rotation surfaces of constant mean curvature in Minkowski 3-space L^3 has been studied by a number of differential geometers. For

Received November 23, 2007, accepted August 4, 2008.

Communicated by Bang-Yen Chen.

²⁰⁰⁰ Mathematics Subject Classification: 53C42, 53C50.

Key words and phrases: Rotation hypersurface, Constant mean curvature, Catenoid, Enneper's hypersurface.

instance, in [4], Hano and Nomizu studied the Delaunay's problem in the Lorentz-Minkowski 3-space L^3 , restricting themselves to the space-like surfaces such that the rotation axis is either space-like, time-like or light-like. In the case of revolution about the space-like and time-like axis, the profile curve is obtained by revolving the focus of a quadratic curve along the axis of rotation, similarly to the Delaunay surface in Euclidean 3-space. They also studied for the profile curves when the rotation axis is light-like. The completeness of the surfaces obtained in [4] was investigated in [2]. Recently in [7], Lee and Varnado studied various nonlinear ordinary differential equations that characterize space-like constant mean curvature rotation surfaces in Minkowski 3-space. They solved the differential equations by using some numerical methods to obtain examples of space-like constant mean curvatures.

In particular, there are various type of catenoids, that is, nonplanar rotation surfaces with zero mean curvature, in Lorentz-Minkowski 3-space depending on the rotation axis. In [6], Kobayashi classified maximal space-like rotation surfaces in Minkowski space L^3 . However, McNertney [8] and Van de Woestijne [10] independently classified catenoids, that is, nonplaner rotation surfaces with zero mean curvature, in Lorentz-Minkowski space L^3 . In [10], Van de Woestijne calls the space-like catenoid and time-like catenoid with light-like axis the surface of Enneper of the 2nd kind and 3rd kind, respectively.

In this paper we extend the notion of rotation surfaces of the 3-dimensional Lorentz-Minkowski space L^3 to hypersurfaces of an (n + 1)-dimensional Lorentz -Minkowski space L^{n+1} . We firstly give explicit parametrization of rotation hypersurfaces in L^{n+1} according to the rotation axis is time-like, space-like or light-like. Especially, when the rotation axis is light-like we determine the orthogonal transformations of L^{n+1} that leaves the rotation axis fixed. We then compute the principal curvatures of each rotation hypersurface in L^{n+1} to determine the differential equation of the hypersurface with constant mean curvature. By solving the differential equations we obtain profile curves of rotation hypersurfaces of constant mean curvature. As a consequence we determine the generalized catenoids of L^{n+1} . In the case the rotation axis is light-like, the generalized catenoids generalize Enneper's surfaces of the 2nd and 3rd kind.

2. PRELIMINARIES

Let L^{n+1} denotes the (n + 1)-dimensional Lorentz-Minkowski space, that is, the real vector space \mathbb{R}^{n+1} endowed with the Lorentzian metric $\langle , \rangle = (dx_1)^2 + \cdots + (dx_n)^2 - (dx_{n+1})^2$, where (x_1, \ldots, x_{n+1}) are the canonical coordinates in \mathbb{R}^{n+1} . A vector x of L^{n+1} is said to be space-like if $\langle x, x \rangle > 0$ or x = 0, time-like if $\langle x, x \rangle < 0$ or light-like (or null) if $\langle x, x \rangle = 0$ and $x \neq 0$.

An immersed hypersurface M_q of L^{n+1} with index q (q = 0, 1) is called spacelike (Riemannian) or time-like (Lorentzian) if the induced metric, which, as usual, is also denoted by \langle , \rangle on M_q has the index 0 or 1, respectively. The de Sitter *n*-space $\mathbb{S}_1^n(x_0, c)$ centered at $x_0 \in L^{n+1}$, c > 0, is a Lorentzian hypersurface of L^{n+1} defined by

$$\mathbb{S}_{1}^{n}(x_{0},c) = \{ x \in L^{n+1} | \langle x - x_{0}, x - x_{0} \rangle = c^{2} \},\$$

and the hyperbolic space $\mathbb{H}^n(x_0, -c)$ centered at $x_0 \in L^{n+1}$, c > 0, is a space-like hypersurface of L^{n+1} defined by

$$\mathbb{H}^{n}(x_{0},-c) = \{ x \in L^{n+1} | \langle x - x_{0}, x - x_{0} \rangle = -c^{2} \text{ and } x_{n+1} - x_{n+1}^{0} > 0 \},\$$

where $x_{n+1} - x_{n+1}^0$ is the (n+1)-th component of $x - x_0$. The de Sitter *n*-space $\mathbb{S}_1^n(x_0, c)$ and the hyperbolic space $\mathbb{H}^n(x_0, -c)$, c > 0, are both totally umbilical hypersurfaces of the Lorentzian space L^{n+1} .

Let e_1, \ldots, e_n be an orthonormal local tangent frame on a hypersurface M_q of L^{n+1} with signatures $\varepsilon_i = \langle e_i, e_i \rangle = \mp 1$, and A_N denotes the shape operator of M_q in a chosen unit normal direction N. Then the mean curvature α of M_q is defined by

$$\alpha = \frac{1}{n} \operatorname{tr} A_N = \frac{1}{n} \sum_{i=1}^n \varepsilon_i \left\langle A_N(e_i), e_i \right\rangle.$$

A space-like hypersurface of L^{n+1} with vanishing mean curvature is called maximal.

Let Π be a 2-dimensional subspace of L^{n+1} passing through the origin. We will say that Π is non-degenerate if the metric \langle , \rangle restricted to Π is a non-degenerate quadratic form. A curve in L^{n+1} is called space-like, time-like or light-like if the tangent vector at any point is space-like, time-like or light-like, respectively. An orthogonal transformation of L^{n+1} is a linear map that preserves the metric.

Here we will define non-degenerate rotation hypersurfaces in L^{n+1} with timelike, space-like or light-like axis. For an open interval $I \subset \mathbb{R}$, let $\gamma : I \to \Pi$ be a regular smooth curve in a non-degenerate 2-plane Π of L^{n+1} and let ℓ be a line in Π that does not meet the curve γ . A rotation hypersurface M_q with index q in L^{n+1} with a rotation axis ℓ is defined as the orbit of a curve γ under the orthogonal transformations of L^{n+1} with positive determinant that leaves the rotation axis ℓ fixed. When the rotation axis ℓ is space-like or time-like it is easy to write the orthogonal transformations of L^{n+1} that leaves the rotation axis ℓ fixed. However, if the rotation axis ℓ is light-like we will give the orthogonal transformations of L^{n+1} that leaves the axis ℓ fixed. The curve γ is called profile curve of the rotation hypersurface. As we consider non-degenerate rotation hypersurfaces it is sufficient to consider the case that the profile curve is space-like or time-like.

We will give explicit parameterizations for non-degenerate rotation hypersurfaces M_q in L^{n+1} according to the axis ℓ is time-like, space-like or light-like. Let

 $\{\eta_1, \ldots, \eta_{n+1}\}$ be the standard orthonormal basis of L^{n+1} , that is, $\langle \eta_i, \eta_j \rangle = \delta_{ij}$, $\langle \eta_{n+1}, \eta_{n+1} \rangle = -1$, $\langle \eta_i, \eta_{n+1} \rangle = 0$, $i, j = 1, 2, \ldots, n$.

Let $\Theta(u_1, \ldots u_{n-2})$ denotes an orthogonal parametrization of the unit sphere $\mathbb{S}^{n-2}(1)$ in the Euclidean space E^{n-1} generated by $\{\eta_1, \ldots, \eta_{n-1}\}$:

(2.1)
$$\Theta(u_1, \dots, u_{n-2}) = \cos u_1 \eta_1 + \sin u_1 \cos u_2 \eta_2 + \dots + \sin u_1 \cdots \sin u_{n-3} \\ \cos u_{n-2} \eta_{n-2} + \sin u_1 \cdots \sin u_{n-3} \sin u_{n-2} \eta_{n-1},$$

where $0 < u_i < \pi$ $(i = 1, ..., n - 3), 0 < u_{n-2} < 2\pi$.

Remark. When n = 2, the term $\Theta(u_1, \ldots, u_{n-2})$ in the following definitions of rotation hypersurfaces is replaced by η_1 .

Case 1. ℓ is time-like. In this case the plane Π that contains the line ℓ and a profile curve γ is Lorentzian. Without lose of generality, we may suppose that ℓ is the x_{n+1} -axis and Π is the x_nx_{n+1} -plane which is Lorentzian. Since every time-like line is transformed to the x_{n+1} -axis by a Lorentz transformation, and then every time-like plane containing the x_{n+1} -axis is transformed to the x_nx_{n+1} -plane.

Let $\gamma(t) = \varphi(t)\eta_n + \psi(t)\eta_{n+1}$ be a parametrization of γ in the plane Π with $x_n = \varphi(t) > 0, t \in I \subset \mathbb{R}$. The curve is space-like if $\varepsilon = \operatorname{sgn}(\varphi'^2 - \psi'^2) = 1$ and time-like if $\varepsilon = \operatorname{sgn}(\varphi'^2 - \psi'^2) = -1$.

So we can give a parametrization of a rotation hypersurface $M_{q,T}$ of L^{n+1} with time-like axis as

(2.2)
$$f_T(u_1, \dots, u_{n-1}, t) = \varphi(t) \sin u_{n-1} \Theta(u_1, \dots, u_{n-2}) + \varphi(t) \cos u_{n-1} \eta_n + \psi(t) \eta_{n+1},$$

where $0 < u_{n-1} < \pi$. The second index in $M_{q,T}$ stands for the time-like axis. The hypersurface $M_{q,T}$ is also called a spherical rotation hypersurface of L^{n+1} as parallels of $M_{q,T}$ are spheres $\mathbb{S}^{n-1}(0, \varphi(t))$.

Case 2. ℓ is space-like. In this case the plane Π which contains a profile curve is Lorentzian or Riemannian. So there are rotation hypersurfaces of the first and second kind labeled by M_{q,S_1} and M_{q,S_2} in L^{n+1} with space-like axis.

Subcase 2.1. The plane Π is Lorentzian. Without losing generality we may suppose that ℓ is the x_n -axis, that is, the vector $\eta_n = (0, \ldots, 0, 1, 0)$ is the direction of the rotation axis, and Π is the $x_n x_{n+1}$ -plane. Let $\gamma(t) = \psi(t)\eta_n + \varphi(t)\eta_{n+1}$ be a parametrization of γ in the plane Π with $x_{n+1} = \varphi(t) > 0$, $t \in I \subset \mathbb{R}$. Thus we can give a parametrization of a rotation hypersurface of the first kind M_{q,S_1} of L^{n+1} with space-like axis as

(2.3)
$$f_{S_1}(u_1, \dots, u_{n-1}, t) = \varphi(t) \sinh u_{n-1} \Theta(u_1, \dots, u_{n-2}) + \psi(t) \eta_n + \varphi(t) \cosh u_{n-1} \eta_{n+1},$$

 $0 < u_{n-1} < \infty$, which is also called a hyperbolic rotation hypersurface of L^{n+1} as parallels of M_{q,S_1} are hyperbolic spaces $\mathbb{H}^{n-1}(0, -\varphi(t))$.

Subcase 2.2. The plane Π is Riemannian. We may suppose that ℓ is the x_n -axis and Π is the $x_{n-1}x_n$ -plane without lose of generality. Let $\gamma(t) = \varphi(t)\eta_{n-1} + \psi(t)\eta_n$ be a parametrization of γ in the plane Π with $x_{n-1} = \varphi(t) > 0$, $t \in I \subset \mathbb{R}$. In this case the curve γ is space-like. Similarly we give a parametrization of a rotation hypersurface of the second kind M_{q,S_2} of L^{n+1} with space-like axis as

(2.4)
$$f_{S_2}(u_1, \dots, u_{n-1}, t) = \varphi(t) \cosh u_{n-1} \Theta(u_1, \dots, u_{n-2}) + \psi(t) \eta_n + \varphi(t) \sinh u_{n-1} \eta_{n+1},$$

 $-\infty < u_{n-1} < \infty$, which is called a pseudo-spherical rotation hypersurface of L^{n+1} as parallels of M_{q,S_2} are pseudo-spheres $\mathbb{S}_1^{n-1}(0,\varphi(t))$ when n > 2. (If n = 2, then $S_1^1 \equiv H^1$.) Later we will show that M_{q,S_2} has the index 1, that is, q = 1.

Case 3. ℓ is light-like. Let $\{\hat{\eta}_1, \ldots, \hat{\eta}_{n+1}\}$ be a pseudo-Lorentzian basis of L^{n+1} , that is, $\langle \hat{\eta}_i, \hat{\eta}_j \rangle = \delta_{ij}, i, j = 1, \ldots, n-1, \langle \hat{\eta}_i, \hat{\eta}_n \rangle = \langle \hat{\eta}_i, \hat{\eta}_{n+1} \rangle = 0, i = 1, 2, \ldots, n-1, \langle \hat{\eta}_n, \hat{\eta}_{n+1} \rangle = 1, \langle \hat{\eta}_n, \hat{\eta}_n \rangle = 0, \langle \hat{\eta}_{n+1}, \hat{\eta}_{n+1} \rangle = 0$. We can choose $\hat{\eta}_1 = (1, 0, \ldots, 0), \ldots, \hat{\eta}_{n-1} = (0, \ldots, 1, 0, 0), \hat{\eta}_n = \frac{1}{\sqrt{2}}(0, \ldots, 0, 1, -1), \hat{\eta}_{n+1} = \frac{1}{\sqrt{2}}(0, \ldots, 0, 1, 1)$. We may suppose that ℓ is the line spanned by the null vector $\hat{\eta}_{n+1}$ and Π is the $x_n x_{n+1}$ -plane without lose of generality. Let $\gamma(t) = \sqrt{2}\varphi(t)\hat{\eta}_n + \sqrt{2}\psi(t)\hat{\eta}_{n+1}$ be a parametrization of γ in the plane Π with $x_n = \varphi(t) > 0, t \in I \subset \mathbb{R}$.

Let $\Theta_1(u_1, \ldots, u_{n-2}), \ldots, \Theta_{n-1}(u_1, \ldots, u_{n-2})$ be the components of the orthogonal parameterization $\Theta(u_1, \ldots, u_{n-2})$ given by (2.1) of the unit sphere $\mathbb{S}^{n-2}(1)$ in the basis $\{\hat{\eta}_1, \ldots, \hat{\eta}_{n-1}\}$. We consider the subgroup of Lorentz group which fixes the direction $\hat{\eta}_{n+1}$ of the light-like axis ℓ is given by

 $\{B(u_1,\ldots,u_{n-1}): u_1,\ldots,u_{n-3}\in(0,\pi), u_{n-2}\in(0,2\pi), u_{n-1}\in\mathbb{R}\},\$

where B is the $(n + 1) \times (n + 1)$ matrix of the form

$$B = \begin{pmatrix} 1 & 0 & \cdots & 0 & u_{n-1}\Theta_1 & -u_{n-1}\Theta_1 \\ 0 & 1 & \cdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & 0 & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & u_{n-1}\Theta_{n-1} & -u_{n-1}\Theta_{n-1} \\ u_{n-1}\Theta_1 & \cdots & \cdots & u_{n-1}\Theta_{n-1} & 1 - \frac{u_{n-1}^2}{2} & \frac{u_{n-1}^2}{2} \\ u_{n-1}\Theta_1 & \cdots & \cdots & u_{n-1}\Theta_{n-1} & -\frac{u_{n-1}^2}{2} & 1 + \frac{u_{n-1}^2}{2} \end{pmatrix},$$

which has determinant one. When we apply the transformation B to the vectors $\hat{\eta}_1, \ldots, \hat{\eta}_{n-1}$ we can have

(2.5)
$$B(\hat{\eta}_i) = \hat{\eta}_i + \sqrt{2}u_{n-1}\Theta_i\hat{\eta}_{n+1}, \quad i = 1, \dots, n-1,$$

(2.6)
$$B(\hat{\eta}_n) = \sum_{i=1}^{n-1} \sqrt{2} u_{n-1} \Theta_i \hat{\eta}_i + \hat{\eta}_n - u_{n-1}^2 \hat{\eta}_{n+1}$$
 and $B(\hat{\eta}_{n+1}) = \hat{\eta}_{n+1}$.

If we write $x = \sum_{i=1}^{n+1} x_i \hat{\eta}_i$, then by using (2.5) and (2.6) it can easily be shown that B preserves the metric, that is, $\langle B(x), B(x) \rangle = \langle x, x \rangle$.

Hence, writing $\gamma(t) = (0, ..., 0, \psi(t) + \varphi(t), \psi(t) - \varphi(t))$ the rotation hypersurface $M_{q,L}$ of L^{n+1} with light-like axis is defined as

$$f_L(u_1, \dots, u_{n-1}, t) = B(\gamma(t))$$
(2.7)
$$= (2\varphi(t)u_{n-1}\Theta_1, \dots, 2\varphi(t)u_{n-1}\Theta_{n-1}, (\psi(t) + \varphi(t) - \varphi(t)u_{n-1}^2), (\psi(t) - \varphi(t) - \varphi(t)u_{n-1}^2)), \quad u_{n-1} \neq 0$$

or equivalently by using $\gamma(t) = \sqrt{2}\varphi(t)\hat{\eta}_n + \sqrt{2}\psi(t)\hat{\eta}_{n+1}$ and (2.6) in the pseudo-Lorentzian basis we can write

(2.8)

$$f_L(u_1, \dots, u_{n-1}, t) = B(\gamma(t))$$

$$= 2\varphi(t)u_{n-1}\Theta(u_1, \dots, u_{n-2}) + \sqrt{2}\varphi(t)\hat{\eta}_n$$

$$+ \sqrt{2}(\psi(t) - \varphi(t)u_{n-1}^2)\hat{\eta}_{n+1}, \quad u_{n-1} \neq 0.$$

Note that in the third case if $\varphi(t) = \varphi_0$ or $\psi(t) = \psi_0$ is a constant, then the profile curve is degenerate. However, in the other cases if $\varphi(t) = \varphi_0 > 0$ is a constant and $\psi(t) = t$, then the rotation hypersurface $M_{1,T}$ is the Lorentz cylinder $\mathbb{S}^{n-1}(0,\varphi_0) \times L^1$, M_{0,S_1} is the hyperbolic cylinder $\mathbb{H}^{n-1}(0,-\varphi_0) \times \mathbb{R}$, and M_{1,S_2} is the pseudo-spherical cylinder $\mathbb{S}_1^{n-1}(0,\varphi_0) \times \mathbb{R}$. If $\varphi(t) = t$ and $\psi(t) = \psi_0$ is a constant, then $M_{0,T}$ is a space-like hyperplane of L^{n+1} , and M_{1,S_1} and M_{1,S_2} are time-like hyperplanes of L^{n+1} . Therefore all these are rotational hypersurfaces of L^{n+1} with constant mean curvature.

3. ROTATION HYPERSURFACES WITH TIME-LIKE AXIS

In this section we determine rotation hypersurfaces $M_{q,T}$ of L^{n+1} with timelike axis and constant mean curvature. Especially we determine maximal space-like rotation hypersurface and Lorentzian rotation hypersurface with zero mean curvature of L^{n+1} as a generalization of catenoids of the first kind and third kind, respectively. **Proposition 3.1.** Let $M_{q,T}$ be a rotation hypersurface of L^{n+1} with the index q and time-like axis parameterized by (2.2). Then the directions of parameters are principal directions, and the principal curvatures along the coordinate curves u_i , i = 1, ..., n - 1, are all equal and given by

$$\lambda = -\frac{\psi'}{\varphi\sqrt{\varepsilon(\varphi'^2 - \psi'^2)}}$$

with multiplicity n - 1, and the principal curvature along the coordinate curve t is given by

$$\mu = \frac{\psi'\varphi'' - \psi''\varphi'}{(\varphi'^2 - \psi'^2)\sqrt{\varepsilon(\varphi'^2 - \psi'^2)}},$$

where $\varepsilon = \operatorname{sgn}(\varphi'^2 - \psi'^2) = \mp 1$ and, q = 0 if $\varepsilon = 1$ and q = 1 if $\varepsilon = -1$.

Proof. Taking derivative of (2.2) we have the orthogonal coordinate vector fields on $M_{q,T}$ as

(3.1)
$$\begin{aligned} \frac{\partial f_T}{\partial u_i} &= \varphi(t) \sin u_{n-1} \frac{\partial \Theta}{\partial u_i}, \quad i = 1, \dots, n-2, \\ \frac{\partial f_T}{\partial u_{n-1}} &= \varphi(t) (\cos u_{n-1} \Theta - \sin u_{n-1} \eta_n), \\ \frac{\partial f_T}{\partial t} &= \varphi'(t) (\sin u_{n-1} \Theta + \cos u_{n-1} \eta_n) + \psi'(t) \eta_{n+1} \end{aligned}$$

The vectors $\partial f_T / \partial u_i$'s are space-like, and however the vector $\partial f_T / \partial t$ is space-like if $\varepsilon = \text{sgn}(\langle \partial f_T / \partial t, \partial f_T / \partial t \rangle) = \text{sgn}(\varphi'^2 - \psi'^2) = 1$ and time-like if $\varepsilon = -1$.

Now we can choose an orthonormal tangent basis on ${\cal M}_{q,T}$ as

$$e_i = \frac{1}{\|\partial f_T / \partial u_i\|} \frac{\partial}{\partial u_i}, \quad i = 1, \dots, n-1, \quad e_n = \frac{1}{\sqrt{\varepsilon(\varphi'^2 - \psi'^2)}} \frac{\partial}{\partial t}$$

with signatures $\varepsilon_i = \langle e_i, e_i \rangle = 1$, $i = 1, \ldots, n-1$ and $\varepsilon_n = \langle e_n, e_n \rangle = \varepsilon$, where $\|\partial f_T / \partial u_i\| = \sqrt{\varepsilon_i \langle \partial f / \partial u_i, \partial f / \partial u_i \rangle}$. We determine a unit normal vector field N on $M_{q,T}$ as

$$N = \frac{1}{\sqrt{\varepsilon(\varphi'^2 - \psi'^2)}} [\psi'(t)(\sin u_{n-1}\Theta + \cos u_{n-1}\eta_n) + \varphi'(t)\eta_{n+1}]$$

with $\langle N, N \rangle = -\varepsilon$. Let A_N denotes the shape operator of $M_{q,T}$ in the direction N. By a straightforward calculation we obtain

$$A_N(e_i) = -\frac{\psi'}{\varphi \sqrt{\varepsilon(\varphi'^2 - \psi'^2)}} e_i, \quad i = 1, \dots, n-1$$

and

$$A_N(e_n) = \frac{\psi'\varphi'' - \psi''\varphi'}{(\varphi'^2 - \psi'^2)\sqrt{\varepsilon(\varphi'^2 - \psi'^2)}} e_n.$$

It follows from above that the coordinate curves are lines of curvature, and hence the principal curvatures λ and μ are obtained.

Therefore the mean curvature of $M_{q,T}$ is

(3.2)
$$\alpha = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \langle A_N(e_i), e_i \rangle = \frac{1}{n\sqrt{\varepsilon(\varphi'^2 - \psi'^2)}} \left(-\frac{(n-1)\psi'}{\varphi} + \frac{\psi'\varphi'' - \psi''\varphi'}{\varphi'^2 - \psi'^2} \right)$$

which is the function of t.

Now we will investigate the rotation hypersurfaces of L^{n+1} with time-like axis and constant mean curvature. We consider the rotation hypersurface $M_{q,T}$ defined by (2.2) for the profile curve $\gamma(t) = (\varphi(t), \psi(t)) = (t, g(t)), t > 0$, that is,

$$(3.3) f_T(u_1, \dots, u_{n-1}, t) = t \sin u_{n-1} \Theta(u_1, \dots, u_{n-2}) + t \cos u_{n-1} \eta_n + g(t) \eta_{n+1},$$

where g(t) is a differentiable function. This rotation hypersurface is space-like if $g'^2 < 1$, ($\varepsilon = 1$, q = 0) and time-like if $g'^2 > 1$, ($\varepsilon = -1$, q = 1).

Theorem 3.2. The rotation hypersurface $M_{q,T}$ of L^{n+1} with the index q and time-like axis defined by (3.3) has constant mean curvature α if and only if the function g(t) for the profile curve is given by

(3.4)
$$g(t) = \int^t \frac{a \pm \alpha t^n}{\sqrt{(a \pm \alpha t^n)^2 + \varepsilon t^{2(n-1)}}} dt,$$

where a is an arbitrary constant, and q = 0 for $\varepsilon = 1$ and q = 1 for $\varepsilon = -1$.

Proof. For the functions $\varphi(t) = t$, t > 0 and $\psi(t) = g(t)$, from (3.2) the rotation hypersurface $M_{q,T}$ defined by (3.3) has constant mean curvature if and only if g = g(t) satisfies the differential equation:

(3.5)
$$g'' + \frac{(n-1)(1-g'^2)g'}{t} + n\alpha\varepsilon[\varepsilon(1-g'^2)]^{3/2} = 0,$$

for some constant α .

Suppose that $M_{q,T}$ has constant mean curvature α . Let $\varepsilon = 1$, that is, ${g'}^2 < 1$. If we substitute $g' = \sin u$, then the differential equation (3.5) becomes

(3.6)
$$u' + \frac{(n-1)}{t} \cos u \sin u + n\mu\alpha \cos^2 u = 0,$$

where $\mu = \operatorname{sgn}(\cos u) = \pm 1$. Now we make another substitution $w = \tan u$, then we obtain

$$u' = \frac{w'}{1+w^2}, \quad \cos u = \frac{1}{\sqrt{1+w^2}}, \quad \sin u = \frac{w}{\sqrt{1+w^2}}$$

Hence the differential equation (3.6) becomes

(3.7)
$$w'(t) + \frac{(n-1)}{t}w(t) + n\mu\alpha = 0.$$

The solution of (3.7) yields $w(t) = \frac{a \pm \alpha t^n}{t^{(n-1)}}$ for some constant a. Therefore

(3.8)
$$g'(t) = \sin\left(\tan^{-1}\left(\frac{a \pm \alpha t^n}{t^{(n-1)}}\right)\right) = \frac{a \pm \alpha t^n}{\sqrt{(a \pm \alpha t^n)^2 + t^{2(n-1)}}}$$

and then

(3.9)
$$g(t) = \int^t \frac{a \pm \alpha t^n}{\sqrt{(a \pm \alpha t^n)^2 + t^{2(n-1)}}} dt.$$

Let $\varepsilon = -1$, that is, $g'^2 > 1$. Now if we substitute $g' = \cosh u$, then the differential equation (3.5) turns to

(3.10)
$$u' - \frac{(n-1)}{t} \cosh u \sinh u - n\mu\alpha \sinh^2 u = 0,$$

where $\mu = \operatorname{sgn}(\sinh u) = \pm 1$. Let us put $w = \tanh u$. Then we obtain

$$u' = \frac{w'}{1 - w^2}, \quad \cosh u = \frac{1}{\sqrt{1 - w^2}}, \quad \sinh u = \frac{w}{\sqrt{1 - w^2}}$$

Thus the differential equation (3.10) becomes

(3.11)
$$w'(t) - \frac{(n-1)}{t}w(t) - n\mu\alpha w^2 = 0,$$

which has solution $w(t) = \frac{t^{(n-1)}}{a \pm \alpha t^n}$ for some constant a. Therefore

(3.12)
$$g'(t) = \cosh\left(\tanh^{-1}\left(\frac{t^{(n-1)}}{a \pm \alpha t^n}\right)\right) = \frac{a \pm \alpha t^n}{\sqrt{(a \pm \alpha t^n)^2 - t^{2(n-1)}}}$$

and then

(3.13)
$$g(t) = \int^t \frac{a \pm \alpha t^n}{\sqrt{(a \pm \alpha t^n)^2 - t^{2(n-1)}}} dt.$$

Conversely, it can be shown that the mean curvature of $M_{q,T}$ is constant if g(t) is given by (3.4).

We can have the following corollaries.

Corollary 3.3. Let the mean curvature α of $M_{q,T}$ be a non-zero constant. If a = 0 in (3.4), then $g(t) = \pm \alpha^{-1} \sqrt{\alpha^2 t^2 + \varepsilon} + c$, $t > 1/|\alpha|$ for $\varepsilon = -1$, where c is an integration constant. Moreover,

- (1) for $\varepsilon = 1$ the space-like rotation hypersurface $M_{0,T}$ of L^{n+1} with time-like axis defined by (3.3) is a part of hyperbolic n-space $\mathbb{H}^n(c\eta_{n+1}, -1/|\alpha|)$, hence it is totally umbilical.
- (2) for $\varepsilon = -1$ the Lorentzian rotation hypersurface $M_{1,T}$ of L^{n+1} with timelike axis defined by (3.3) is a part of the de Sitter n-space $\mathbb{S}_1^n(c\eta_{n+1}, 1/|\alpha|)$, hence it is totally umbilical.

Proof. If a = 0, by integrating (3.4) we get $g(t) = \pm \alpha^{-1} \sqrt{\alpha^2 t^2 + \varepsilon} + c$ for $\varepsilon = \pm 1$, and $t > 1/|\alpha|$ when $\varepsilon = -1$. Using the parameterization (3.3) of $M_{q,T}$ we have

$$\langle f_T - c\eta_{n+1}, f_T - c\eta_{n+1} \rangle = t^2 \sin^2 u_{n-1} \langle \Theta, \Theta \rangle + t^2 \cos^2 u_{n-1} - \frac{\alpha^2 t^2 + \varepsilon}{\alpha^2} = -\frac{\varepsilon}{\alpha^2}$$

as $\langle \Theta, \Theta \rangle = 1$ from (2.1). Thus the proof follows.

Corollary 3.4.

(1) The space-like rotation hypersurface $M_{0,T}$ of L^{n+1} with time-like axis defined by (3.3) is maximal if and only if the function g(t) for the profile curve is given by

(3.14)
$$g(t) = \int^t \frac{a}{\sqrt{a^2 + t^{2(n-1)}}} dt.$$

(2) The Lorentzian rotation hypersurface $M_{1,T}$ of L^{n+1} with time-like axis defined by (3.3) has zero mean curvature if and only if the function g(t) for the profile curve is given by

(3.15)
$$g(t) = \int^{t} \frac{a}{\sqrt{a^2 - t^{2(n-1)}}} dt, \quad 0 < t < \sqrt[n-1]{|a|},$$

where a is a non-zero constant.

For n > 2 a non-planer minimal rotation hypersurface of an Euclidean space E^{n+1} is called a generalized catenoid [1, 9]. Similarly we call a rotation hypersurface of a Lorentz-Minkowski space L^{n+1} with zero mean curvature a generalized catenoid. So the maximal rotation hypersurface $M_{0,T}$ of L^{n+1} with time-like axis is a part of the generalized catenoid of first kind. For instance, if n = 2, then from (3.14) we get $g(t) = a \sinh^{-1}(\frac{t}{a}) + b$, and then we have from (3.3)

$$f_T(u_1, t) = \left(t \sin u_1, t \cos u_1, a \sinh^{-1}\left(\frac{t}{a}\right) + b\right)$$

which is congruent to the catenoid of first kind given in [6].

Similarly, the Lorentzian rotation hypersurface $M_{1,T}$ of L^{n+1} with time-like axis and zero mean curvature is called a generalized catenoid of the 3rd kind. For instance, if n = 2, then from (3.15) we get $g(t) = a \sin^{-1}(\frac{t}{a}) + b$, and then by (3.3) we have

$$f_T(u_1, t) = (t \sin u_1, t \cos u_1, a \sin^{-1}(\frac{t}{a}) + b)$$

which is congruent to a part of the catenoid of the 3rd kind given in [10].

4. ROTATION HYPERSURFACES OF FIRST KIND WITH SPACE-LIKE AXIS

In this section we investigate rotation hypersurfaces of the first kind M_{q,S_1} of L^{n+1} with space-like axis and constant mean curvature. Especially we determine maximal space-like rotation hypersurfaces and Lorentzian rotation hypersurfaces with zero mean curvature of the first kind of L^{n+1} as a generalization of catenoids of the second kind and fourth kind, respectively.

On the hypersurface M_{a,S_1} defined by (2.3), the unit normal field is given by

$$\bar{N} = \frac{1}{\sqrt{\bar{\varepsilon}(\psi'^2 - \varphi'^2)}} [\psi'(t)(\sinh u_{n-1}\Theta + \cosh u_{n-1}\eta_{n+1}) + \varphi'(t)\eta_n],$$

where $\bar{\varepsilon} = \operatorname{sgn}(\psi'^2 - \varphi'^2)$ and $\langle \bar{N}, \bar{N} \rangle = -\bar{\varepsilon}$.

We state the followings without proof because the most of the calculations are the same as in Section 2.

Proposition 4.1. Let M_{q,S_1} be a rotation hypersurface of the first kind of L^{n+1} with the index q and space-like axis parameterized by (2.3). Then the directions of parameters are principal directions, and the principal curvatures along the coordinate curves u_i , i = 1, ..., n - 1, are all equal and given by

$$\lambda = -\frac{\psi'}{\varphi\sqrt{\bar{\varepsilon}(\psi'^2 - \varphi'^2)}}$$

with multiplicity n - 1, and the principal curvature along the coordinate curve t is given by

$$\mu = \frac{\psi''\varphi' - \psi'\varphi''}{(\psi'^2 - \varphi'^2)\sqrt{\bar{\varepsilon}(\psi'^2 - \varphi'^2)}}$$

where $\bar{\varepsilon} = \operatorname{sgn}(\psi'^2 - \varphi'^2) = \mp 1$ and, q = 0 if $\bar{\varepsilon} = 1$ and q = 1 if $\bar{\varepsilon} = -1$.

Therefore the mean curvature vector of M_{q,S_1} is

(4.1)
$$\bar{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \bar{\varepsilon}_i \langle A_{\bar{N}}(e_i), e_i \rangle = \frac{1}{n\sqrt{\bar{\varepsilon}(\psi'^2 - {\varphi'}^2)}} \left(-\frac{(n-1)\psi'}{\varphi} + \frac{\varphi'\psi'' - \psi'\varphi''}{\psi'^2 - {\varphi'}^2} \right)$$

which is the function of t, where e_1, \ldots, e_n are the unit principal directions of the shape operator $A_{\bar{N}}$ with signatures $\bar{\varepsilon}_i = \langle e_i, e_i \rangle$.

We now consider the rotation hypersurface of the first kind M_{q,S_1} of L^{n+1} with space-like axis defined by (2.3) for the profile curve $\gamma(t) = (\varphi(t), \psi(t)) = (t, g(t)), t > 0$, that is,

(4.2)
$$f_{S_1}(u_1, \dots, u_{n-1}, t) = t \sinh u_{n-1} \Theta(u_1, \dots, u_{n-2}) + g(t) \eta_n + t \cosh u_{n-1} \eta_{n+1},$$

where g(t) is a differentiable function. This rotation hypersurface is space-like if $g'^2 > 1$, $(\bar{\varepsilon} = 1)$ and time-like if $g'^2 < 1$, $(\bar{\varepsilon} = -1)$.

Hence, from (4.1) we can state that the rotation hypersurface of the first kind M_{q,S_1} of L^{n+1} with space-like axis parametrized by (4.2) has constant mean curvature if and only if g = g(t) satisfies the differential equation

(4.3)
$$g'' - \frac{(n-1)(g'^2 - 1)g'}{t} + n\bar{\alpha}\bar{\varepsilon}[\bar{\varepsilon}(g'^2 - 1)]^{3/2} = 0$$

for some constant $\bar{\alpha}$.

Theorem 4.2. The rotation hypersurface of the first kind M_{q,S_1} of L^{n+1} with the index q and space-like axis defined by (4.2) has constant mean curvature $\bar{\alpha}$ if and only if the function g(t) for the profile curve is given by

(4.4)
$$g(t) = \int^t \frac{a \pm \bar{\alpha} t^n}{\sqrt{(a \pm \bar{\alpha} t^n)^2 - \bar{\varepsilon} t^{2(n-1)}}} dt,$$

where a is an arbitrary constant, and q = 0 for $\bar{\varepsilon} = 1$ and q = 1 for $\bar{\varepsilon} = -1$.

So we can have the following corollaries.

Corollary 4.3. Let the mean curvature $\bar{\alpha}$ of M_{q,S_1} be a non-zero constant. If a = 0 in (4.4), then $g(t) = \pm \bar{\alpha}^{-1} \sqrt{\bar{\alpha}^2 t^2 - \bar{\varepsilon}} + c$, $t > 1/|\bar{\alpha}|$ for $\bar{\varepsilon} = 1$, where c is an integration constant. Moreover,

- (1) for $\bar{\varepsilon} = 1$ the space-like rotation hypersurface of the first kind M_{0,S_1} of L^{n+1} with space-like axis defined by (4.2) is a part of the hyperbolic n-space $\mathbb{H}^n(c\eta_n, -1/|\bar{\alpha}|)$, hence it is totally umbilical.
- (2) for $\bar{\varepsilon} = -1$ the Lorentzian rotation hypersurface of the first kind M_{1,S_1} of L^{n+1} with space-like axis defined by (4.2) is a part of de Sitter n-space $\mathbb{S}_1^n(c\eta_n, 1/|\bar{\alpha}|)$, hence it is totally umbilical.

Corollary 4.4.

(1) The space-like rotation hypersurface of the first kind M_{0,S_1} of L^{n+1} with space-like axis defined by (4.2) is maximal if and only if the function g(t) for the profile curve is given by

(4.5)
$$g(t) = \int^t \frac{a}{\sqrt{a^2 - t^{2(n-1)}}} dt, \quad 0 < t < \sqrt[n-1]{|a|}.$$

(2) The Lorentzian rotation hypersurface of the first kind M_{1,S_1} of L^{n+1} with space-like axis defined by (4.2) has zero mean curvature if and only if the function g(t) for the profile curve is given by

(4.6)
$$g(t) = \int^t \frac{a}{\sqrt{a^2 + t^{2(n-1)}}} dt,$$

where *a* is a non-zero constant.

The maximal rotation hypersurface of the first kind M_{0,S_1} of L^{n+1} with spacelike axis is called a generalized catenoid of the second kind. For instance, if n = 2, then from (4.5) we get $g(t) = a \sin^{-1}(\frac{t}{a}) + b$, $0 < t < \sqrt{|a|}$, and then by (4.2) we have

$$f_{S_1}(u_1, t) = (t \sinh u_1, a \sin^{-1}(\frac{t}{a}) + b, t \cosh u_1)$$

which is congruent to a part of the catenoid of the second kind given in [6].

Similarly, the Lorentzian rotation hypersurface of the first kind M_{1,S_1} of L^{n+1} with space-like axis and zero mean curvature is called a generalized catenoid of the 4th kind. For instance, if n = 2, then from (4.6) we get $g(t) = a \sinh^{-1}(\frac{t}{a}) + b$, and then by (4.2) we have

$$f_{S_1}(u_1, t) = (t \sinh u_1, a \sinh^{-1}(\frac{t}{a}) + b, t \cosh u_1)$$

which is congruent to the catenoid of the 4th kind given in [10].

5. ROTATION HYPERSURFACES OF SECOND KIND WITH SPACE-LIKE AXIS

In this section we study rotation hypersurfaces of the second kind M_{q,S_2} of L^{n+1} with space-like axis and constant mean curvature. In the following it is seen that the index q is only one, That is, in this case we only have Lorentzian rotation hypersurface of L^{n+1} .

Taking derivative of (2.4) we have the orthogonal coordinate vector fields on M_{q,S_2} as

(5.1)
$$\begin{aligned} \frac{\partial f_{S_2}}{\partial u_i} &= \varphi(t) \cosh u_{n-1} \frac{\partial \Theta}{\partial u_i}, \quad i = 1, \dots, n-2, \\ \frac{\partial f_{S_2}}{\partial u_{n-1}} &= \varphi(t) (\sinh u_{n-1}\Theta + \cosh u_{n-1}\eta_{n+1}), \\ \frac{\partial f_{S_2}}{\partial t} &= \varphi'(t) (\cosh u_{n-1}\Theta + \sinh u_{n-1}\eta_{n+1}) + \psi'(t)\eta_n \end{aligned}$$

The vectors $\partial f_{S_2}/\partial t$, $\partial f_{S_2}/\partial u_i$ i = 1, ..., n-2 are space-like and the vector $\partial f_{S_2}/\partial u_{n-1}$ is time-like. This means that M_{q,S_2} is Lorentzian, that is, q = 1. Also, the space-like unit normal field on M_{1,S_2} is given by

$$\tilde{N} = \frac{1}{\sqrt{{\varphi'}^2 + {\psi'}^2}} [\psi'(t)(\cosh u_{n-1}\Theta + \sinh u_{n-1}\eta_{n+1}) - \varphi'(t)\eta_n].$$

Thus we give the followings without proof because the most of the calculations are the same as in Section 2.

Proposition 5.1. Let M_{1,S_2} be the Lorentzian rotation hypersurface of the second kind of L^{n+1} with space-like axis parameterized by (2.4). Then the directions of parameters are principal directions, and the principal curvatures along the coordinate curves u_i , i = 1, ..., n - 1, are all equal and given by

$$\lambda = -\frac{\psi'}{\varphi \sqrt{(\psi'^2 + {\varphi'}^2)}}$$

with multiplicity n - 1, and the principal curvature along the coordinate curve t is given by

$$\mu = \frac{\psi'\varphi'' - \psi''\varphi'}{(\psi'^2 + \varphi'^2)\sqrt{(\psi'^2 + \varphi'^2)}}.$$

Hence the mean curvature of M_{1,S_2} is

(5.2)
$$\tilde{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\varepsilon}_i \langle A_{\tilde{N}}(e_i), e_i \rangle = \frac{1}{n\sqrt{{\varphi'}^2 + {\psi'}^2}} \left(-\frac{(n-1)\psi'}{\varphi} + \frac{\psi' \varphi'' - \varphi' \psi''}{{\varphi'}^2 + {\psi'}^2} \right),$$

where e_1, \ldots, e_n are the unit principal directions of the shape operator $A_{\tilde{N}}$ with signatures $\tilde{\varepsilon}_n = \tilde{\varepsilon}_i = 1, i = 1, \ldots, n-2, \tilde{\varepsilon}_{n-1} = -1.$

We consider the Lorentzian rotation hypersurface of the second kind M_{1,S_2} of L^{n+1} with space-like axis defined by (2.4) for the profile curve $\gamma(t) = (\varphi(t), \psi(t)) = (t, g(t)), t > 0$, that is,

(5.3)
$$f_{S_2}(u_1, \dots, u_{n-1}, t) = t \cosh u_{n-1} \Theta(u_1, \dots, u_{n-2}) + g(t) \eta_n + t \sinh u_{n-1} \eta_{n+1},$$

where g(t) is a differentiable function. Hence, from (5.2) we can state that the rotation hypersurface of the second kind M_{1,S_2} of L^{n+1} with space-like axis parametrized by (5.3) has constant mean curvature if and only if the function g = g(t) satisfies the differential equation:

(5.4)
$$g'' + \frac{(n-1)(1+{g'}^2)g'}{t} + n\tilde{\alpha}(1+{g'}^2)^{3/2} = 0$$

for some constant $\tilde{\alpha}$.

Theorem 5.2. The Lorentzian rotation hypersurface of the second kind M_{1,S_2} of L^{n+1} with space-like axis defined by (5.3) has constant mean curvature $\tilde{\alpha}$ if and only if the function g(t) for the profile curve is given by

(5.5)
$$g(t) = \int^t \frac{a \pm \tilde{\alpha} t^n}{\sqrt{t^{2(n-1)} - (a \pm \tilde{\alpha} t^n)^2}} dt$$

where *a* is an arbitrary constant.

From this theorem we have the following corollaries.

Corollary 5.3. Let the mean curvature $\tilde{\alpha}$ of M_{1,S_2} be a non-zero constant. If a = 0 in (5.5), then $g(t) = \mp \tilde{\alpha}^{-1} \sqrt{1 - \tilde{\alpha}^2 t^2} + c$, $0 < t < 1/|\tilde{\alpha}|$. Moreover, the Lorentzian rotation hypersurface of the second kind M_{1,S_2} of L^{n+1} with space-like axis defined by (5.3) is a part of the de Sitter n-space $\mathbb{S}_1^n(c\eta_n, 1/|\tilde{\alpha}|)$, hence it is totally umbilical.

Corollary 5.4. The Lorentzian rotation hypersurface of the second kind M_{1,S_2} of L^{n+1} with space-like axis defined by (5.3) has zero mean curvature if and only if the function g(t) for the profile curve is given by

(5.6)
$$g(t) = \int^t \frac{a}{\sqrt{t^{2(n-1)} - a^2}} dt, \quad t > \sqrt[n-1]{|a|},$$

where a is a non-zero constant.

The Lorentzian rotation hypersurface of the second kind M_{1,S_2} of L^{n+1} with space-like axis and zero mean curvature is called a generalized catenoid of the 5th kind. For instance, if n = 2, then from (5.6) we get $g(t) = a \cosh^{-1}(\frac{t}{a}) + b$, and then by (5.3) we have

$$f_{S_2}(u_1, t) = (t \cosh u_1, a \cosh^{-1}(\frac{t}{a}) + b, t \sinh u_1)$$

which is congruent to the catenoid of the 5th kind given in [10].

6. ROTATION HYPERSURFACE WITH LIGHT-LIKE AXIS

In this section we study rotation hypersurfaces $M_{q,L}$ of L^{n+2} with light-like axis and constant mean curvature. We determine maximal space-like rotation hypersurface and Lorentzian rotation hypersurface with zero mean curvature of L^{n+1} as a generalization of Enneper surfaces of the second kind and third kind, respectively.

Proposition 6.1. Let $M_{q,L}$ be a rotation hypersurface of L^{n+1} with the index q and light-like axis parameterized by (2.8). Then the directions of parameters are principal directions, and the principal curvatures along the coordinate curves u_i , i = 1, ..., n-1 are all equal and given by

$$\lambda = -\frac{\varphi'}{2\varphi\sqrt{\hat{\varepsilon}\varphi'\psi'}}$$

with multiplicity n - 1, and the principal curvature along the coordinate curve t is given by

$$\mu = \frac{\varphi'\psi'' - \psi'\varphi''}{4\varphi'\psi'\sqrt{\hat{\varepsilon}\varphi'\psi'}},$$

where $\hat{\varepsilon} = sgn(\varphi'\psi') = \mp 1$ and, q = 0 if $\hat{\varepsilon} = 1$ and q = 1 if $\hat{\varepsilon} = -1$.

Proof. Taking derivative of (2.8) we have the orthogonal coordinate vector fields on $M_{q,L}$ as

(6.1)
$$\begin{aligned} \frac{\partial f_L}{\partial u_i} &= 2\varphi(t)u_{n-1}\frac{\partial\Theta}{\partial u_i}, \quad i = 1, \dots, n-2, \\ \frac{\partial f_L}{\partial u_{n-1}} &= 2\varphi(t)(\Theta - \sqrt{2}u_{n-1}\hat{\eta}_{n+1}), \\ \frac{\partial f_L}{\partial t} &= \varphi'(t)(2u_{n-1}\Theta + \sqrt{2}\hat{\eta}_n) + \sqrt{2}(\psi'(t) - \varphi'(t)u_{n-1}^2)\hat{\eta}_{n+1} \end{aligned}$$

So we have $\left\langle \frac{\partial f_L}{\partial u_i}, \frac{\partial f_L}{\partial u_j} \right\rangle = 4\varphi^2(t)u_{n-1}^2 \left\langle \frac{\partial \Theta}{\partial u_i}, \frac{\partial \Theta}{\partial u_j} \right\rangle = 4\varphi^2(t)u_{n-1}^2 \|\frac{\partial \Theta}{\partial u_i}\|^2 \delta_{ij}, u_{n-1} \neq 0, \quad i, j = 1, \dots, n-2 \text{ as } \Theta \text{ is an orthogonal parametrization of the unit sphere$

 $S^{n-2}(1), \left\langle \frac{\partial f_L}{\partial u_{n-1}}, \frac{\partial f_L}{\partial u_{n-1}} \right\rangle = 4\varphi^2(t) \text{ and } \left\langle \frac{\partial f_L}{\partial t}, \frac{\partial f_L}{\partial t} \right\rangle = 4\varphi'(t)\psi'(t) \neq 0 \text{ because the profile curve is nonnull.}$

The vectors $\partial f_L/\partial u_i$'s are space-like, and however the vector $\partial f_L/\partial t$ is space-like if $\hat{\varepsilon} = \text{sgn}(\langle \partial f_T/\partial t, \partial f_T/\partial t \rangle) = \text{sgn}(\varphi'(t)\psi'(t)) = 1$ and time-like if $\hat{\varepsilon} = -1$. Thus we can choose an orthonormal tangent basis on $M_{q,L}$ as

$$e_i = \frac{1}{\|\partial f_L/\partial u_i\|} \frac{\partial}{\partial u_i}, \quad i = 1, \dots, n-1, \quad e_n = \frac{1}{2\sqrt{\hat{\varepsilon}\varphi'\psi'}} \frac{\partial}{\partial t}$$

with $\hat{\varepsilon}_i = 1, i = 1, \dots, n-1, \hat{\varepsilon}_n = \hat{\varepsilon}$. Also we have the unit normal field to $M_{q,L}$ as

$$\hat{N} = \frac{1}{\sqrt{2\hat{\varepsilon}\varphi'\psi'}} [\varphi'(\sqrt{2}u_{n-1}\Theta + \hat{\eta}_n) - (\psi' + \varphi'u_{n-1}^2)\hat{\eta}_{n+1}]$$

with $\langle \hat{N}, \hat{N} \rangle = -\hat{\varepsilon}$. By a straightforward calculation we obtain

$$A_{\hat{N}}(e_i) = -\frac{\varphi'}{2\varphi\sqrt{\hat{\varepsilon}\varphi'\psi'}} e_i, \quad i = 1, \dots, n-1 \text{ and } A_{\hat{N}}(e_n) = \frac{\varphi'\psi'' - \psi'\varphi''}{4\varphi'\psi'\sqrt{\hat{\varepsilon}\varphi'\psi'}} e_n.$$

It follows from above that the coordinate curves are lines of curvature, and hence the principal curvatures λ and μ are obtained.

Therefore, for the mean curvature $\hat{\alpha}$ of $M_{q,L}$ we have

(6.2)
$$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \hat{\varepsilon}_i \left\langle A_{\hat{N}}(e_i), e_i \right\rangle = \frac{1}{n\sqrt{\hat{\varepsilon}\varphi'\psi'}} \left(-\frac{(n-1)\varphi'}{2\varphi} + \frac{\varphi'\psi'' - \psi'\varphi''}{4\varphi'\psi'} \right)$$

which is the function of t.

To investigate the rotation hypersurface $M_{q,L}$ of L^{n+1} with light-like axis and constant mean curvature we consider the rotation hypersurface defined by (2.8) for the profile curve $\gamma(t) = (\varphi(t), \psi(t)) = (t, g(t)), t > 0$, that is,

(6.3)
$$f_L(u_1, \dots, u_{n-1}, t) = 2tu_{n-1}\Theta(u_1, \dots, u_{n-2}) + \sqrt{2t}\hat{\eta}_n + \sqrt{2}(g(t) - tu_{n-1}^2)\hat{\eta}_{n+1},$$

where g(t) is a differentiable function. This rotation hypersurface is space-like if g' > 0, $(\hat{\varepsilon} = 1)$ and time-like if g' < 0, $(\hat{\varepsilon} = -1)$ This means that the profile curve is strictly monotonic.

Theorem 6.2. The rotation hypersurface $M_{q,L}$ of L^{n+1} with light-like axis given by (6.3) has constant mean curvature $\hat{\alpha}$ if and only if the function g(t) for the profile curve is given by

(6.4)
$$g(t) = \int^t \hat{\varepsilon} \frac{t^{2(n-1)}}{(a-2t^n\hat{\alpha})^2} dt, \quad \hat{\varepsilon} = \pm 1,$$

where *a* is an arbitrary constant.

Proof. For the function $\varphi(t) = t$, t > 0 and $\psi(t) = g(t)$, from (6.2) the rotation hypersurface $M_{q,L}$ parametrized by (6.3) has constant mean curvature if and only if g = g(t) satisfies the differential equation:

(6.5)
$$g'' - \frac{2(n-1)g'}{t} - 4n\hat{\alpha}g'\sqrt{\hat{\varepsilon}g'} = 0$$

for some constant $\hat{\alpha}$.

Suppose that $M_{q,L}$ has constant mean curvature $\hat{\alpha}$. Let us put $\hat{\varepsilon}g' = w^2$. Then $g'' = 2\hat{\varepsilon}ww'$ and the differential equation (6.5) becomes

(6.6)
$$w' - \frac{(n-1)}{t}w - 2n\mu\hat{\alpha}w^2 = 0,$$

where $\mu = \operatorname{sgn}(w) = \pm 1$. The solution of (6.6) gives $w(t) = \mu \frac{t^{n-1}}{a - 2\hat{\alpha}t^n}$ for some constant a. We then obtain (6.4) by solving $g' = \hat{\varepsilon}w^2$.

Conversely, it can be shown that the mean curvature of $M_{q,L}$ is constant if g(t) is given by (6.4).

Then we have the following corollaries.

Corollary 6.3. Let the mean curvature $\hat{\alpha}$ of $M_{q,L}$ be a non-zero constant. If a = 0 in (6.4), then $g(t) = c - \frac{\hat{\varepsilon}}{4t\hat{\alpha}^2}$, t > 0, where c is an integration constant. Moreover,

- (1) for $\hat{\varepsilon} = 1$ the space-like rotation hypersurface $M_{0,L}$ of L^{n+1} with light-like axis parameterized by (6.3) is a part of hyperbolic n-space $\mathbb{H}^n(c\hat{\eta}_{n+1}, -1/|\hat{\alpha}|)$, hence it is totally umbilical.
- (2) for $\varepsilon = -1$ the Lorentzian rotation hypersurface $M_{1,L}$ of L^{n+1} with time-like axis parameterized by (6.3) is a part of the de Sitter n-space $\mathbb{S}_1^n(c\hat{\eta}_{n+1}, 1/|\hat{\alpha}|)$, hence it is totally umbilical, where $\hat{\eta}_{n+1}$ is the direction of the light-like rotation axis.

Proof. If a = 0, by integrating (6.4) we get $g(t) = c - \frac{\hat{\varepsilon}}{4t\hat{\alpha}^2}$. Using the parameterization (6.3) of $M_{q,L}$ we have

$$\left\langle f_L - c\sqrt{2}\hat{\eta}_{n+1}, f_L - c\sqrt{2}\hat{\eta}_{n+1} \right\rangle = 4t^2 u_{n-1}^2 \left\langle \Theta, \Theta \right\rangle + 4t \left(-\frac{\hat{\varepsilon}}{4t\hat{\alpha}^2} - tu_{n-1}^2\right) \left\langle \hat{\eta}_n, \hat{\eta}_{n+1} \right\rangle$$
$$= -\frac{\hat{\varepsilon}}{\hat{\alpha}^2}$$

as $\langle \Theta, \Theta \rangle = 1$ from (2.1). Therefore the proof follows.

Corollary 6.4.

(1) The space-like rotation hypersurface $M_{0,L}$ of L^{n+1} with light-like axis given by (6.3) is maximal if and only if the function g(t) for the profile curve is given by

(6.7)
$$g(t) = \frac{1}{a^2} \frac{t^{2n-1}}{2n-1} + b.$$

(2) The Lorentzian rotation hypersurface $\hat{M}_{1,L}$ of L^{n+1} with light-like axis given by (6.3) has zero mean curvature if and only if the function g(t) for the profile curve is given by

(6.8)
$$g(t) = b - \frac{1}{a^2} \frac{t^{2n-1}}{2n-1},$$

where $a \neq 0$ and b are constants.

We call the maximal space-like rotation hypersurface $M_{0,L}$ of L^{n+1} with lightlike axis the hypersurface of Enneper of the second kind. For instance, for n = 2, a = 1 and b = 0 from (6.3) and (6.7) the maximal space-like rotation surface $M_{0,L}$ with light-like axis is given by

$$f_L(u_1, t) = 2tu_1\eta_1 + \sqrt{2}t\hat{\eta}_2 + \sqrt{2}\left(\frac{t^3}{3} - tu_1^2\right)\hat{\eta}_3$$
$$= \left(2tu_1, \frac{t^3}{3} + t - tu_1^2, \frac{t^3}{3} - t - tu_1^2\right),$$

which is congruent to the Enneper's surface of the second kind given in [6].

Similarly we call the time-like rotation hypersurface $M_{1,L}$ of L^{n+1} with lightlike axis and zero mean curvature the hypersurface of Enneper of the third kind. For instance, for n = 2, a = 1 and b = 0 from (6.3) and (6.8) the time-like rotation surface $M_{1,L}$ with light-like axis and zero mean curvature is given by

$$f_L(u_1, t) = 2tu_1\eta_1 + \sqrt{2}t\hat{\eta}_2 + \sqrt{2}\left(-\frac{t^3}{3} - tu_1^2\right)\hat{\eta}_3$$
$$= \left(2tu_1, -\frac{t^3}{3} + t - tu_1^2, -\frac{t^3}{3} - t - tu_1^2\right),$$

which congruent to the Enneper's surface of the third kind given in [10].

Corollary 6.5. For n = 2 and $a \neq 0$, the rotation surface $M_{q,L}$ with light-like axis given by (6.3) has non-zero constant mean curvature if and only if the function

g(t) for the profile curve is given by

(6.9)
$$g(t) = \begin{cases} \frac{\hat{\varepsilon}}{8\hat{\alpha}^2} \left(\frac{t}{\rho^2 - t^2} - \frac{1}{\rho} \tanh^{-1} \left(\frac{t}{\rho} \right) \right) + b, \ 0 < \frac{t}{\rho} < 1, \ \frac{a}{2\hat{\alpha}} = \rho^2 > 0 \\ \frac{\hat{\varepsilon}}{8\hat{\alpha}^2} \left(\frac{-t}{t^2 + \rho^2} + \frac{1}{\rho} \tan^{-1} \left(\frac{t}{\rho} \right) \right) + b, \ t > 0, \qquad \frac{a}{2\hat{\alpha}} = -\rho^2 < 0. \end{cases}$$

where a is a non-zero constant, q = 0 when $\hat{\varepsilon} = 1$ and q = 1 when $\hat{\varepsilon} = -1$.

Proof. The proof is followed from the evaluation of the integral in (6.4) for n = 2.

The results given in Corollary 6.5 for the space-like surface ($\hat{\varepsilon} = 1$) was also obtained in [4].

Now we state a classification theorem for rotation hypersurfaces of L^{n+1} with constant mean curvature.

Theorem 6.6. Let M be a rotation hypersurface of a Lorentz-Minkowski space L^{n+1} . If M has constant mean curvature, then it is locally congruent to a part of one of the following rotation hypersurfaces:

- (1) a space-like hyperplane or a time-like hyperplane of L^{n+1} ;
- (2) a Lorentz cylinder $M_{1,T} = \mathbb{S}^{n-1}(0, \varphi_0) \times L^1$ or a hyperbolic cylinder $M_{0,S_1} = \mathbb{H}^{n-1}(0, -\varphi_0) \times \mathbb{R}$ or a pseudo-spherical cylinder $M_{1,S_2} = \mathbb{S}_1^{n-1}(0, \varphi_0) \times \mathbb{R}$, where φ_0 is a positive real number;
- (3) the rotation hypersurface $M_{q,T}$ of L^{n+1} with time-like axis defined by (3.3) for the profile curve g(t) given by (3.4);
- (4) the rotation hypersurface of the first kind M_{q,S_1} of L^{n+1} with space-like axis defined by (4.2) for the profile curve g(t) given by (4.4);
- (5) the rotation hypersurface of the second kind M_{1,S_2} of L^{n+1} with space-like axis defined by (5.3) for the profile curve g(t) given by (5.5);
- (6) the rotation hypersurface $M_{q,L}$ of L^{n+1} with light-like axis defined by (6.3) for the profile curve g(t) given by (6.4).

Note that the cases (3), (4), (5), and (6) in Theorem 6.6 include a hyperbolic n-space \mathbb{H}^n or a de Sitter n-space \mathbb{S}_1^n with time-like, space-like or light-like axis by following Corollaries 3.3, 4.3, 5.3, and 6.3.

When n = 2, Theorem 6.6 gives all time-like and space-like rotation surfaces of Lorentz-Minkowski 3-space with constant mean curvature which includes locally the results on the space-like rotation surfaces with constant mean curvature given in [4].

I would like to express my thanks to the referee for his/her valuable suggestions to improve the article.

References

- J. L. Barbosa and M. do Carmo, Helicoids, catenoids, and minimal hypersurfaces of Rⁿ invariant by an ℓ-parameter group of motions, An. Acad. Brasil. Ciênc., 53 (1981), 403-408.
- R. M. B. Chaves and C. C. Cândido, On a conjecture about the Gauss map of complete spacelike surfaces with constant mean curvature in the Lorentz-Minkowski Space, *Beiträge Algebra Geom.*, 45 (2004), 191-208.
- C. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pure Appl., 6 (1841), 309-320.
- 4. J. I. Hano and K. Nomizu, Surface of revolution with constant mean curvature in Lorentz-Minkowski space, *Tôhoku Math. J.*, **36** (1984), 427-437.
- W-Y. Hsiang and W-C. Yu, A generalization of a theorem of Delaunay, J. Differential Geom., 16 (1981), 161-177.
- O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L³, Tokyo J. Math., 6 (1983), 297-309.
- 7. S. Lee and J. H. Varnado, Spacelike constant mean curvature surfaces of revolution in Minkowski 3-space, *Differ. Geom. Dyn. Sys.*, **8** (2006), 144-165.
- 8. L. McNertny, One-parameter families of surfaces with constant curvature in Lorentz 3-space, Ph.D. thesis, Brown University, 1980.
- 9. M. Pinl and W. Ziller, Minimal hypersurfaces in spaces of constant curvature, J. Differential Geom., 11 (1976), 335-343.
- I. Van de Woestijne, Minimal surfaces in the 3-dimensional Minkowski space, in: Geometry and Topology of Submanifolds II, M. Boyom et al. (eds), World Scientific, Teaneck, NJ, 1990, 344-369.

Uğur Dursun Istanbul Technical University, Faculty of Science and Letters, Department of Mathematics, 34469 Maslak, Istanbul, Turkey E-mail: udursun@itu.edu.tr